雷达信号的脉冲压缩原理

雷达信号的脉冲压缩原理
雷达信号的脉冲压缩原理

第二章 脉冲压缩

2.1 概述

表2.1 窄脉冲高距离分辨力雷达的能力

窄脉冲具有宽频谱带宽。如果对宽脉冲进行频率或相位调制,那么它就可以具有和窄脉冲相同的带宽。假设调制后的脉冲带宽增加了B ,由接收机的匹配滤波器压缩后,带宽将等于1/B ,这个过程叫脉冲压缩。

脉冲压缩雷达不需要高能量窄脉冲所需要的高峰值功率,就可同时实现宽脉冲的能量和窄脉冲的分辨力。

脉冲压缩比定义为宽脉冲宽度T 与压缩后脉冲宽度τ的之比,即/T τ。带宽B 与压缩后的脉冲宽度τ的关系为1/B τ≈。这使得脉冲压缩比近似为BT 。即压缩比等于信号的时宽-带宽积。在许多应用场合,脉冲压缩系统常用其时宽-带宽

积表征。

这种体制最显著的特点是:

⑴ 它的发射信号采用载频按一定规律变化的宽脉冲,使其脉冲宽度与有效频谱宽度的乘积1B τ≥,这两个信号参数基本上是独立的,因而可以分别加以选择

来满足战术要求。在发射机峰值功率受限的条件下,它提高了发射机的平均功率P增加了信号能量,因此扩大了探测距离。

av

⑵在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号(一般认为也是接收机输入端的回波信号)变成窄脉冲,因此保持了良好的距离分辨力。这一处理过程称之为“脉冲压缩”。

⑶有利于提高系统的抗干扰能力。对有源噪声干扰来说,由于信号带宽很大,迫使干扰机发射宽带噪声,从而降低了干扰的功率谱密度。

当然,采用大时宽带宽信号也会带来一些缺点,这主要有:

⑴最小作用距离受脉冲宽度 限制。

⑵收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。

⑶存在距离旁瓣。一般采用失配加权以抑制旁瓣,主旁瓣比可达30dB~35dB 以上,但将有1dB~3dB的信噪比损失。

⑷存在一定的距离和速度测定模糊。

总之,脉冲压缩体制的优越性超过了它的缺点,已成为近代雷达广泛应用的一种体制。

根据上面讨论,我们可以归纳出实现脉冲压缩的条件如下:

⑴发射脉冲必须具有非线性的相位谱,或者说,必须使其脉冲宽度与有效频谱宽度的乘积远大于1.

⑵接收机中必须具有一个压缩网络,其相频特性应与发射信号实现“相位共轭匹配”,即相位色散绝对值相同而符号相反,以消除输入回波信号的相位色散。

第一个条件说明发射信号具有非线性的相位谱,提供了能被“压缩”的可能性,它是实现“压缩”的前提;第二个条件说明压缩网络与发射信号实现“相位共轭匹配”是实现压缩的必要条件。只有两者结合起来,才能构成实现脉冲压缩的充要条件。

综上所述,一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱与相位谱)实现完全的匹配。

根据这些要求,可用下面的框图来描述一个理想的脉冲压缩系统,

如图2.1所示。

图 2.1 理想脉冲压缩系统

在理想脉冲压缩系统模型中,我们假定在电波传播和目标发射过程中,以及在微波通道、收发天线和压缩网络前的接收通道传输过程中,信号没有失真,而且增益为1。因此,接收机压缩网络输入端的目标回波脉冲信号就是发射脉冲信号,其包络宽度为τ,频谱为:

()

()|()|i i i j U U e φωωω=

压缩网络的频率特性为()H ω,根据匹配条件应满足下式:

0()2()=|()|

i d i j j f t

H K U e e

φωπωω--

式中,K 为比例常数,使幅频特性归一化,0d t 为压缩网络的固定延时。经压缩后输出信号包络宽度被压缩成0τ,峰值提高了。脉冲压缩的输出表达式为:

20

02()()()|()|d i i j ft U U H K U e πωωωω-==

必须指出,这是一种理想情况,在实际实现时往往不可能得到完全的匹配,迫使系统工作在一定程度的“失配”状态下。

有两种方法可以描述脉冲压缩雷达的工作。一种是根据模糊函数,对宽脉冲进行调制以提高它的带宽。接收时调制过的宽脉冲信号通过匹配滤波器。通过分析模糊图就可以得到它的距离分辨力。幅度恒定的线性调频脉冲信号是得到广泛应用的脉冲压缩波形的一个例子,如图2.2所示。

d

R k T

R

T

图2.2 一个宽度为T、带宽为B的单个线

性频率调制脉冲的二维模糊图

它的模糊图表明宽度为T的宽脉冲提供的压缩脉冲宽度等于1/B。

另一种描述脉冲压缩的方法是线性调频脉冲压缩。对宽脉冲进行调制,可被认为沿着脉冲的不同部分在相位或频率上设置不同的“标志”。例如,线性调频信号在频率上的变化是沿着脉冲分布的,使得脉冲的每一小段对应于一个不同的频率。调制脉冲通过一条色散延迟线,该延迟线的延迟时间是频率的函数,脉冲的每一段都经过不同的延时,这样在色散延迟线中,脉冲的下降沿可能被加速而上升沿被减速,以便它们“走到一起”,从而完成脉冲压缩。

2.2 线性调频(LFM)脉冲压缩

2.2.1 引言

图2.3

一个线性调频脉冲雷达的方框图

(a ) 发射波形

f

(b) 发射波形的频率与时间的关系

(c ) 线性调频波的表示

(d ) 脉冲压缩滤波器的理论输出

1

f 2

f

(e)

图 2.4 线性调频脉冲压缩

[图 2.3]是线性调频脉冲雷达的框图,图中除了发射机是调频的且接收机里

有一个脉冲压缩滤波器外,该框图与常规雷达框图相似。目前通常是产生低功率的调频波形并由功率放大器进行放大。发射波形[图 2.4(a)]由恒定幅度A 和周期T 的矩形脉冲组成。在脉冲的持续期间内,频率从1f 线性增加到2f [图 2.4(b)],有时称为上线性调频。反之,频率随时间线性下降称为下线性调频。图 2.4(c) 给 出随时间变化的波形。接收时,调频信号通过一个脉冲压缩滤波器。相对于脉冲前沿的较低频率,滤波器加快了在脉冲后沿较高频率的速度,以便信号压缩到

1/B 宽度,其中21B

f f =-[图 2.4(d )]脉冲压缩滤波器是一个匹配滤波器,因此,其输出包络(不考虑噪声)是输入信号的自相关函数。在这种情况下,输出与(sin )/Bt Bt ππ成正比。脉冲在通过滤波器后,脉冲的峰值功率提高了脉冲压

缩比/B T T τ≈倍。

2.2.2 线性调频脉冲压缩的基本原理

线性调频脉冲压缩的基本原理可用图2.5说明。

f f d t d t t 0

1

f 2

f

A

图 2.5 线性调频脉冲压缩的基本原理

图 2.5(a )、(b )表示接收机输入信号,脉冲宽度为τ,载频由1

f 到2

f 线

性增长变化,调制频偏1

2

f f f ?

=-,调制斜率=2/f μπτ?。图 2.5(c )为压缩网络的频率-时延特性,也按线性变化,但为负斜率,与信号的线性调频斜率相

反,高频分量延时短,低频分量延时长。因此,线性调频信号低频分量

1f ()最先进入网络,延时最长为1d t ,相隔脉冲宽度τ时间的高端频率分量

2f (),最后进入网络,延时最短

2d t ()。这样,线性调频信号的不同频率分量,几乎同时从网络输出,压缩成单一载频的窄脉冲0τ,其理想输出信号包络如图 2.5(d) 所示。

图 2.5(e) 为线性调频信号脉冲压缩的波形关系示意图。从图 2.5(d) 所

示可以得到网络信号各频率成分的延时关系为

2

1

d d t t ττ

+=+

2

1

()d d t t ττ=--

因 12

d d t t >

ττ<

可见,线性调频宽脉冲信号τ通过压缩网络后,其宽度被压缩,成为窄脉冲0

τ 。

由于

1B

τ

=

故 0

D B τ

ττ==

式中,B f ?(或)为线性调频信号的调频频偏或有效频谱宽度。

如果压缩网络是无源的,它本身不消耗能量也不加入能量,则根据能量守恒

原理

00

E PP ττ

== 故

P D P ττ=

=

式中,P 为输入脉冲的峰值功率,0P 为输出脉冲的峰值功率。可见,输出脉冲

的峰值功率增大了D 倍。

若输入脉冲幅度为A ,输出脉冲幅度为0A ,则由式 可得

0/A

D

0A =

倍。

由于无源的压缩网络本身不会产生噪声,而输入噪声具有随机特征,故经压

缩网络后输入噪声并不会被压缩,仍保持在接收机原有噪声电平上。所以输出脉冲信号的功率信噪比0(/)S N 与输入脉冲信号的功率信噪比(/)i S N 之比也提高了D 倍,即

(/)(/)i

S N D

S N =

这就使脉冲压缩雷达的探测距离比采用相同发射脉冲功率和保持相同分辨力的倍(例如D=16时,作用距离加大1倍)。 由此可见,接收机输出的目标回波信号具有窄的脉冲宽度和高的峰值功率,

正好符合探测距离远和距离分辨力高的战术要求,充分体现出脉冲压缩体制独特

的性能。

以上定性地介绍了线性调频脉冲压缩的基本原理,为了进一步研究线性调

频脉冲与压缩脉冲之间的内在关系,我们还必须采用数学方法作定量分析。

2.2.3 线性调频脉冲压缩的频谱特性

1,线性调频脉冲信号的频谱特性

线性调频脉冲压缩体制的发射信号,其载频在脉冲宽度内按线性规律变化,

即用对载频进行调制(线性调频)的方法展宽发射信号的频谱,使其相位具有色散。同时,在t P 受限情况下为了充分利用发射机的功率,往往采用矩形宽脉冲包络,如图2.6所示。图2.6(a)为线性调频脉冲信号的波形;图2.6(b )为信号的 包络,其幅度为A ,宽度为τ;图2.6(c )为载频的调制特性,在τ内由低端1()f 至高端2()f 按线性规律变化。为简便起见,常将2.6(a)所示的线性调频信号波形 用图2.6(d )来表示。

t

t

t

t

2

2

-

2-

2

(a)

(b)

(c)

(d)

图 2.6 线性调频脉冲信号的波形及其表示方法

从图2.6(c )中可以看出

2

1B f f f =?=- f ?称为调制频偏,调谐斜率为

2f

πμτ

?=

若信号的载波中心角频率为002f ωπ=,则线性调频信号的角频率变化规

律为

t ωωμ=+,

2t τ

因而信号的瞬时相位()i t φ为

()i t dt

φω=?021

2t C

ωμ=++

由此可得线性调频脉冲压缩体制的发射信号表达式为

02

1

()c o s ()

2

i t u t A r e c t ωμ

τ=+

式中,

(/)rec t τ为矩形函数,即

1()0t

rec τ?=?

?,, /2

/2t t ττ≤>

为分析和计算简便,()i u t 用复数形式表示。

2

+0(/2)

()()

i j t t u t Arec e ωμτ

=

信号的复频谱()i U ω为

()()i i t

U u t e dt

ωω∞

--∞=?

2+0/2

[()/2]

/2

j t t A e

dt

τωωμτ--=?

2

0[()

]

22

0/2

()/2/2

j t j Ae

e

dt

μ

ωωμ

τωωμ

τ

-----=?

220()=22t x μ

ωωπμ--

并且积分上下限分别用2

v 和1

v -代换后,信号频谱可以表示为

2

2

2

/201

()

/2()j x i

v j v U e dx

πωω

μ

ω---=?

其中

12v v ==式 中的积分项可进一步整理成

2

2

2

2/2

1

1

1

22

=cos()sin )22j x v v

v v v v e

dx x dx j x dx

πππ---+???(

2

1220

0cos()cos()22v v x dx x dx

ππ

-=-?

?

2

122

00[sin()sin()22v v j x dx x dx

ππ-+-??

1122()()[()()]c v c v j s v s v =--+--

式中

202

()c o s ()2()s i n

)2

v

v

c v x

d x s v x

d x

π

π

==

??

称为菲涅耳积分,考虑到菲涅耳积分的对称性,式 可以写成

2

2/2

11221

=()()[()()]

j x v v e

dx c v c v j s v s v π-+++?

最后得到()i U ω的表达式为

}1

1

2

2

1/2

22()[()()][()()]i

U c v c v s v s v ω=+++

()

()

12

2

()()

121

[()

a r c t a n ]

2s v s v

c v c v j e

ωωμ

++-

-+?

由式 可求得线性调频脉冲信号的幅频特性和相频特性。

⑴ 幅频特性:信号的幅度谱为

()i

U ω=

① 当0ω

ω=时

()i U ω≈

02ω

ωω?=+

②当时

0(+)2i U ωω?≈

即幅度为中心角频率0ω时的一半。

02ω

ωω?=-

③当时

0()2i U ωω?-≈

即幅度也为中心角频率0ω时的一半。 当压缩比D 值不同时,

()

i U ω将随之变化。图2.7画出了D=13,D=52,D=130

时的幅频特性。由图可以看出,D 值越大,则幅频特性在0/2ωω-?到

/2ωω+?之间越平坦,在这个频带之外幅度下降越快,信号能量主要集中在

此频带范围内。由于通常使用的线性调频脉冲信号均满足1D B τ=,故其频

谱的振幅分布很接近矩形,如图2.8所示()

i U ω可近似地表示为

02

ω-

02

ω+

ω

振幅频谱

13

52

130

2

B 2

B -

2

B 2

B -

2

B 2

B -

图 2.7 线性调频脉冲 图2.8 D 值很大时线性调频脉冲 信号的幅频特性

信号的幅频特性

()=0i U ω???

??, 00/2/2ωωωωωω-≤?->?

⑵ 相频特性:信号的相位谱为

021212()()()

()arctan

2()()i s v s v c v c v ωωφωμ-+=-++

它包含两部分,平方相位部分和剩余相相位部分。当D 很大时,相频特性

可近似地表示为

02()(),

24i ωωπ

φωμ-=-+

/2

ωωω-≤?

由此可得线性调频信号在D 很大时的频谱表示式为

2

[()/2/4]()=0i j U ω

ωππ

ω--+???

??,

, 00/2/2

ωωωωωω-≤?->?

综上所述,线性调频脉冲信号具有如下特点:

第一,具有近似矩形的幅频特性,D 值越大,其幅频特性越接近矩形,频谱宽度近似等于信号的调制频偏f B ?=。

第二,具有平方率的相频特性,它是设计匹配滤波器时主要考虑的部分。 第三,具有可以选择的“时宽带宽乘积”(D B τ=)。线性调频脉冲信号的τ和B 都容易做得很宽,使得1B τ。目前,线性调频脉冲压缩雷达的B τ可达到

几百、几千,甚至几万。

2,线性调频脉冲信号匹配滤波器的频谱特性

前面已讨论,如果接收机输入信号频率特性为

()

()|()|i i i j U U e φωωω=

设匹配滤波器频率特性为()H ω,那么根据匹配条件应满足下式关系

()()()i d i j j t H K U e e φωωωω--=

根据前面已分析的线性调频信号的频率特性可得到线性调频脉冲信号匹配滤波器的频率特性为

⑴ 幅频特性

()

H ω

()0,H ω???

?? 00/2/2ωωωωωω-≤?->?

⑵ 相频特性()φωH

002()()24d t ωωπφωωμH -=--,

02ωωω?-≤

因此,线性调频脉冲信号的匹配 滤波器频率特性可以近似写成

2]

00[()2/4()=j t d H e

ωωμπωω---,

ωω?-≤

⑶ 群时延特性():d t ω

频率-时延特性又称群时延特性。所谓“群延时”是指对信号频谱成分能量的延时,定义为()φωH 的导数()/d d φωωH 。

对于脉冲压缩网络,其相频特性相应的延时特性为

0()()+d d d t t d φωωωωωμH -=-=-,02ωωω?-≤

可见压缩网络群时延随频率而变化,即要求滤波器具有色散特性。式中0d t 为附加延时,这是滤波器物理实现所决定的。

滤波器的群时延特性正好和信号的相反,因此通过匹配滤波器后相位特性得 到补偿,而使输出信号相位均匀,保证信号出现峰值。

图2.9(matlab) 画出了匹配滤波器的组成,可以看成由振幅匹配和相位匹配两部分组成。振幅匹配保证0/2f B ±的通频带,相位匹配部分保证所需的群延时特性。

2

2

-

f

f

02

f -

2

f

+0

d t 02d t τ+

02

d t τ

-

02

f -

0+

2

f 0

f

图 2.9 线性调频脉冲压缩信号的匹配滤波器

3.线性调频脉冲信号通过匹配滤波器的输出波形

设匹配滤波器输出信号为0()u t ,其频谱0()U ω为

0()()()d i j t U U H ωωωω-==,

02ω

ωω?-≤

匹配滤波器输出信号为

001

()=

()2j t

u t U e d ωωω

π

-∞

?

0)00/2

(/2

1

=2d j t t d ωωωω

ωω

π

-+?-??

()

00d j t t ω-=

将2B ωπ?=,2/B μπτ=,00=2f ωπ代入上式,并取其实部得到输出信号

0()u t 为

0000()cos 2()

d u t f t t π=-

由于0f B ≥,故输出信号的载波为

0c o s 2()

d f t t π-

而信号的包络为

0)]

d

波形如图2.10所示。

图 2.10 线性调频脉冲信号通过 匹配滤波器的输出波形

由式 及图2.10可以看出,压缩网络输出的脉冲信号具有以下特点: ⑴ 输出信号具有辛克函数sin /x x 的形式。通常规定顶点下-4dB 处的带宽(即幅度下降到最大值的0.637倍时所对应的宽度)为输出脉冲宽度0τ,其值正好近似为发射信号有效频谱宽度B f =?的倒数。

⑵ 输出脉冲有效宽度0

τ比输入脉冲宽度τ缩小了D 倍,也就是,输出脉冲幅

度0A 比输入脉冲幅度A 0P 比输入脉冲峰值功率P 增大了D 倍。

⑶ 由于输出信号具有sin /x x 特性,在主瓣的两侧存在一系列旁瓣,其中第一旁瓣,其幅度比主瓣低13.2dB (即第一旁瓣值为主瓣值的0.212倍),其余依次减小4dB ,且旁瓣零点间的间隔均为1/B 。

⑷输出信号载频为单一频率0f 。这是因为压缩网路的频谱特性与发射信号频谱实现了“相位共轭匹配”,消除了“相位色散”的结果。

2.2.4 线性调频信号的模拟产生

线性调频(LFM)信号的模拟产生方法有两种:有源法和无源法。

1,有源产生法

有源产生法是指对发射机振荡器直接进行调频来产生线性调频脉冲信号。

2,无源产生法

无源产生法是利用无源元件组成的网络形成的,通常采用与脉冲压缩网络类似的“脉冲压缩网络”来实现,故称“无源的”。

利用脉冲扩展网络形成线性调频脉冲信号的原理如图2.11所示。脉冲扩展网络与脉冲压缩网络都具有线性的频率-时延特性,两者不同之处仅在于特性的斜率相等而符号相反,或者说它们具有共轭的特性。在发射机中,如图 2.11(a )所示,将单一载频为i f 、宽度为0τ的sin /x x 形成脉冲信号(幅度谱为矩形,带宽为01/f τ?=)输入至脉冲扩展网络,由于扩展网络对信号中各频率成分的延迟时间不同,输出即为展宽的线性调频脉冲信号。应注意,该扩展网络对输入信号的低频率成分(1f )延时最短(1d t ),对高频率成分(2f )延时最长(2d t ),其载频开始时低而结束时高。在接收机中,如图2.11(b )所示,这个线性调频脉冲通过压缩网络后被压缩成sin /x x 形成窄脉冲。

t

(a) 发射机中的波形

脉冲扩展网络

脉冲压缩网络

(b )接收机中的波形

1

i 2

f

图 2.11 线性调频脉冲信号无源产生法的基本原理

雷达脉冲压缩matlab

雷达脉冲压缩 摘要:脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 关键词:脉冲压缩;匹配滤波;matlab 1、雷达工作原理 雷达是Radar (Radio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能[1]。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1 简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ),反映目标对 电磁波的散射能力[2]。再经过时间R 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。

空调压缩机工作原理

空调压缩机的工作原理 1、空调压缩机是在空调制冷剂回路中起压缩驱动制冷剂的 作用。工作回路中分蒸发区和冷凝区,室内机和室外机分别属于高压或低压区。压缩机一般装在室外中,压缩机把制冷剂从低压区抽取来经压缩机后送到高压区冷却凝结,通过散热片散发出热能到空气中,制冷剂也从气态变成液态,压力升高。制冷剂再从高压区流向低压区,经过毛细管喷射到蒸发器中,压力骤降,液态制冷剂立即变成气态,通过散热片吸收空气中大量的热量。这样,机器不断工作,就不断把低压区一端的热能吸收到制冷剂中再送到高压区散发到空气中,起到调节气温的作用。 2、空调在作制冷运行时,低温低压的制冷剂气体被压缩机吸 入后加压变成高温高压的制冷剂气体,高温高压的制冷剂气体在室外换热气中放热变成中温高压的液体,中温高压的液体再经过节流部件节流降压后变成低温低压的液体,低温低压的液体制冷剂在室内换热气中吸热蒸发后变成低温低压的气体,然后进入压缩机压缩,往复循环。 3、压缩机是制冷系统的心脏,无论是空调、冷库、化工制冷 工艺等等工况都要空压缩机这个重要的环节来做保障! 制冷压缩机种类和形式很多,根据原理可分为容积型和速度型两类,其中容积式是最为普遍的。 那压缩机又是如何压缩空气的呢?

简单而说就是通过改变气体的容积来完成气体的压缩和输送过程!任何动力设备都需要一个动力来做功完成,压缩机也是一样,它需要一个电动机来带动。 容积型压缩机又分为往复活塞式和回转式两种。 往复活塞式是通过活塞在气缸内做往复运动改变气体工作容积;活塞式压缩机历史悠久,生产技术成熟。 回转式压缩机包括刮片旋转式压缩机 螺杆式压缩机,目前国内生产的空调器多采用旋转式压缩机; 蜗杆式压缩机主要用于大型制冷设备,现在一些大型商场办公楼内也有很多采用蜗杆式压缩机。 空调的基本原理是这样的,压缩机将冷冻剂压缩成高压饱和气体,这种气态冷冻剂再经过冷凝器冷凝。 通过节流装置节流之后,通入到蒸发器中,将所需要冷却的媒介冷却换热。例如将蒸发器连接到楼里的各个房间,蒸发器的蛇形管将同空气进行换热,再通过鼓风将冷气吹向空气洞中。 而蒸发器蛇形管内的冷冻剂换热后变成低压蒸气回到压缩机,在被压缩机压缩,这样循环利用就完成了制冷系统。 4、分析空调图

空调压缩机工作原理

空调压缩机的工作原理 1、空调压缩机就是在空调制冷剂回路中起压缩驱动制冷剂 的作用。工作回路中分蒸发区与冷凝区,室内机与室外机分别属于高压或低压区。压缩机一般装在室外中,压缩机把制冷剂从低压区抽取来经压缩机后送到高压区冷却凝结,通过散热片散发出热能到空气中,制冷剂也从气态变成液态,压力升高。制冷剂再从高压区流向低压区,经过毛细管喷射到蒸发器中,压力骤降,液态制冷剂立即变成气态,通过散热片吸收空气中大量的热量。这样,机器不断工作,就不断把低压区一端的热能吸收到制冷剂中再送到高压区散发到空气中,起到调节气温的作用。 2、空调在作制冷运行时,低温低压的制冷剂气体被压缩机吸 入后加压变成高温高压的制冷剂气体,高温高压的制冷剂气体在室外换热气中放热变成中温高压的液体,中温高压的液体再经过节流部件节流降压后变成低温低压的液体,低温低压的液体制冷剂在室内换热气中吸热蒸发后变成低温低压的气体,然后进入压缩机压缩,往复循环。 3、压缩机就是制冷系统的心脏,无论就是空调、冷库、化工制 冷工艺等等工况都要空压缩机这个重要的环节来做保障! 制冷压缩机种类与形式很多,根据原理可分为容积型与速度型两类,其中容积式就是最为普遍的。 那压缩机又就是如何压缩空气的呢?

简单而说就就是通过改变气体的容积来完成气体的压缩与输送过程!任何动力设备都需要一个动力来做功完成,压缩机也就是一样,它需要一个电动机来带动。 容积型压缩机又分为往复活塞式与回转式两种。 往复活塞式就是通过活塞在气缸内做往复运动改变气体工作容积;活塞式压缩机历史悠久,生产技术成熟。 回转式压缩机包括刮片旋转式压缩机 螺杆式压缩机,目前国内生产的空调器多采用旋转式压缩机; 蜗杆式压缩机主要用于大型制冷设备,现在一些大型商场办公楼内也有很多采用蜗杆式压缩机。 空调的基本原理就是这样的,压缩机将冷冻剂压缩成高压饱与气体,这种气态冷冻剂再经过冷凝器冷凝。 通过节流装置节流之后,通入到蒸发器中,将所需要冷却的媒介冷却换热。例如将蒸发器连接到楼里的各个房间,蒸发器的蛇形管将同空气进行换热,再通过鼓风将冷气吹向空气洞中。 而蒸发器蛇形管内的冷冻剂换热后变成低压蒸气回到压缩机,在被压缩机压缩,这样循环利用就完成了制冷系统。 4、分析空调图

脉冲压缩技术

脉冲压缩技术 在雷达信号处理中的应用

一.脉冲压缩的产生背景及定义 1.1 脉冲压缩的定义 脉冲压缩即pulse compression,它是指发射宽编码脉冲并对回波进行处理以获得窄脉冲,因此脉冲压缩雷达既保持了窄脉冲的高距离分辨力,又能获得宽脉冲的强检测能力。 1.2脉冲压缩的主要手段 目前的脉冲压缩的手段主要有线性调频、非线性调频与相位编码等。 1)线性调频 是最简单的脉冲压缩信号,容易产生,而且其压缩脉冲形状和信噪比对多普勒频移不敏感,因而得到了广泛的应用,但是,在利用多普勒频率测量目标方位和距离的情况下很少使用; 2)非线性调频 非线性调频具有几个明显的优点,不需要对时间和频率加权,但是系统复杂。为了达到所需的旁瓣电平,需要对每个幅度频谱分别进行调频设计,因而在实际中很少应用; 3)相位编码 相位编码波形不同于调频波形,它将宽脉冲分为许多短的子脉冲。这些子脉冲宽度相等,其相位通过编码后被发射。根据所选编码的类型,包括巴克码、伪随机序列编码以及多项制编码等。 1.3脉冲压缩的产生背景 随着飞行技术的飞速发展,对雷达的作用距离、分辨能力、测量精度和单值性等性能指标提出越来越高的要求。测距精度和距离分辨力对信号形式的要求是一致的,主要取决于信号的频率结构,为了提高测距精度和距离分辨力,要求信号具有大的带宽。而测速精度和速度分辨力则取决于信号的时域结构,为了提高测速精度和速度分辨力,要求信号具有大的时宽。除此之外,为提高雷达系统的发现能力,要求信号具有大的能量。由此可见,为了提高雷达系统的发现能力、测量精度和分辨能力,要求雷达信号具有大的时宽、带宽、能量乘积。但是,在系统的发射和馈电设备峰值功率受限制的情况下,

压缩机工作原理

冰箱压缩机的结构和工作原理 ? 1楼? 压缩机是制冷系统的心脏,它从吸气管吸入低温低压的制冷剂气体,通过电机运转带动活塞对其进行压缩后,向排 气管排出高温高压的制冷剂气体,为制冷循环提供动力,从而实现压缩→冷凝→膨胀→蒸发( 吸热) 的制冷循环。 压缩机一般由壳体、电动机、缸体、活塞、控制设备( 启动器和热保护器) 及冷却系统组成。启动器基本上有两 种,即重锤式和PTC 式。其中后者较为先进。冷却方式有油冷和自然冷却两种。 一般家用冰箱和空调器的压缩机是以单相交流电作为电源,它们的结构原理基本相同。冰箱压缩机功率较小,通常 在250W 以下。而空调器压缩机功率通常在230-900W 之间。两者使用的致冷剂有所不同。 2. 生产制造方法 压缩机是以流水线方式生产的。在机械加工车间( 包括铸造) 制造出缸体、活塞( 转轴) 、阀片、连杆、曲轴、 端盖等零部件;在电机车间组装出转子、定子;在冲压车间制造出壳体等。然后在总装车间进行装配、焊接、清洗 烘干,最后经检验合格包装出厂。大多数压缩机制造厂不生产启动器和热保护器,而是根据需要从市场采购。 3. 种类 目前家用冰箱和空调器压缩机都是容积式,其中又可分为往复式和旋转式。往复式压缩机使用的是活塞、曲柄、连 杆机构或活塞、曲柄、滑管机构,旋转式使用的是转轴曲轴机构。 按应用范围又可分为低背压式、中背压式、高背压式。低背压式( 蒸发温度-35 ~-15 ℃) ,一般用于家用电 冰箱、食品冷冻箱等。中背压式( 蒸发温度-20 ~0 ℃) ,一般用于冷饮柜、牛奶冷藏箱等。高背压式( 蒸发 温度-5 ~15 ℃) ,一般用于房间空气调节器、除湿机、热泵等。 4. 规格、质量 压缩机的规格是按输入功率来划分的。一般每种规格间相差50W 左右。另外,也有按气缸容积划分的。 压缩机主要性能指标有:输入、输出功率,性能系数,制冷量,启动电流、运转电流、额定电压、频率,气缸容积, 噪音等。衡量一种压缩机的性能,主要从重量、效率和噪音三个方面的比较。 按照我国标准,冰箱压缩机的性能检验是依据GB9098-96 规定项目进行的。其中主要项目是制冷量、输入功率、 工作电流、启动性能、整机残余水份和杂质含量,寿命试验等。其安全性能检验是依据GB4706.17-96 规定项目进 行的。其中主要项目是抗电强度、绝缘电阻、泄漏电流、堵转条件下的运行试验,以及电机绕组温升、壳体温度和 停开试验等。 对空调器压缩机的性能检验,依据GB10870 ~10876-89 中的规定进行。其安全标准则参照冰箱压缩机的标准执 行。 另外,在产品定型及生产中发生可能影响产品性能的重大变化时,连续生产满一年或时隔一年以上再生产时,以及 出厂检验结果与型式试验有较大差异时,均必须进行型式试验.

LFM脉冲压缩雷达标准实验报告

电子科技大学电子工程学院标准实验报告(实验)课程名称LFM脉冲压缩雷达的设计与验证 电子科技大学研究生院制表

电子科技大学 实验报告 学生姓名:学号: 指导教师: 实验地点:科B516室实验时间: 一、实验室名称:电子信息工程专业学位研究生实践基地 二、实验项目名称:LFM脉冲压缩雷达的设计与验证 三、实验学时:20 四、实验原理: 1、LFM脉冲信号和脉冲压缩处理 脉冲雷达是通过测量目标回波延迟时间来测量距离的,距离分辨力直接由脉冲带宽确定。窄脉冲具有大带宽和窄时宽,可以得到高距离分辨力,但是,采用窄脉冲实现远作用距离需要有高峰值功率,在高频时,由于波导尺寸小,会对峰值功率有限制,以避免传输线被高电压击穿,该功率限制决定了窄脉冲雷达有限的作用距离。现代雷达采用兼具大时宽和大带宽的信号来保证作用距离和距离分辨力,大时宽脉冲增加了雷达发射能量,实现远作用距离,另一方面,宽脉冲信号通过脉冲压缩滤波器后变换成窄脉冲来获得高距离分辨力。 进行脉冲压缩时的LFM脉冲信号为基带信号,其时域形式可表示为

2()exp 2i t t s t Arect j T μ???? = ? ????? 其中的矩形包络为 1 12102 t T t rect T t T ? ≤????=? ???? >?? 式中的μ为调频斜率,与调频带宽和时宽的关系如下式 2/B T μπ= 时带积1D BT =>>时,LFM 脉冲信号的频域形式可近似表示为 22[2/]()4220i B B j f f S f ππμ?? ?-+- ≤≤???=? ???? 其他 脉冲压缩滤波器实质上就是匹配滤波器,匹配滤波器是以输出最大信噪比为准则设计出来的最佳线性滤波器。假设系统输入为()()() i i x t s t n t =+,噪声 () i n t 为 均匀白噪声,功率谱密度为 0()2 n p N ω=, () i s t 是仅在[0,]T 区间取值的输入脉 冲信号。根据线性系统的特点,经过频率响应为()H ω匹配滤波器的输出信号为 ()()() o o y t s t n t =+,其中输入信号分量的输出为 ()()()exp()o i s t S H j t d ωωωω ∞ -∞ =? 与此同时,输出的噪声平均功率为 2 ()2 N N H d ωω ∞ -∞ =? 则0t 时刻输出信号信噪比可以表示为 2 2 02 0()()e () ()2 j t i o S H d s t N N H d ωωωωωω ∞ -∞ ∞ -∞ =? ? 要令上式取最大值,根据Schwarz 不等式,则需要匹配滤波器频响为 0()()exp() i H KS j t ωωω*=-

第三章 脉冲压缩雷达简介

??第三章 脉冲压缩雷达简介 3.1 脉冲压缩简介 雷达的分辨理论表明:要得到高的测距精度和好的距离分辨力,发射信号必须具有大的带宽;要得到高的测速精度和好的速度分辨力,信号必须具有大的时宽。因此,要使作用距离远,又具有高的测距、测速精度和好的距离、速度分辨力,首先发射信号必须是大带宽、长脉冲的形式。显然,单载频矩形脉冲雷达不能满足现代雷达提出的要求。而脉冲压缩技术可以获得大时宽带宽信号,使雷达同时具有作用距离远、高测距、测速精度和好的距离、速度分辨力。具有大时宽带宽的信号通常被称作脉冲压缩信号。 脉冲压缩技术包括两部分:脉冲压缩信号的产生、发射部分和为获得较窄的脉冲对接收回波的处理部分。在发射端,它通过对相对较宽的脉冲进行调制使其同时具有大的带宽,在接收端对接收的回波波形进行压缩处理得到较窄的脉冲。 3.2 脉冲压缩原理 3.2.1时宽-带宽积的概念 发射脉冲宽度τ和系统有效(经压缩的)脉冲宽度0τ的比值称为脉冲压缩 比 ,即 0D ττ= (3-1) 因为01B τ=,所以,式(3-1)可写成 D B τ= (3-2) 即压缩比等于信号的时宽-带宽积。在许多应用场合,脉冲压缩系统常用其时宽-带宽积表示。大时宽带宽矩形脉冲信号的复包络表达式可以写成

: (),/2/2()0,j t Ae T t T u t θ?-<<=? ? 其他 (3-3) 匹配滤波器输出端的信噪比为: ()00S N E N = (3-4) 其中信号能量为[13] : 212 E A T = (3-5) 这种体制的信号具有以下几个显著的特点: (1)在峰值功率受限的条件下,提高了发射机的平均功率av P ,增强了发射信号的能量,因此扩大了探测距离。 (2)在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号变成窄脉冲,因此保持了良好的距离分辨力。 (3)有利于提高系统的抗干扰能力。 当然,采用大时宽带宽信号也会带来一些缺点[14][15],这主要有: (1)最小作用距离受脉冲宽度 τ 的限制。 (2)收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。 (3)存在距离旁瓣。一般采用失配加权以抑制旁瓣,主旁瓣比可达30dB ~35dB 以上,但将有1 dB ~3 dB 的信噪比损失。 (4)存在一定的距离和速度测定模糊。适当选择信号参数和形式可以减小模糊。但脉冲压缩体制的优越性超过了它的缺点,已成为近代雷达广泛应用的一种体制

脉冲压缩

“雷达原理” 作业报告 西安电子科技大学 2011年11月 摘要简单介绍了脉冲压缩技术的原理和类型,并对线性调频脉冲压缩进行了详细的分析推导。 引言 雷达是通过对回波信号进行接收再作一些检测处理来识别复杂回波中的有用信息的。其中,波形设计有着相当重要的作用,它直接影响到雷达发射机形式的选择"信号处理方式"雷达的作用距离及抗干扰"抗截获等很多重要问题。现代雷达中广泛采用了脉冲压缩技术。脉冲压缩雷达常用的信号有线性调频信号和二相编码信号。脉冲压缩雷达具有高的辐射能量和高的距离分辨力,这种雷达具有很强的抗噪声干扰和欺骗干扰的性能。对线性调频信号有效的干扰方式是移频干扰(对二相编码信号较有效的干扰方式是距离拖引干扰。 1脉冲压缩简介 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信号波形紧密联系的则是距离分辨力和速度(径向)分辨力。

两个目标在同一角度但处在不同距离上,其最小可区分的距离称为距离分辨力,如图1.1所示,雷达的距离分辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 B c r 2=δ 式中,c 为光速,B=f ?可为发射波形带宽。 图1.1脉冲压缩雷达原理示意图 雷达的速度分辨力可用速度分辨常数表征,信号在时域上的持续宽度越大,在频域上的分辨能力就越好,即速度分辨力越好。 对于简单的脉冲雷达,B=f ?=1/τ,此处,τ为发射脉冲宽度。因此,对于简单的脉冲雷达系统,将有 τδ2c r = 在普通脉冲雷达中,由于雷达信号的时宽带宽积为一常数(约为1),因此不能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要性能参数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率分脉冲功率和平均功率。雷达在发射脉冲信号期间τ内所输出的功率称脉冲功率,用Pt 表示;平均功率是指一个重复周期Tr 内发射机输出功率的平均值,用Pav 表示。它们的关系为: r av t T P =P τ 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉冲而获得高的发射

压缩机的工作原理

往复式压缩机的工作原理 什么是压缩 往复式压缩机都有气缸、活塞和气阀。压缩气体的工作过程可分成膨胀、吸入、压缩和排气四个过程。 例:单吸式压缩机的气缸,这种压缩机只在气缸的一段有吸入气阀和排除气阀,活塞每往复一次只吸一次气和排一次气。 1 ,膨胀:当活塞向左边移动时,缸的容积增大,压力下降,原先残留在气缸中的余气不断膨胀。 2, 吸入:当压力降到稍小于进气管中的气体压力时,进气管中的气体便推开吸入气阀进入气缸。随着活塞向左移动,气体继续进入缸内,直到活塞移至左边的末端(又称左死点)为止。 3 ,压缩:当活塞调转方向向右移动时,缸的容积逐渐缩小,这样便开始了压缩气体的过程。由于吸入气阀有止逆作用,故缸内气体不能倒回进口管中,而出口管中气体压力又高于气缸内部的气体压力,缸内的气体也无法从排气阀跑到缸外。出口管中的气体因排出气阀有止逆作用,也不能流入缸内。因此缸内的气体数量保持一定,只因活塞继续向右移动,缩小了缸内的容气空间(容积),使气体的压力不断升高。 4 ,排出:随着活塞右移,压缩气体的压力升高到稍大于出口管中的气体压力时,缸内气体便顶开排除气阀的弹簧进入出口管中,并不断排出,直到活塞移至右边的末端(又称右死点为止。然后,活塞右开始向左移动,重复上述动作。活塞在缸内不断的往复运动,使气缸往复循环的吸入和排出气体。活塞的每一次往复成为一个工作循环,活塞每来或回一次所经过的距离叫做冲程。< 什么是压缩气体的三种热过程? 气体在压缩过程中的能量变化与气体状态(即温度、压力、体积等)有关。在压缩气体时产生大量的热,导致压缩后气体温度升高。气体受压缩的程度越大,其受热的程度也越大,温度也就升得越高。压缩气体时所产生的热量,除了大部分留在气体中使气体温度升高外,还有一部分传给气缸,使气缸温度升高,并有少部分热量通过缸壁散失于空气中。 压缩气体所需的压缩功,决定于气体状态的改变。说通缩点,压缩机耗功的大小与除去压缩气体所产生的热量有直接关系。一般来说,压缩气体的过程有以下三种:等温压缩过程:在压缩过程中,把与压缩功相当的热量全部移除,使缸内气体的温度保持不变,这种压缩成为等温压缩。在等温压缩过程中所消耗的压缩功最小。但这一过程是一种理想过程,实际生产中是很难办到的。 绝热压缩过程:在压缩过程中,与外界没有丝毫的热交换,结果使缸内气体的温度升高。这种不向外界散热也不从外界吸热的压缩成为绝热压缩。这种压缩过程的耗功最大,也是一种理想压缩。因为实际生产中,无伦何种情况要想避免热量的散失,是很难做到的。 多变压缩过程:在压缩气体过程中,既不完全等温,也不完全绝热的过程,成为多变压缩过程。这种压缩过程介于等温过程和绝热过程之间。实际生产中气体的压缩过程均属于多变压缩过程。 什么是多级压缩? 所谓多级压缩,即根据所需的压力,将压缩机的气缸分成若干级,逐级提高压力。并在每级压缩之后设立中间冷却器,冷却每级压缩后的高温气体。这样便能降低每级的排气温度。

脉冲压缩雷达与匹配滤波【定稿材料】

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 西安电子科技大学 信息对抗技术

一、 雷达工作原理 雷达,是英文Radar 的音译,源于radio detection and ranging 的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号的数学表达式: (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: (2.2)

第三章 脉冲压缩雷达简介

第三章 脉冲压缩雷达简介 3.1 脉冲压缩简介 雷达的分辨理论表明:要得到高的测距精度和好的距离分辨力,发射信号必须具有大的带宽;要得到高的测速精度和好的速度分辨力,信号必须具有大的时宽。因此,要使作用距离远,又具有高的测距、测速精度和好的距离、速度分辨力,首先发射信号必须是大带宽、长脉冲的形式。显然,单载频矩形脉冲雷达不能满足现代雷达提出的要求。而脉冲压缩技术可以获得大时宽带宽信号,使雷达同时具有作用距离远、高测距、测速精度和好的距离、速度分辨力。具有大时宽带宽的信号通常被称作脉冲压缩信号。 脉冲压缩技术包括两部分:脉冲压缩信号的产生、发射部分和为获得较窄的脉冲对接收回波的处理部分。在发射端,它通过对相对较宽的脉冲进行调制使其同时具有大的带宽,在接收端对接收的回波波形进行压缩处理得到较窄的脉冲。 3.2 脉冲压缩原理 3.2.1时宽-带宽积的概念 发射脉冲宽度τ和系统有效(经压缩的)脉冲宽度0τ的比值称为脉冲压缩 比 ,即 0D ττ= (3-1) 因为01B τ=,所 (3-1)可写成 D B τ= (3-2) 即压缩比等于信号的时宽-带宽积。在许多应用场合,脉冲压缩系统常用其时宽-带宽积表示。大时宽带宽矩形脉冲信号的复包络表达式可以写成: (),/2/2 ()0,j t Ae T t T u t θ?-<<=? ? 其他 (3-3) 匹配滤波器输出端的信噪比为:

()0 0S N E N = (3-4) 其中信号能量为[13] : 212 E A T = (3-5) 这种体制的信号具有以下几个显著的特点: (1)在峰值功率受限的条件下,提高了发射机的平均功率av P ,增强了发射信号的能量,因此扩大了探测距离。 (2)在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号变成窄脉冲,因此保持了良好的距离分辨力。 (3)有利于提高系统的抗干扰能力。 当然,采用大时宽带宽信号也会带来一些缺点[14][15],这主要有: (1)最小作用距离受脉冲宽度 τ 的限制。 (2)收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。 (3)存在距离旁瓣。一般采用失配加权以抑制旁瓣,主旁瓣比可达30dB ~35dB 以上,但将有1 dB ~3 dB 的信噪比损失。 (4)存在一定的距离和速度测定模糊。适当选择信号参数和形式可以减小模糊。但脉冲压缩体制的优越性超过了它的缺点,已成为近代雷达广泛应用的一种体制。 3.2.2 线性调频脉冲信号 线性调频脉冲压缩体制的发射信号,其频谱在脉冲宽度内按线性规律变化,即用对载频进行调制的方法展宽发射信号的频谱,使其相位具有色散。同时,在 t P 受限情况下为了充分利用发射机的功率,往往采用矩形宽脉冲包络,线性调 频脉冲信号的复数表达式可写成[16][17]: 2 00() 2 ()()()t j t j t t s t u t e Arect e μωωτ + ==

雷达线性调频脉冲压缩的原理及其MATLAB仿真

雷达线性调频脉冲压缩的原理及其MATLAB仿真

线性调频(LFM)脉冲压缩雷达仿真 一.雷达工作原理 雷达是Radar(RAdio Detection And Ranging)的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关

由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R,为了探测这个目标,雷达发射信号()s t,电磁波以光速C向四周传播,经过时间R C后电磁波到达目 标,照射到目标上的电磁波可写成:()R -。电磁 s t C 波与目标相互作用,一部分电磁波被目标散射, 被反射的电磁波为()R σ?-,其中σ为目标的雷达 s t C 散射截面(Radar Cross Section ,简称RCS),反映目标对电磁波的散射能力。再经过时间R C后, 被雷达接收天线接收的信号为(2)R σ?-。 s t C 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI(线性时不变)系统。 图 1.2:雷达等效于LTI系统

空气压缩机工作原理及使用

空气压缩机工作原理及使用 第一章空气压缩机工作原理及使用 第一节工作原理 驱动机启动后,经三角胶带,带动压缩机曲轴旋转,通过曲柄杆机构转化为活塞在气缸内作往复运动。当活塞由盖侧向轴运动时,气缸容积增大,缸内压力低于大气压力,外界空气经滤清器,吸气阀进入气缸;到达下止点后,活塞由轴侧向盖侧运动,吸气阀关闭,气缸容积逐渐变小,缸内空气被压缩,压力升高,当压力达到一定值时,排气阀被顶开,压缩空气经管路进入储气罐内,如此压缩机周而复始地工作不断地向储气罐内输送压缩空气,使罐内压力逐渐增大,从而获得所需的压缩空气。 第二节空压机的安装、起动、运转和停车 (一)机器的安放 空压机应安放在空气流通、光线充足、四周平坦的地方,以便操作管理和保证风冷效果。 (二)开机前的检查和准备 1、检查机器各部位是否处于正常状态,紧固件有否松动等。 2、加注润滑油:空压机冬季用13号、夏季用19号压缩机油,加油至视油窗2/3处为宜。注意:在气温较低地区,应防止润滑油凝结。 3、用手盘动空压机风扇2-3转,检查有无障碍感或异常声响。 4、打开储气罐上的输气闸阀,使其处于全开状态。 5、对电动空压机,由电工决定起动方式,接线后先作点起动,检查曲轴旋转方向是否如安全罩上的箭头所示;对柴动空压机,还要按柴油机说明书对柴油机进行检查、准备。 (三)起动 (1)起动电动机,并注意电动机的转向是否正确; (2)待电动机运转正常后勤工作,逐渐打开减荷阀,使空压机投入正常运转。 (四)运转中注意事项 (1)注意各部声响和震动情况; (2)注意检查注油器油室的油量是否足够,机身油池内的油面是否在油标尺规定的范围内,各部供油情况是否良好; (3)注意检查电气仪表的读数和电动机的温度; (4)空压机每工作两小时,将中间冷却器、后冷却器内的油水排放一次;每班将风包内的油水排放一次。 (5)注意检查各部温度和压力表的读数; ①润滑油压力在(1.47~2.45)×105N/m2, 但不低于0.981×105N/m2; ②冷却水最高排水温度不超过40℃;

雷达信号的脉冲压缩原理

第二章 脉冲压缩 2.1 概述 表2.1 窄脉冲高距离分辨力雷达的能力 窄脉冲具有宽频谱带宽。如果对宽脉冲进行频率或相位调制,那么它就可以具有和窄脉冲相同的带宽。假设调制后的脉冲带宽增加了B ,由接收机的匹配滤波器压缩后,带宽将等于1/B ,这个过程叫脉冲压缩。 脉冲压缩雷达不需要高能量窄脉冲所需要的高峰值功率,就可同时实现宽脉冲的能量和窄脉冲的分辨力。 脉冲压缩比定义为宽脉冲宽度T 与压缩后脉冲宽度τ的之比,即/T τ。带宽B 与压缩后的脉冲宽度τ的关系为1/B τ≈。这使得脉冲压缩比近似为BT 。即压缩比等于信号的时宽-带宽积。在许多应用场合,脉冲压缩系统常用其时宽-带宽 积表征。 这种体制最显著的特点是: ⑴ 它的发射信号采用载频按一定规律变化的宽脉冲,使其脉冲宽度与有效频谱宽度的乘积1B τ≥,这两个信号参数基本上是独立的,因而可以分别加以选择

来满足战术要求。在发射机峰值功率受限的条件下,它提高了发射机的平均功率P增加了信号能量,因此扩大了探测距离。 av ⑵在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号(一般认为也是接收机输入端的回波信号)变成窄脉冲,因此保持了良好的距离分辨力。这一处理过程称之为“脉冲压缩”。 ⑶有利于提高系统的抗干扰能力。对有源噪声干扰来说,由于信号带宽很大,迫使干扰机发射宽带噪声,从而降低了干扰的功率谱密度。 当然,采用大时宽带宽信号也会带来一些缺点,这主要有: ⑴最小作用距离受脉冲宽度 限制。 ⑵收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。 ⑶存在距离旁瓣。一般采用失配加权以抑制旁瓣,主旁瓣比可达30dB~35dB 以上,但将有1dB~3dB的信噪比损失。 ⑷存在一定的距离和速度测定模糊。 总之,脉冲压缩体制的优越性超过了它的缺点,已成为近代雷达广泛应用的一种体制。 根据上面讨论,我们可以归纳出实现脉冲压缩的条件如下: ⑴发射脉冲必须具有非线性的相位谱,或者说,必须使其脉冲宽度与有效频谱宽度的乘积远大于1. ⑵接收机中必须具有一个压缩网络,其相频特性应与发射信号实现“相位共轭匹配”,即相位色散绝对值相同而符号相反,以消除输入回波信号的相位色散。 第一个条件说明发射信号具有非线性的相位谱,提供了能被“压缩”的可能性,它是实现“压缩”的前提;第二个条件说明压缩网络与发射信号实现“相位共轭匹配”是实现压缩的必要条件。只有两者结合起来,才能构成实现脉冲压缩的充要条件。 综上所述,一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱与相位谱)实现完全的匹配。 根据这些要求,可用下面的框图来描述一个理想的脉冲压缩系统, 如图2.1所示。

压缩机主要工作原理

主要工作原理 螺杆压缩机是利用一对相互啮合的阴阳转子来实现空气的持续吸气、压缩、排气等过程,主动转子为5纹螺旋,从动转子为6条齿槽,采用独特齿形,可产生高压缩效率。 1.空气从进气口吸入,充满封闭的齿轮间。 2.转子通过旋转的啮合使封闭的齿形的容积缩小,从而使空气得到压缩。 3.空气从敞开的齿间排出 以上过程随着转子不停的旋转啮合,不断产生脉动空气。 压缩空气中的水份来自何处? 一般大气中的水份皆呈气态,不易察觉其存在,但若经空气压缩机压缩及管路冷却后,则会凝结成液态水滴。举例说明:在大气温度30°c,相对湿度75%状况下,一台空气压缩机,吐出量3nm3/min,工作压力为0.7Mpa,运转24小时压缩空气中约含100l的水份。 为何须要干燥的空气? 假如没有使用任何可以除去水气的方法,立即可见的影响是造成产品品质不良,设备发生故障,严重影响生产流程,增加生产成本等不良后果,损失甚巨。 什么是露点温度? 即是一种检测压缩空气系统干燥度的温度,换句话说,就是空气中水份凝结成水滴的温度。露点温度愈低,压缩空气中所含的水份就愈少。 冷冻式压缩空气干燥机根据空气冷冻干燥原理,利用制冷设备将压缩空气冷却到一定的露点温度后析出相应所含的水分,并通过分离器进行气液分离,再由自动排水器将水排出,从而使压缩空气获得干燥。 离心压缩机:指气体在压缩机中的运动是沿垂直于压缩机轴的径向进行的。离心压缩机排气均匀,气流无脉冲,无油,性能曲线平坦,操作围较宽。 压缩和压缩比 1、压缩 绝热压缩是一种在压缩过程中气体热量不产生明显传入或传出的压缩过程。在一个完全隔热的气缸上述过程可成为现实。等温压缩是一种在压缩过程中气体保持温度不变的压缩过程。 2、压缩比:(R)

雷达线性调频脉冲压缩的原理及其MATLAB仿真

线性调频(LFM )脉冲压缩雷达仿真 一. 雷达工作原理 雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R C 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ) ,反映目标对电磁波的散射能力。再经过时间R C 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。 图1.2:雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成: 1 ()()M i i i h t t σδτ== -∑ (1.1)

脉冲压缩技术研究

雷达系统 课程论文(设计) 题目脉冲压缩技术研究 学生姓名鲁建彬 学号20111227362 院系电子与信息工程学院 专业信号与信息处理 指导教师葛俊祥 二〇一二年六月十八日

脉冲压缩技术研究 鲁建彬 11级信号与信息处理 20111227362 摘要:脉冲压缩技术是雷达信号处理的关键技术之一。文中主要从信号形式、优势和不足、应用场合等方面介绍了线性调频、巴克码、多相码、非线性调频等几类常用脉冲压缩信号。并针对一个雷达应用实例,利用Matlab对线性调频信号的脉冲压缩经行了仿真,对比压缩前后的回波信号,从而直观地看出脉冲压缩对雷达探测能力的改善。 关键词:脉冲压缩调频信号编码信号信号仿真 一、引言 脉冲压缩技术是雷达信号处理的关键技术之一。主要是通过发射许多具有脉内调制的足够宽的脉冲,从而在峰值功率不太高的情况下也能给出所需的平均功率,然后,在接收时用解调办法将收到的回波“压缩”起来,解决了距离分辨率与作用距离之间的矛盾。现代雷达信号处理中常用的脉冲压缩主要有应用最广的线性调频信号脉压、巴克码信号脉压、多相码信号脉压、非线性调频信号脉压等几类。 本文在首先总结了脉冲压缩的基本原理的基础上从信号形式、优势和不足、应用场合等方面介绍这几类常用脉冲压缩信号。最后就最为普遍的线性调频信号经行了进一步分析,利用Matlab对某个雷达的回波经行了仿真,对比脉冲压缩前后的回波信号,加深了对脉冲压缩的认识。 二、脉冲压缩的基本原理 随着雷达技术的发展和雷达应用领域的不断扩大,雷达的作用距离、分辨能力和测量精度等性能指标必须得到相应的提高。然而,根据已有的分析可知,当噪声的功率谱密度一定时,对信号而言的检测能力取决于信号能量E。而对简单的恒定载频矩形脉冲信号,其信号能量为其峰值功率与信号能量的乘积,即E=PT。于是通过加大信号能量以增加雷达的作用距离可以考虑两个途径:提高峰值功率P或增大脉冲宽度T。由于P的提高受到发射管最大允许峰值功率和传输线功率容量等因素的限制,因此在考虑发射机最大允许平均发射功率范围内,增大脉冲宽度T,这样还有利于测速精度和速度分辨率的提高。然而对恒定载频单脉冲信号,我们有B=1/T,因此T的增大等效为信号带宽的减小。根据距离分辨率的表达式

离心式压缩机工作原理

离心式压缩机的工作原理是什么,为什么离心式压缩机要有那么高的转速? 答:离心式压缩机用于压缩气体的主要工作部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体压力能的。 更通俗地说,气体在流过离心式压缩机的叶轮时,高速旋转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。 显然,叶轮对气体作功是气体压力得以升高的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度u2密切相关的:u2数值越大,叶轮对气体所作的功就越大。而u2与叶轮转速和叶轮的外径尺寸有如下关系: 式中 D2--叶轮外缘直径,m; n--叶轮转速,r/min。 因此,离心式压缩机之所以要有很高的转速,是因为: 1)对于尺寸一定的叶轮来说,转速n越高,气体获得的能量就越多,压力的提高也就越大; 2)对于相同的圆周速度(亦可谓相同的叶轮作功能力)来说,转速n越高,叶轮的直径就可以越小,从而压缩机的体积和重量也就越小; 3)由于离心式压缩机通过一个叶轮所能使气体提高的压力是有限的,单级压比(出口压力与进口压力之比)一般仅为1.3~2.0。如果生产工艺所要求的气体压力较高,例如全低压空分设备中离心式空气压缩机需要将空气压力由0.1MPa提高到0.6~0.7MPa,这就需要采用多级压缩。那么,在叶轮尺寸确定之后,压缩机的转速越高,每一级的压比相应就越大,从而对于一定的总压比来说,压缩机的级数就可以减少。所以,在进行离心式压缩机的设计时,常常采用较高的转速。但是,随着转速的提高,叶轮的强度便成了一个突出的矛盾。目前,采用一般合金钢制造的闭式叶轮,其圆周速度多在300m/s以下。 另外,对于容量较小的离心式压缩机而言,由于风量较小,叶轮直径也较小,可采用较高的转速;而容量较大的压缩机,由于叶轮直径较大,相应地转速也应低一些。例如,为国产3200m3/h

单脉冲压缩雷达原理

单脉冲角度跟踪技术研究 学生尤阳 班级 0209991班 学号 02099043 专业电子信息工程 学院电子工程学院 西安电子科技大学 2012年5月

一、引言 单脉冲角跟踪系统的方案包括三通道、双通道、单通道单脉冲等。在跟踪系统精度要求不高的系统中,采用单通道单脉冲跟踪系统的设备越来越多,例如业务测控站、遥感地面站、卫星侦察信号接收站、遥测地面站等。较常用的实现方案是在常规双通道的基础上,用低频调制信号对差信号进行四相调制后再与和信号合并,变成一个通道输出,其合成信号只需经包络检波即可得到误差电压。由于进行了通道合并,这种体制不存在和、差通道合并后的相位和增益不一致问题不需要调整通道的相位除低噪放大器(LNA)外所有的设备可以安装在机房,大大提高了设备的可靠性、使用性和维护性,同时减少了设备,造价也大大降低。 二、系统工作原理及误差电压的提取 为了确保系统的G / T 值,应考虑在LNA后进行和、差信号的合成。为了阐明其物理概念,将双通道单脉冲合成为单通道单脉冲的跟踪系统方框图进行简化。简化后的框图如图 1 所示。 图1 跟踪系统框图 设从天馈来的信号为单频信号,在分析时假定天线和、差信道在接收频带内辐射特性保持不变,而且和、差信道及从天线的来波均为理想圆极化波。馈源端口输出和信号的瞬时值为 差信号由方位与俯仰差信号相位正交合成得到为 式中μ为差斜率,A为目标在方位上偏离电轴的角度,E 为目标在俯仰上偏离电轴的角度。 差信号的矢量关系为A = θcosФE = θs i nФ 图 2 双通道单脉冲合成矢量图

由图2,可将ed 变换为 式中Am μθ 为差信号的幅度,其中θ =B A+ 22;φ = tg -1 E / A为差路合成载波的相位,它与A、E 的比例大小有关,可见误差信号包含在幅度Am μθ 和相位φ 之中。 1. 单通道单脉冲的合成跟踪接收系统采用单通道时,和、差信号必须以适当的方式合成,目的是合成后的信号能在终端解调出角误差信息。通常在和、差信号合成前,先对差信号进行四相调制,再与和信号合成。 和、差信号分别经低噪声放大K E 、K ? 后为 差信号经四相调制后为 其中,φ为和、 差信号的相对相位差β(t)周期为 t4 =1/ Ω的信号调相, 在四相调制时有 ~t 调制后的差信号经一定向耦合器与和信号合成,其合成信号为 式中 M 为定向耦合器的耦合系数,一般取 6 ~ 9 dB。 2. 合成信号的解调和误差电压的提取 合成信号经下变频和放大后,频率仍记作ω,将合成信号变换后得:

相关文档
最新文档