高中数学:几种常用的换元法

高中数学:几种常用的换元法
高中数学:几种常用的换元法

高中数学:几种常用的换元法

引入一个或几个新“元”以代换问题中原来的“元”,使问题化难为易,这种解题方法,称之为换元法。下面介绍几种常用的换元法。

1. 三角代换

例1. 已知

求证:

证明:由条件设

所以

2. 和差代换

例2. 求的值。

解:设,则

故原式

3. 增量代换

例3. 已知,求证:a+b<ab 证明:设,

于是

所以

4. 均值代换

例4. 若,且x,y,z。求证:

证明设,

则有

5. 拼凑代换

例5. 设

求证:

证明

6. 整体代换

例6. 设实数对(x,y),满足的最大值。

解:令,则

将上式代入中,整理可得

因为,所以

解得。

▍ ▍

高中数学解题基本方法 换元法

高中数学解题基本方法--换元法 高中数学解题基本方法--换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4+2-2≥0,先变形为设2=t(t 0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=+

的值域时,易发现x∈[0,1],设x=sinα,α∈[0,],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x+y=r(r 0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=+t,y=-t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t 0和α∈[0,]。 Ⅰ、再现性题组: 1.y=sinx??cosx+sinx+cosx的最大值是_________。 2.设 f x+1 =log 4-x (a 1),则 f x 的值域是_______________。 3.已知数列 a 中,a=-1,a??a=a-a,则数列通项a=___________。 4.设实数x、y满足x+2xy-1=0,则x+y的取值范围是___________。 5.方程=3的解是_______________。 6.不等式log 2-1 ??log 2-2 〈2的解集是_______________。 【简解】1小题:设sinx+cosx=t∈[-,],则y=+t-,对称轴t=-1,当t=,y=+; 2小题:设x+1=t t≥1 ,则f t =log[- t-1 +4],所以值域为-∞,log4];

高中数学公式大全(必备版)

高中数学公式大全(必备版) 高中数学公式大全(必备版) 篇一 篇二 篇三 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα

cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot;cot→tan(奇变偶不变),然后在前面加上把α看成锐

高中数学常用公式及结论

高考数学常用公式及结论200条 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若[]q p a b x ,2?-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.

高中数学解题方法-换元法

高中数学解题方法 2013年高考数学二轮复习 换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:代数换元、三角换元、均值换元等。例如解不等式:0224≥-+x x ,先变形为设)0(2>=t t x ,而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现[]1,0∈x ,设 α2sin =x ?? ????∈22,0α,问题变成了熟悉的求三角函数值域。如变量y x ,适合条件 )0(222>=+r r y x 时,则可作三角代换θθsin ,cos r y r x ==化为三角问题。 均值换元,如遇到S y x =+形式时,设t S y t S x -=+=2 ,2等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 题型一:代数换元 例1:(1)方程1313 ++-x x =3的解是_______________ (2)x x x f --=2)(的值域是___________.

高中数学3(换元法)

第 7 讲 换元法(高中版) (第课时) 换元法? ??? ??? ???? ??? ???? ?? ??????? ????三角代换均值代换 整体代换策略化超越式为代数式化无理式为有理式化分式为整式降次复杂问题简单化非标准问题标准化 用途 重点:1.;2.;3.。 难点:1.;2.;3.;。 我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子。换元的关键是构造元和设元。 换元的实质是转化,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式。换元后要注意新变量的取值范围,它既不能缩小也不能扩大。 换元法在因式分解、化简求值、恒等式证明、条件等式证明、方程、不等式、函数、数列、三角、解析几何等问题中有广泛的应用。 换元的常用策略有:整体代换(有理式代换,根式代换,指数式代换,对数式代换、复变量代换)、三角代换、均值代换等。 整体代换:在条件或者结论中,某个代数式反复出现,那么我们可以用一个字母来代替它, 当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角代换:如果把代数式换成三角式更容易求解时,可以利用代数式中与三角知识的联系进

行换元。例如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2 α ,α∈[0, π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。又如变量x 、y 适合条件x 2 +y 2 =r 2 (r>0)时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值代换:对两个类似的式子,可令其算术平均值为t 进行换元;如果遇到形如 S y x =+ 或 S y x =+2 2 这样的对称结构,可设 x =S 2+t ,y =S 2-t 或 t S x +=22 ,t S y +=2 2等等。 1.换元法在方程中的应用 我们知道,解分式方程时一般用“去分母”的方法,把分式方程化成整式方程来解;解无理方程一般用“两边乘方”的方法,将无理方程化成有理方程来解。然而利用这些常规的变形方法解题,有时会产生高次方程,解起来相当繁琐,甚至有时难于解得结果。对于某些方程,我们可以用新的变量来替换原有的变量,把原方程化成一个易解的方程。 例.(高二)如果关于x 的方程 0sin cos 22 2 4 =++θθx x 有相异的四实根,求θ的范围。 分析:此题已知条件的形式比较陌生,我们先看看能不能把它转化为我们所熟悉的形式。 令 t x =2 ,则原方程化为: 0sin cos 22 2=++θθt t ⑴ 使原方程有相异的四实根等价于使方程⑴有两不等正根。 由此得 ?? ? ? ?>>->-=?)4(0sin )3(0cos ) 2(0sin 4cos 4222θθθθ 即 ?? ? ??≠<>0sin 0cos 02cos θθθ 解之得 4 52432ππθππ+<<+ k k 且 )()12(J k k ∈+≠πθ 2.换元法在不等式中的应用 例.(高二)设对所于有实数x ,不等式x 2 log 241()a a ++2x log 221a a ++log 2()a a +142 2 >0 恒成立,求a 的取值范围。 分析:不等式中,log 241()a a +、 log 221a a +、log 2()a a +142 2 三项有何联系?对它们进 行变形后再实施换元法。 解: 设 log 2 21 a a +=t ,则 log 241()a a +=log 2812()a a +=3+log 2a a +12=3-log 221 a a +=3-t , log 2()a a +142 2 =2log 2 a a +12=-2t , 代入后原不等式简化为 (3-t )x 2 +2tx -2t>0 ,它对一切实数x 恒成立,

高中数学常用公式汇总整理

高中数学常用公式汇总及结论 1 、元素与集合的关 系: 2 、集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个. 3 、二次函数的解析式的三种形式: (1) 一般式: (2) 顶点式:(当已知抛物线的顶点坐标时,设为此式) (3)零点式:(当已知抛物线与轴的交点坐标为时,设为此式) (4)切线式:。(当已知抛物线与直线相切且切点的横坐标为时, 设为此式) 4、真值表:同真且真,同假或假 5 、常见结论的否定形式;

6 、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.) 充要条件: (1) 则P是q的充分条件,反之,q是p的必要条件; (2)且q ≠> p,则P是q的充分不必要条件; (3) p ≠> p ,且,则P是q的必要不充分条件;(4)p ≠> p ,且则P是q的既不充分又不必要条件。 7、函数单调性: 增函数:(1)文字描述是:y随x的增大而增大。 (2)数学符号表述是:设f(x)在上有定义,若对任意的,都有成立, 则就叫在上是增函数。D则就是f(x)的递增区间。 减函数:(1)、文字描述是:y随x的增大而减小。 (2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有 成立,则就叫f(x)在上是减函数。D则就是f(x)的递减区间。

单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数; (3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数; 注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。 复合函数的单调性: 等价关系: (1)设,那么 上是增函数; 上是减函数. (2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数. 8、函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称) 奇函数定义:在前提条件下,若有,则f(x)就是奇函数。

高中数学思想方法之八——换元法

高中数学思想方法之八——换元法 例题1. 实数x、y满足4x2-5xy+4y2=5 ,设S=x2+y2,求 1 S m ax + 1 S m in 的值。 例题2.不等式x>ax+3 2 的解集是(4,b),求a,b。 例题3. 设a>0,求f(x)=2a(sinx+cosx)-sinx·cosx-2a2的最大值和最小值。 例题4. 设对所于有实数x,不等式x2log 241 () a a + +2x log 2 2 1 a a+ +log 2 () a a +1 4 2 2 >0恒成立,求a的取值 范围。 例题5. 已知sinθ x = cosθ y ,且 cos2 2 θ x + sin2 2 θ y = 10 322 () x y + ,求 x y 的值。 例题6. 实数x、y满足() x-1 9 2 + () y+1 16 2 =1,若x+y-k>0恒成立,求k的范围。 例题7.求同时满足下列条件的所有复数z: (1) 10 1z6 z <+≤ (2)z的实部和虚部均为整数。

例题 8.△ABC 中,求证:cosAcosBcosC ≤1/8。 例题9.实数a 、b 、c 满足a+b+c=0,求证:ab+bc+ca ≤0. 例题10.已知方程x 2-3x+1=0的两根为x1x2,且x1b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)g(b)-g(-a);④f(a)-f(-b)

高中数学公式大全(完整版)

高中数学常用公式及常用结论 1.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 2.集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2 个. 3.充要条件 (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件. (3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4.函数的单调性 (1)设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->? []b a x f x x x f x f ,)(0) ()(2 121在?>--上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函 数. 5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数 )(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 6.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 7.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2 b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2 b a x += 对称. 8.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2),)0)(()(1 )(≠=+x f x f a x f ,或1()() f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; 9.分数指数幂 (1)m n a = (0,,a m n N * >∈,且1n >).(2)1m n m n a a - = (0,,a m n N * >∈,且1n >). 10.根式的性质 (1 )n a =.(2)当n a =;当n ,0 ||,0a a a a a ≥?==? -∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r a b a b a b r Q =>>∈. 12.指数式与对数式的互化式 log b a N b a N =?=(0,1,0)a a N >≠>. ①.负数和零没有对数,②.1的对数等于0:01log =a ,③.底的对数等于1:1log =a a , ④.积的对数:N M MN a a a log log )(log +=,商的对数:N M N M a a a log log log -=,

8常用数学方法-配方法、待定系数法、换元法

第8讲 高考中常用数学的方法 ------配方法、待定系数法、换元法 一、知识整合 配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法. 配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决. 待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数. 换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化. 二、例题解析 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ). (A )32 (B )14 (C )5 (D )6 分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得: 2(xy +yz +zx )=11,4(x +y +z )=24.而欲求的对角线长为222z y x ++,因此需将对称式 222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段是 配方法.故)(2)(2222xz yz xy z y x z y x ++-++=++=62-11=25 ∴ 5222=++z y x ,应选C . 例2.设F 1和F 2为双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足∠ F 1PF 2=90°,则ΔF 1PF 2的面积是( ). (A )1 (B ) 2 5 (C )2 (D )5 分析及解:欲求||||2 1 2121PF PF S F PF ?= ? (1),而由已知能得到什么呢? 由∠F 1PF 2=90°,得20||||2221=+PF PF (2), 又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

高中数学 换元法(附答案)

二、换元法(课时10) 一、知识提要 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化, 这叫换元法. 换元的方法有:局部换元、三角换元、均值换元等. 二、例题讲解 例1.(1)已知:x x f l g )12(=+,求)(x f . (2)设实数x 、y 满足0122=-+xy x ,则y x +的取值范围是_________. (3)方程2)22(log )12(log 122=+?++x x 的解集是______________. 解:(1))1)(1lg(2lg )(>--=x x x f ; (2)设k y x =+,则1044,0122 2≥?≥-=?=+-k k kx x 或1-≤k ; (3)令)12(log 2+x =t ,可得原方程的解集为}0{. 例2.(1)函数223 ) 1(x x x y +-=的值域是_____________. (2)已知:数列}{n a 的11=a ,前n 项和为n S ,241+=+n n a S .求}{n a 的通项公式. 解:(1)令θta n =x ,)2,2(π πθ-∈,则θθθθθθsi n )ta n 1(cos )ta n 1(ta n ta n 23223-=+-=y θθθθθθθθ4sin 412cos cos sin )sin (cos sin cos 22= ?=-=, ∴]4 1,41[-∈y . (2)由241+=+n n a S ,知)2(241≥+=-n a S n n ,

∴)2)((411≥-=--+n a a S S n n n n ,即)2)((411≥-=-+n a a a n n n ∴)2)(2(2211≥-=--+n a a a a n n n n ,令n n n a a b 21-=+,则)2(21≥=-n b b n n ∵11=a ,52=a ,∴31=b ,123-?=n n b ,即n n n a a 22311+?=-+. 两边除以12+n 得:432211=-++n n n n a a ,令n n n a c 2=,则有431=-+n n c c , ∴)13(41-=n c n ,代入n n n a c 2 =得: 22)13(-?-=n n n a . 例3.实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求m a x 1 s +m in 1s 的值.(93年全国高中数学联赛题) 方法1:设?????==α αsin cos s y s x 代入①式得: 4S -5S ·sin αcos α=5 解得 S =α 2sin 5810- ; ∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴ 1013≤1085-sin α≤103 ∴ m ax 1 s +m in 1s =310+1310=1610=85 方法2:由S =x 2+y 2,设x 2=2s +t ,y 2=2 s -t ,t ∈[-S 2,S 2], 则224t s xy -±=代入①式得:4S ±522 4 t s -=5, 移项平方整理得 100t 2+39S 2-160S +100=0 . ∴ 39S 2-160S +100≤0 解得:1013≤S ≤103 ∴ m ax 1 s +m in 1s =310+1310=1610=85

数学常用公式精致版

MBA 数学常用公式 初等数学 一、初等代数 1. 乘法公式与因式分解: (1) 222 )2a b a ab b ±=±+( (2) 2222)222a b c a b c ab ac bc ++=+++++( (3)22()()a b a b a b -=-+ (4) 33223)33a b a a b ab b ±=±+±( (5)3322()()a b a b a ab b ±=±+ 2. 指数 (1)m n m n a a a +?= (2)m n m n a a a -÷= (3)()m n mn a a = (4)()m m m ab a b = (5)()m m m a a b b = (6)1m m a a -= 3. 对数(log ,0,1a N a a >≠) (1)对数恒等式 log a N N a =,更常用ln N N e = (2)log ()log log a a a MN M N =+ (3)log ()log log a a a M M N N =- (4)log ()log n a a M n M = (5 )1log log a a M n = (6)换底公式log log log b a b M M a = (7)log 10a =,log 1a a = 4.排列、组合与二项式定理 (1)排列 (1)(2)[(1)]m n P n n n n m =--???-- (2)全排列 (1)(2)321! n n P n n n n =--?????=

l O b b a A C (3)组合 (1)(2)[(1)] ! !!()!m n n n n n m n C m m n m --???--==- 组合的性质: (1)m n m n n C C -= (2)1 11m m m n n n C C C ---=+ (3)二项式定理 01111n n n n n n n n n n C a C a b L C ab C b ---=++++n (a+b) ● 展开式特征: 1)11,0,1,...,k n k k k n k T C a b k n -++==通项公式:第项为 2)1n +项数:展开总共项 3)指数: 1100;a n b n ???→???→逐渐减逐渐加的指数:由; 的指数:由各项a 与b 的指数之和为n 4)展开式的最大系数: 212132n n n n C n C +++n 当n 为偶数时,则中间项(第项)系数最大 2n+1当n 为奇数时,则中间两项(第和项)系数最大。 2 ● 展开式系数之间的关系 1)n r n C -=r n C ,即与首末等距的两相系数相等。 1 2.2n n n n n C C C ++=),即展开式各项系数之和为2n 0241 35 132,n n n n n n n C C C C C C -++=++=)即奇数项系数和等于偶数项系数和 二、平面几何 1. 图形面积 (1)任意三角形 11sin 22S bh ab C == (2)平行四边形:sin S bh ab ?== (3)梯形:S =中位线×高=1 2(上底+下底)×高 (4)扇形: 21 1 22S rl r θ== 弧长 l r θ=

高中数学常用公式及知识点总结

高中数学常用公式及知识 点总结 Last updated on the afternoon of January 3, 2021

高中数学常用公式及知识点总结 一、集合 1、N 表示N+(或N*)表示Z 表示 R 表示Q 表示C 表示 2、含有n 个元素的集合,其子集有个,真子集有个,非空子集 有个,非空真子集有个。 二、基本初等函数 1、指数幂的运算法则 m n a a =m n a a ÷=()m n a =()m a b = n m a =m a -=()m ab = 2、对数运算法则及换底公式(01a a >≠且,M>0,N>0) log log a a M N +=log log a a M N -=log n a M = log a N a =log a b =log a a = log log a a a b =1log a = 3、对数与指数互化:log a M N =? 4、基本初等函数图像

(3)幂函数的图像和性质 三、函数的性质 1、奇偶性 (1)对于定义域内任意的x ,都有()()f x f x -=,则()f x 为函数,图像关于对称; (2)对于定义域内任意的x ,都有()()f x f x -=-,则()f x 为函数,图像关于对称; 2、单调性 设1122,[,],x a b x x x <∈,那么 12()()0()[,]f f f x x a b x --) 12()()0()[,]f f f x x a b x ->?在上是函数。(即 1212 ()() 0f x f x x x -<-) 3、周期性 对于定义域内任意的x ,都有()()f x T f x +=,则()f x 的周期为; 对于定义域内任意的x ,都有1 () ()()()f x f x T f x +=-或 ,则()f x 的周期为; 四、函数的导数及其应用 1、函数()y f x = 在点0x 处的导数的几何意义

高中数学换元法解题案例及练习题

高中数学换元法解题案例及练习题 解数学题时,把某个式子看成一个整体,用一个变量去代替 它,从而使问题得到简化,这叫换兀法。换兀的实质是转化,关键 是构造元和设元,理论依据是等量代换,目的是变换研究对象,将 问题移至新对象的知识背景中去研究,从而使非标准型问题标准 化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可 以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结 论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化 超越式为代数式,在研究方程、不等式、函数、数列、三角等问题 中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元 又称整体换元,是在已知或者未知中,某个代数式几次出现,而用 一个字母来代替它从而简化问题,当然有时候要通过变形才能发 现。例如解不等式:4x+ 2x- 2> 0,先变形为设2x= t (t>0 ),而变 为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y= x +、1 X 的值域时,易发现x € [0,1],设x = sin 2a ,a€ [0,—],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+

y1 2 3= r2(r>0 )时,则可作三角代换x = rcos B、y = rsin B化为三角问题。 均值换元,如遇到x+ y = S形式时,设x = - + t , y = - —t等等。 2 2 我们使用换元法时,要遵循有利于运算、有利于标准化的原则, 换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量 的取值范围,不能缩小也不能扩大。如上几例中的t>0和口€ [0,-]。 I、再现性题组: 1. y = sinx ? cosx + sinx+cosx 的最大值是__________ 。 2. 设f(x 2+ 1) = log a (4 —x 4) ( a>1 ),贝U f(x)的值域是 o 3. 已知数列{a n}中,a i = —1, a. i ? a. = a. 1 —a.,则数列通项a.= 4. 设实数x、y满足x 2+ 2xy —1 = 0,贝U x + y的取值范围是 。 5. 方程匚盖=3的解是。 1 3 --------------------------------- 6. 不等式log 2 (2 x—1) ? log 2 (2 x 1—2) 〈2 的解集是 。 2 【简解】1小题:设sMx+cosx = t € [ — 2 , 2 ],则y =》+1 — 1 , 对称轴t =—1,当t = .2 , y max =丄+丄; 2 2 小题:设x2+ 1 = t (t > 1),贝U f(t) = log a[-(t-1) 2+ 4],所以 值域为(一a ,log a4];

高中数学常用公式(超级实用).

【高中数学常用公式】 说明: 1.本篇所有公式都是用公式编辑器录入。 2.域的概念:本篇的公式都是通过域来实现的,一个{ }就是一个域,在大括号内输入所需的功能代码后按Shift+F9即可得到公式。 3.快捷键 Ctrl+F9添加域 Shift+F9更新域(得到公式) 4.可对所有公式进行复制、粘贴、修改。双击即可在公式编辑器中进行编辑。如不能编辑请安装最新版的公式编辑器。 5.可收藏备用,绝对高效。 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++-

()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈-=,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-= ; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若[]q p a b x ,2?-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.

高中数学解题基本方法

高中数学解题基本方法 换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx2cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 2a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) 2log 2 (2x+1-2)〈2的解集是_______________。

相关文档
最新文档