图像理解-识别

图像理解-识别
图像理解-识别

图像理解与模式识别

1.模式识别的基本概念以及模式识别在图像识别中的位置

什么是模式呢?广义地说,存在于时间和空间中可观察的事物,如果我们可以区别它们是否相同或是否相似,都可以称之为模式。模式识别就是根据观察到的事物的模式对事物进行分类的过程。在图像识别技术中,模式识别占有核心的地位。所以的图像处理技术都是为了更好地进行模式识别做准备。模式识别是图像识别的实质性阶段。

有两种基本的模式识别方法,即统计模式识别方法和结构(句法)模式识别方法,与此相应的模式识别系统都由两个过程所组成,即设计和实现。设计是指用一定数量的样本(叫做训练集或学习集)进行分类器的设计。实现是指用所设计的分类器对待识别的样本进行分类决策。

图 6-2 模式识别系统的基本构成

模式识别系统(如图6-2)中,信息获取和预处理部分大致可以与图像的获取与处理对应。一般情况下,模式识别技术主要包含“特征提取和选择”和“分类器的设计”。

近几十年来,模式识别技术发展很快。然而,发展较成熟、应用较广泛的主要是统计模式识别技术。本节将主要介绍统计模式识别技术主要内容,并对其它模式识别技术如结构模式识别、模糊模式识别方法、神经网络识别方法加以概述。2. 统计模式识别

从一个广义的角度看,模式识别可以看成是一种机器学习的过程。按照机器学习过程的性质,可以将模式识别方法分成有监督的模式识别方法和非监督的模式识别方法,后者又称为聚类分析方法。这两种方法在图像识别中都有广泛的应用。

(1)有监督的模式识别方法

从识别技术的基本思路和方法看,有监督的模式识别可以分成两类:基于模型的方法和直接分类的方法。基于模型的方法的基础是贝叶斯(Bayes)决策理论方法,它对模式分析和分类器的设计有着实际的指导意义,是统计模式识别中的一个基本方法,用这个方法进行分类时要求:

①各类别总体的概率分布(即所谓的先验概率和类条件概率)是已知的;②要决策分类的

类别数是一定的。

假设要研究的分类问题有c个类别,各类别状态用ωi来表示,i=1,2,…,c;对应于各个类别ωi出现的先验概率P(ωi)以及类条件概率密度函数p(x|ωi)是已知的。如果在特征空间已观察到某一向量x,那么应该把x分到那一类中去才最合理呢?

最基本的想法是根据观察到的信息,选择适当的分类策略,使分类可能出现的错误最少,即:如果对于任意j≠i,都有P(ωi|x) > P(ωj|x),则将x归入类ωi 这就是“最小错误率的贝叶斯决策”。

一个例子是国际体育联合会对运动员兴奋剂检查的策略。由于对服用兴奋剂的运动员发生漏检,最多只是丧失某一次比赛的结果的公平;而错怪没有服用兴奋剂的运动员有可能毁掉这个运动员的整个运动生涯。所以,当出现疑问时,国际体育联合会的原则是:宁可使一千人漏网,也不能错怪一个好人。类似的思想体现在模式识别中,便是“基于最小风险的贝叶斯决策”。

设λ(αi|ωj)是将ωj类中的样本归入αi类所带来的损失,则当观察到x时,将x归入αi类的风险可以定义为:。最小风险的贝叶斯决策就是把x归入使最小的类中,即:

如果对于任意j≠i,都有R(αi| x) < R(αj| x),则将x归入类ωi。基于模型的识别技术中,关键就是要估计概率密度函数。其方法可分为参数估计和非参数估计两类。

在许多实际问题中,由于样本特征空间的类条件概率密度的形式常常很难确定,利用Parzen窗等非参数方法估计分布又往往需要大量样本,而且随着特征空间维数的增加所需样本数急剧增加。由此,在实际问题中,我们往往不去恢复类条件概率密度,而是利用样本集直接设计分类器。具体说就是首先给定某个判别函数类,然后利用样本集确定出判别函数中的未知参数。这类方法就是有监督的模式识别方法中的另一类重要的方法:直接分类方法。这类方法有3个要素:分类函数的类型(线性还是非线性)、分类目标函数、优化算法。下面分别介绍线性判别函数法和非线性判别函数法。

线性判别函数法利用一类较为简单的判别函数。它首先假定判别函数g(x)是x的线性函数,即g(x)=wTx十w0,对于c类问题,可以定义c个判别函数。这里关键的问题是如何利用样本集求得w 和w0。不同的实际情况,往往提出不同的设计要求。这些设计要求,在数学上一般表现为特定的函数形式,我们称之为准则函数。“尽可能好”的结果相应于准则函数取最优值。这实际上是将分类器设计问题转化为求准则函数极值的问题了,这样就可以利用最优化技术解决模式识别问题。线性判别函数法的代表有:Fisher线性判别法、感知准则函数法。

③Fisher线性判别法

应用统计方法解决模式识别问题时,一再碰到的问题之一是维数问题。在低维空间里解析上或计算上行得通的方法,在高维空间里往往行不通。因此,降低维数有时就成为处理实际问题的关键。Fisher准则函数的基本思想是,构造评价函数,使得当评价函数最优时,被分类的类别之间的距离尽可能大,同时各类内部样本间距离尽可能小。下式就是Fisher准则函数:

式中分子代表类间距离;分子代表类内离散度。分类器的设计过程就是通过已知样本求得w和w0使JF(w)取得最大值。

④感知准则函数法:设有一组样本y1,y2,···,yn,其中yn 是规范化增广样本向量,我们的目的是找一个解向量a*,使得

显然,对于线性可分情况,问题才有解:为此这里首先考虑处理线性可分问题的算法。

现在先构造这样一个准则函数

式中求和是对所有被权向量a错分的样本进行的。当y被错分时就有:-aTy≥0,因此,上式中的,JP(a)总是大于等于0。当且仅当错分集为空集时.JP(a)=min JP(a)=0,这时将不存在错分样本,“就是我们要寻找的解向量”。这一准则函数是20世纪50年代由Rosenblatt提出来,试图用于脑模型感知器上的,故一般称为感知准则函数。

⑤近邻法

最初的近邻法是由Cover和Hart于1968年提出的。由于对该方法在理论上进行了深入分析,直至现在仍是模式识别非参数法中最重要的方法之一。最简单的近邻决策规则是最近邻决策规则。所谓最近邻决策,是寻找与待分类样本最近的已知样本,认为待分类样本与后者同属一类。

最近邻法的一个显然的推广是k近邻法。从字义上看,这个方法就是取未知样本x的k个近邻,

看这k个近邻中多数属于哪一类,就把x归为哪一类。

近邻法的一个缺点是计算量大。解决的途径之一是采用快速算法,称之为快速搜索近邻法。其基本考虑是将样本分级分成一些不相交的子集,并在子集的基础上进行搜索。该算法对最近邻法和近邻法都适用。

(2)非监督的模式识别方法

在很多实际应用中由于缺少形成模式类过程的知识.或者由于实际工作中的困难(例如卫星遥感照片上各像元的分类问题),我们往往只能用没有类别标签的样本集进行工作。这就是通常所说的非监督学习方法。一般来说非监督学习方法可以分成两大类,即基于概率密度函数估计的直接方法和基于样本间相似性度量的间接聚类方法。不论是哪一种方法,在把样本集划分为若干个子集(类别)后,我们或者直接用它解决分类问题.或者把它作为训练样本集进行分类器设计。

单峰子集(类)的分离方法:在没有任何类条件概率分布的先验知识情况下,我们只能把特征空间划分为若干个区域Si,i=l,2,…,c,在每个区域中的混合密度应该是单峰的,如图6-3所示。我们把这些区域叫作单峰区域。假定每一个单峰区域Si和一个类别ωi相对应。有各种算法来实现这些单峰区域的划分。

图 6-3 单峰子集分离示意图

在应用中,单峰子集(类)的分离方法,需要估计概率密度函数。为了避免估计概率密度函数的困难,我们可以在一定条件下,按照样本间的相似性把集合划分成若干个子集,划分的结果应使某种表示聚类质量的准则函数为最大。当用距离来表示两个样本间的相似度时,这样做的结果就把特征空间划分成若干个区域,每一个区域相当于一个类别。一些常用的距离度量都可以作为这种相似件度量,在工程中,之所以常常用距离来表示样本间的相似度,是因为从经验上看,凡是同一类的样本,其特征向量应该是互相靠近的,而不同类的样本其特征向量之间的距离要大得多。这种方法虽然看起来似乎和上述的基于混合概率密度函数估计的聚类分离方法没有联系,但是由于概率密度的估计也是在样本间距离的基础上进行的,距离很近的两个特征向量经常是属于同一单峰子集。所以两种方法在概念上依然是互相关联的。

常用的对数据集进行聚类的方法有两种,迭代的动态聚类算法和非迭代的分级聚类算法。动态聚

类方法是一种普遍采用的方法,它具有以下3个要点:①选定某种距离度量作为样本间的相似性度量;②确定某个评价聚类结果质量的准则函数;③约定某个初始分类,然后用迭代算法找出使准则函数取极值的最好聚类结果。在非监督问题中,我们没有已知类别的样本集,甚至可能不知道类别数,可以利用的信息量大大减少了。所以,与监督模式识别相比,非监督模式识别问题中存在更大的不确定性。因此,在实际应用中,还要注意设法有效利用应用领域的专门知识,以弥补信息的不足。最终所得聚类的实际含义也往往只有依靠有关知识来解释和确定。

3.结构模式识别:在一些图像识别的问题中,往往需要了解图像的结构信息。识别的目的不仅要能够把图像指定到一个特定类别(把它分类),而且还要描述图像的形态。这时用语言结构法来识别图像就很有吸引力。句法方法使我们能够用一小组简单的模式基元和文法规则来描述一大组复杂的图像模式。例如,考虑图6-4所示的场景。它是有一些物体和背景组成。物体中又包含一个三角体和一个长方体,三角体和长方体又由一些面组成……这样,我们可以逐级地描写这种结构(见图6-5)。

图6-4 一个场景的示意图图 6-5 场景结构的分析

显然,这种逐级描写的结构方法与语言学中的句子分析有类似之处。取最简单的基元,用一定的规则构成较为复杂的子图像,再根据一定的规律,从子图像逐步构成一幅场景。这就是句法模式识别的由来,其中基元之间的连接规则称为文法。用基元及其文法进行描述图像结构的语言称为图像描述语言。

应当注意,在选取基元时,如果选择得非常简单,其优点是容易识别基元,但是不易用紧凑的文法来描写图像;反之,如果基元选得比较复杂,虽然易于用紧凑的文法来描写图像,但基元本身却不容易识别。这二者往往是矛盾的,实际应用中需要兼顾折中。

有了基元后,必须对各种训练样本构造文法,以形成语言,并用以描述图像。一般根据先验知识进行人工编制。当编制出来几条文法规则后,再用已知结构信息的图像来进行句子分析,如果能够分析出正确的结构,则文法可以采用;否则修改文法,直到能正确分析。对一种文法来说,如果规则很多,功能就强,然而运行代价也大;反之,如果功能弱,则很多图像无法描述。

4.模糊模式识别方法

1965年,Zadeh提出了他著名的模糊集理论,从此创建了一个新的学科——模糊数学。模糊集理论是对传统集合理论的一种推广,在传统集合理论中,一个元素或者同于一个集合,或者不属于一个集合;而对于模糊集来说,每一个元素都是以一定的程度属于某个集合,也可以同时以不同的程度属于几个集合。对人们现实生活中大量使用的一些含义确定,但又不准确的语言表述。比如“今天天气很热”、“车速过高,需要适当踩刹车”等,模糊数学能够较好地表达。因此,模糊数学被很多人认为是解决很多人工智能问题,尤其是常识性问题的最合适的数学工具。

关于模糊数学有几种不同的名称:一种叫法是模糊集,它是相对于经典的集合理论而言的;一种是模糊逻辑,相对于传统的“是或者不是”的二值逻辑而言;模糊数学则是一种更广泛的叫法,更倾向于指从数学角度对模糊集和模糊逻辑的研究;从应用的角度,很多人更习惯于用模糊系统的叫法,用来指采用了模糊数学的思想和理论的方法或系统,而其中采用的一些技术往往称作模糊技术和模糊方法。这些名词本身也具有很大的模糊性,但其实质都是同样的。

将模糊技术应用于各个不同的领域,就产生了一些新的学科分支,比如和人工神经网络相结合,就产生了所谓模糊神经网络;应用到自动控制中,就产生了模糊控制技术和系统;应用到模式识别领域来,自然就是模糊模式识别。从20世纪80年代以来,在很多传统的控制问题中,模糊控制技术的应用取得了很好的效果。尤其是一些国家在诸如地铁的模糊控制系统,洗衣机、电饭锅等的模糊控制等方面取得了成功的应用后,人们再次掀起了研究各种模糊技术的热潮。

模式识别从一开始就是模糊技术应用研究的一个活跃领域。一方面,人们针对一些模糊式识别问题设计了相应的模糊模式识别系统;另一方面,对传统模式识别中的一些方法,人们用模糊数学对它们进行了很多改进。这些研究逐渐形成了模糊模式识别这一新的学科分支。

模糊集理论是为了表达人的自然语言和推理中的不明确的方面而提出的,因此其应用中往往不可避免地带有一定的主观因素,比如隶属度函数的选取、模糊推理规则等。也正因为如此,它能够

比较好地把人们的先验知识和常识加到一个智能系统中。虽然有人试图用传统概率论来描述模糊理论,指出它在本质上与传统的概率论是一致的;但是至少从工程应用角度,模糊技术仍有它十分重要的优势。

似乎模糊集理论从一开始就和推理系统结合更紧密,因此,在模式识别领域中,模糊技术在句法模式识别中的应用非常活跃。在诸如决策树这种推理性质的模式识别系统中,模糊逻辑也得到很好的应用。

5.神经网络识别方法

从深层意义上看,模式识别与人工智能所研究的是如何用计算机实现人脑的一些功能。一方面,从要实现的功能出发,我们可以将功能分解成子功能,直至设计出算法来实现这些子功能。这是自顶向下的分析方法。另一方面,人脑无论多么复杂。都可以看作是由大量神经元组成的巨大的神经网络。从神经元的基本功能出发,逐步从简单到复杂组成各种神经网络,研究它所能实现的功能,是自底向上的综合方法。两种方法各有优缺点,适用于不同的问题。

人工神经网络的研究与计算机的研究几乎是同步发展的。1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型,成为人工神经网络研究的开端。1949年,心理学家D.O.Hebb提出神经元之间突触联系强度可变的假设,并据此提出神经元的学习准则,为神经网络的学习算法奠定了基础。现代串行计算机的奠基人Von Neumann在20世纪50年代就已注意到计算机与人脑结构的差异,对类似于神经网络的分布系统做了许多研究。50年代末,Rosenblatt提出了感知器模型,首次把神经网络的研究付诸工程实践,引起了许多科学家的兴趣。1969年,人工智能创始人之一的Minsky和Papert以《感知器》为名出版了一本书,从数学上深入分析了感知器的原理,指出其局限性。加之当时串行计算机正处于全盛发展时期,早期的人工智能研究也取得了很大成就,从而掩盖了发展新的计算模型的迫切性,使有关神经网络的研究热潮低落下来。在此期间,仍有不少科学家坚持这一领域的研究,对此后的神经网络研究提供了很好的理论基础。1982年,Hopfield提出了神经网络的一种数学模型,引入了能量函数的概念,研究了网络的动力学性质;紧接着又设计出用电子线路实现这一网络的方案,同时开拓了神经网络用于联想记忆和优化计算的新途径,大大促进了神经网络的研究。1986年,Rumelhart及LeCun等学者提出了多层感知器的反向传播算法,克服了当初阻碍感知器模型继续发展的重要障碍。另一方面,20世纪80年代以来,传统的基于符号处理的人工智能在解决工程问题时遇到了许多困难。现代的串行机

尽管有很好的性能,但在解决像模式识别、学习等对人来说是轻而易举的问题上显得非常困难。这就促使人们怀疑当前的Von Neumann机是否能解决智能问题,也促使人们探索更接近人脑的计算模型,于是又形成了对神经网络研究的热潮。现在神经网络的应用已渗透到多个领域,如智能控制、模式识别、信号处理、计算机视觉、优化计算、知识处理、生物医学工程等。

应当指出的是,人工神经网络并不是一个十分严格的概念,而且,当感知器等基本模型最早提出时也并没有被冠以人工神经网络的名字。现在,人们倾向于把那些具有大量(或多个)简单计算单元、单元之间具有广泛的连接、且连接的强度(有时还包括单元的计算特性)可根据输入输出数据调节的算法或结构模型称为一种人工神经网络。不同的单元计算特性(神经元类型)、单元间的连接方式(网络结构)和连接强度调节的规律(学习算法)形成了不同的人工神经网络模型。

产生于不同起源和针对不同目的的神经网络模型有很多种,多层感知器、自组织映射和Hopfield 网络都是其中具有代表性的模型之一。前两者也是在模式识别应用中最典型的两种模型,后者更多地用于优化组合问题,比如模式识别中的特征选择问题。

神经网络模式识别方法的一个重要特点就是它能够较有效地解决很多非线性问题,而且在很多工程应用中取得了成功。但另一方面,神经网络中有很多重要的问题尚没有从理论上得到解决,因此实际应用中仍有许多因素需要凭经验确定,比如如何选择网络节点数、初始权值和学习步长等;局部极小点问题、过学习与欠学习问题等也是在很多神经网络方法中普遍存在的问题。有时会出现这样的情况,即同样一种神经网络方法,在一些应用中可能取得很好的结果,而在另外一些相似的应用中却可能完全失败。还有研究表明,虽然多层感知器网络理论上具有实现任意复杂的分类的能力,但是对于一些识别中需要有可靠的拒绝的情况(比如身份确认),多层感知器似乎无法胜任。这些问题的存在,已经在很大程度上制约了人工神经网络理论和应用的发展。值得高兴的是,现在人们已经充分认识到这些问题,并开始进行更深入的研究,比如统计学习理论就已经在提供研究模式识别和神经网络问题的一个更完善的理论框架上取得了长足的进展。

机器视觉与图像处理方法

图像处理及识别技术在机器人路径规划中的一种应用 摘要:目前,随着计算机和通讯技术的发展,在智能机器人系统中,环境感知与定位、路径规划和运动控制等功能模块趋向于分布式的解决方案。机器人路径规划问题是智能机器人研究中的重要组成部分,路径规划系统可以分为环境信息的感知与识别、路径规划以及机器人的运动控制三部分,这三部分可以并行执行,提高机器人路径规划系统的稳定性和实时性。在感知环节,视觉处理是关键。本文主要对机器人的路径规划研究基于图像识别技术,研究了图像处理及识别技术在路径规划中是如何应用的,机器人将采集到的环境地图信息发送给计算机终端,计算机对图像进行分析处理与识别,将结果反馈给机器人,并给机器人发送任务信息,机器人根据接收到的信息做出相应的操作。 关键词:图像识别;图像处理;机器人;路径规划 ABSTRACT:At present, with the development of computer and communication technology, each module, such as environment sensing, direction deciding, route planning and movement controlling moduel in the system of intelligent robot, is resolved respectively. Robot path planning is an part of intelligent robot study. The path planning system can be divided into three parts: environmental information perception and recognition, path planning and motion controlling. The three parts can be executed in parallel to improve the stability of the robot path planning system. As for environment sensing, vision Proeessing is key faetor. The robot path planning of this paper is based on image recognition technology. The image processing and recognition technology is studied in the path planning is how to apply, Robots will sent collected environment map information to the computer terminal, then computer analysis and recognize those image information. After that computer will feedback the result to the robot and send the task information. The robot will act according to the received information. Keywords: image recognition,image processing, robot,path planning

计算机视觉与图像处理、模式识别、机器学习学科之间的关系

计算机视觉与图像处理、模式识别、机器学习学科之间的关系 在我的理解里,要实现计算机视觉必须有图像处理的帮助,而图像处理倚仗与模式识别的有效运用,而模式识别是人工智能领域的一个重要分支,人工智能与机器学习密不可分。纵观一切关系,发现计算机视觉的应用服务于机器学习。各个环节缺一不可,相辅相成。 计算机视觉(computer vision),用计算机来模拟人的视觉机理获取和处理信息的能力。就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。 图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。基本内容图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理一般指数字图像处理。 模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。 机器学习(Machine Learning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。机器学习在人工智能的研究中具有十分重要的地位。一个不具有学习能力的智能系统难以称得上是一个真正的智能系统,但是以往的智能系统都普遍缺少学习的能力。随着人工智能的深入发展,这些局限性表现得愈加突出。正是在这种情形下,机器学习逐渐成为人工智能研究的核心之一。它的应用已遍及人工智能的各个分支,如专家系统、自动推理、自然语言理解、模式识别、计算机视觉、智能机器人等领域。机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。这些研究目标相互影响相互促进。

图像处理与识别实验指导书

《图像处理与识别》 实验指导书 北京航空航天大学 仪器科学与光电工程学院 2008 年 5 月

目录 第一章、《图像处理与识别》课程实验大纲 (2) 第二章 CVIPtools图像处理软件 (3) 第三章实验内容 (4) 实验一熟悉CVIPtools (4) 实验二边缘/线探测 (7) 实验三、图像增强处理和分割综合实验 (9) 实验四设置CVIP编程环境 (10) 实验五理解CVIPlab (13)

第一章、《图像处理与识别》课程实验大纲 课程编号:17z83060 学时:6学时 一、课程实验教学目标 要求学生已有数学分析、向量、矩阵、概率、统计方面的基础知识和初步的计算机编程能力。通过本课程的实验,要求学生通过改变基本图像处理算法的参数,观察图像处理结果,并能够总结出典型图像处理算法的特点和应用场合,进一步巩固和掌握基本图像处理算法。通过综合运用典型图像处理算法,能够设计复杂背景图像中典型几何原型的自动分割,培养和锻炼学生的创新意识和创新思维,提高动手能力和创新能力。 二、教学内容及基本要求 主要内容包括两部分:第一部分是基于CVIPTOOLS图像软件处理平台,进行空间域和频率域增强以及图像分割实验。第二部分是设计复杂背景图像简单几何原型的自动分割方案,并编程实现。安排1个综合型系列实验和1个设计型实验,课堂为6学时+课外,具体内容如下: 一:图像增强处理和分割综合实验(3学时) 内容:在图像处理软件平台(CVIPTOOLS),进行空间域和频率域增强以及图像分割实验。 1、直方图均衡化实验; 2、直方图匹配实验; 3、图像锐化实验:高通滤波、高提升滤波、反锐化滤波、FFT锐化、高频增强等(通过改变参数, 对不同的系列图像进行处理) 4、图像平滑实验:均值滤波、高斯滤波和FFT平滑等 5、图像分割实验:Sobel、prewit、Roberts、Laplaicn、Krish边缘提取、Hough变换、边缘连接等 6、二值图像斑的特征描述:面积、中心、方向、周长、欧拉数和孔径比等计算 二:图像分割设计实验(3学时) 内容:设计复杂背景图像简单几何原型的自动分割方案,并编程实现。 编程语言:matlab、C、VC++ 设计型实验,通过所学图像处理算法,实现复杂背景圆、椭圆、四边形等简单几何原型的自动分割。 三、教学安排及方式 课堂实验分组进行,学生通过课外VC++或者MATLAB编程实现实验二中的主要算法。 四、考核方式 提交实验设计报告,只提交实验二的设计报告,实验一的内容由任课教师课堂验收,作为平时成绩的依据之一。

模式识别与图像处理习题及解答

1. 判断题(在题目后面的括号中填入T或F,分别代表正确或错误)。 (1) 灰度直方图是灰度级的函数,描述的是图像中具有该灰度级像素的个数,其纵坐标是灰度级,横坐标是该灰度出现的频率。( F ) (2) 中值滤波是一种线性滤波,它在实际应用中需要图像的统计特性。(F ) (3) 图像经频域变换后其特点是变换结果能量分布向高频成分方向集中,图像上的边缘、线条等信息在低频成分上得到反映。( F ) (4) 观察直方图可以看出不适合的数字化。(T ) 2. 单选题(每题只有一个选项是正确的) (1) 锐化(高通)滤波器的作用:A A 能减弱或削除傅立叶空间的低频分量,但不影响高频分量。 B 能减弱或削除傅立叶空间的高频分量,但不影响低频分量。 C 对傅立叶空间的低、高频分量均有减弱或削除作用。 D 对傅立叶空间的低、高频分量均有增强作用。 (2) 下列说法不正确的是 C A 点运算是对一副图像的灰度级进行变换。 B 线性点运算仅能拉伸或压缩直方图,以及使之左移或右移。 C 点运算可以改变图形内的空间关系。 D 点运算以预定的方式改变一幅图像的灰度直方图。 (3) 在所有颜色模型中,最常用于彩色图像的是:D A GMY B YIQ C HSV D HSI (4) 以下说法正确的是:B A 用数学形态学处理一些图像时,膨胀运算会收缩图像,腐蚀运算会扩大图像。 B 用数学形态学处理一些图像时,开运算和闭运算都可以平滑图像的轮廓。 C 在形态算法设计中,结构元的选择非常重要,它可以在几何上比原图像复杂,且 无界。 D 在形态算法设计中,用非凸子集作为结构元也是可以的。 (5) 数字图像的灰度直方图的横坐标表示:A A 灰度级 B 出现这种灰度的概率 C 像素数 D 像素值 (6) 以下说法正确的是 C A 先膨胀后腐蚀的运算称为开运算。 B 先腐蚀后膨胀的运算称为闭运算。 C 细化是将一个曲线型物体细化为一条单像素宽的线,从而图形化的显示出其拓扑 性质。 D 消除连续区域内的小噪声点,可以通过连续多次使用开闭运算。 (7) 下列描述正确的有 D A 只有傅立叶变换才能够完成图像的频率变换。 B 图像经频域变换后,变换结果是能量分布向高频方向集中,图像上的边缘、线条

数字图像处理技术在识别领域的应用

数字图像处理技术在识别领域的应用 1、定义 数字图像处理是利用计算机对图像进行处理,常用的方法技术有去除噪声、复原、增强、分割、提取特征等。数字图像发展初期,主要应用于提高图片质量,第一次应用该技术是对伦敦和纽约之间海底电缆发送的图片进行改善。图像处理的应用领域涉及到人类生活的方方面面。 2、数字图像处理的优点 数字图像处理应用于人类依靠图像获取外界的信息经过处理,具有如下优点:①重现性能好,数字图像处理在进行传输、存储、复制等处理从而用来服务于生活。 ②数字化处理精度高。 ③数字信号处理技术适用面宽。 ④数字图像处理的灵活性高。 3、主要研究内容 数字图像处理技术是利用计算机图像处理系统对图像进行输入、加工和输出,主要研究的内容包括以下几项:图像变换;图像增强和复原;图像编码压缩;图像分割。 因为数字图像处理技术应用太过广泛,我在这里仅探究它在识别领域的应用,从这里认识数字图像处理技术的方方面面。 4、数字图像处理在识别领域的应用: (一)数字图像处理在指纹识别中的应用 传统的利用密码、证件作为身份识别的方式具有易遗忘、易破解、易丢失、易伪造等特点,已不再符合现代数字社会的需求。指纹,作为人体独一无二的生理特征,虽然只是人体皮肤的一小部分,但是它的纹理复杂度可以提供用于识别的足够特征,具有极高的安全性,并且指纹还具有易获取、无侵犯性、唯一性和不变性等优点,使其成为生物识别技术中的焦点。 为了弥补指纹图像的质量缺陷,保证指纹后处理算法对指纹图像具有足够的鲁棒性,图像增强是十分必要的,采用数字图像处理则可以实现图像的增强。指纹图像增强目的是为了消除噪声,增强脊线和谷线的对比度,将断裂的脊线和谷线连接起来,消除由于噪声、变形等带来的粘连及由于油污等产生的毛刺等,改善图像质量,保证特征信息提取的准确性和可靠性。指纹图像的增强由图像规格化、图像再处理、滤波几个部分组成。

第8章 形状描述与识别.

第8章 形状描述与识别 描述形状特征参数的方法主要有两类:基于区域的特征参数和基于边界的特征参数。 8.1 区域描述参数 区域特征参数主要是通过区域内的所有像素点的集合来获得对形状特征参数的描述。这些参数可以是几何参数,也可以是密度参数,还可以是区域的二维变换(如傅立叶变换和小波变换)系数或能量谱等。对于形状特征的描述,人们已提出了许多方法,比较典型的有不变矩法、傅立叶描述子、边缘直方图法、小波重要系数法、小波轮廓表示法、几何参数法等。 1.基于区域的不变矩 对于二维连续函数 ()y x f ,,其 ()q p +阶矩定义为 (,),0,1,2, p q pq m x y f x y dxdy p q ∞ ∞ -∞-∞ ==? ? (8-3) 根据唯一性定理说明,如果 ()y x f ,分段连续,且只在 xy 平面的有限部分有非 0值,则所有各阶矩皆存在,并且矩序列 pq m 唯一地由 ()y x f ,所确定。反之,pq m 也唯一地确定了()y x f ,。 ()y x f ,的中心矩可表示如下: dxdy y x f y y x x q p pq ),()()(--=? ? ∞ ∞-∞ ∞ -μ (8-4) 式中 1000m x m = ,0100 m y m =。 对于数字图像,用求和代替积分: ∑∑--=x y q p pq y x f y y x x ),()()(μ (8-5) ∑∑=x y q p pq y x f y x m ),( (8-6) 零阶矩∑∑= x y y x f m ),(00为()y x f ,的均值,对于二值图像即为区域的面积。 ∑∑=x y y x xf m ),(10,∑∑=x y y x yf m ),(01除以零阶矩00m 后得:1001 0000 ,m m x y m m = =是图像的重心坐标。 中心矩是反映图像相对于重心分布的度量。例如,20μ和02μ分别表示图像围绕通过重心的垂直和水平轴线的惯性矩;30μ和03μ可以度量图像对于垂直和水平轴线的对称性等。 利用不变矩可以计算出物体的圆形度(物体形状和圆的接近程度)、物体的矩形度(物体形状和矩

图像处理和识别中的纹理特征和模型

纹理特征和模型 1,基于纹理谱的纹理特征 图像纹理分析中,最重要的问题是提取能够描述纹理的特征信息;这些特征可被用来分类和描述不同的纹理图像。在实际中常用到的方法有结构法和统计法;本文提出一种新的统计方法,每个纹理单元表征该位置及其领域象素的特征,整幅图像的纹理特征用纹理谱来表征,用这种方法进行分析较为简单。 定义纹理谱:纹理单元的频率分布。 基于纹理频谱的纹理特征: 3×3领域:权重: original reference calculate by myself (1)、黑白对称性 ()(3281) 1*100 () s i S i BWS S i ?? -+ ?? ?? =- ?? ?? ?? ∑ ∑ 反映频谱的对称性,不随纹理单元中起始计数位置的不同而不同。 (2)、几何对称性 ()4() 1 1*100 4 2*() Sj i Sj i GS Sj i ?? -+ ?? ?? =- ?? ?? ?? ∑ ∑ ∑ 反映图像旋转180度后,纹理谱的相似性; (3)、方向度

()()11*10062*()Sm i Sn i DD Sm i ?? -?? ??=-?????? ∑∑ ∑ 反映线性结构的角度。大的DD 说明纹理谱对图像的方向模式较为敏感;即图 像中有线性机构纹理单元存在。 以上三个特征都是图像的几何特征,可描述原始图像的宏观纹理;下面介绍几个描述图像微观纹理的特征。 (4)、方向特征 微观水平结构特征: ()*()MHS S i HM i =∑ ()(,,)*(,,)HM i P a b c P f g h = 同样,我们可以得到其它方向的方向纹理特征MVS ,MDS1,MDS2 (5)中心对称性 2()*[()]CS S i K i =∑ 2.常用统计特征: 把图像看成是一个二维随机过程的一次实现,可得到图像的直方图、均值、方差、偏度、峰度、能量、墒、自相关、协方差、惯性矩、绝对值、反差分等特征量。常用来描述纹理的统计特征的技术有子相关函数、功率谱、正交变换、灰度级同时事件、灰度级行程长、灰度级差分、滤波模板、相对极值密度、离散马尔可夫随机场模型、自回归模型、同时自回归模型等。 原图: 1、2、3、4阶矩

数字图像处理_图片识别

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:数字图像处理教师:黄鸿 姓名:潘世强学号:20110802096 专业:仪器科学与技术类别:(学术)上课时间:2011年10月至2012年01月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

CHONGQING UNIVERSITY 数字图像处理 ——基于内容的图像检索系统 学院:光电工程学院 姓名:潘世强 学号:20110802096 指导教师:黄鸿 时间: 2012年01月08日

基于内容的图像检索系统 摘要:随着多媒体技术的迅速发展,图像数据库也急剧膨胀起来,如何高效、快速地从像资源中获取有用的图像成了信息检索技术研究的热点。 本文主要针对基于内容的图像检索技术(CBIR)做了相关的介绍,对基于图像检索技术中的特征提取技术进行了较为详细的阐述,研究了图像颜色的提取方法,以及图像间相似性度量方法。本文运用的特征值提取方法为颜色直方图的方法,对图像提取颜色特征,并根据这些特征对目标图片与图片库中的图片进行了相似度排序,最后运用Matlab软件对上述方法进行验证,得到图像检索结果,从而实现基于内容的图像检索。 关键词:直方图HIS彩色空间基于内容图像检索 1.引言 图像是对客观对象的一种相似性的、生动性的描述或写真。或者说图像是客观对象的一种表示,它包含了被描述对象的有关信息。它是人们最主要的信息源。据统计,一个人获取的信息大约有75%来自视觉。俗话说“百闻不如一见”,“一目了然”,都反映了图像在信息传递中的独特效果。所谓基于图像内容检索,即从图像库中查找含有特定目标的图像,也包括从连续的视频图像中检索含有特定目标的视频片段。它区别于传统的图像检索手段,融合了图像理解技术,从而可以提供更有效的检索手段。 本文主要针对基于内容的图像检索技术中的特征提取方法展开论述,简要地介绍了近年来基于内容的图像检索中颜色、纹理、形状及语义特征的描述方法,并对颜色特征的描述方法以及特征相似性做了详细的论述。

第6章 纹理描述与识别

第6章 纹理描述与识别 纹理是图像的重要视觉特征,是物体表面颜色或亮度规律性分布或变化的重要性质。有关纹理的概念在人们心理中自然形成,但很难用确切的语言或文字描述,因而在自然语言中有较少的纹理描述词。目前对纹理虽然没有准确的定义,但数学上的描述已有一些有效的方法,如Tamura 参数、亮度共生矩阵、随机场模型、小波变换等。这些方法试图利用统计、变换、识别等方法,描述纹理的空间、频域和结构性质,因此,纹理的描述方法可分为统计法、频谱法和结构法。纹理识别就是利用各种纹理描述参数识别纹理结构或纹理性质。 6.1 图像纹理的描述方法 6.1.1 Tamura 纹理特征提取 基于人类对纹理的视觉感知心理学研究,Tamura 等人提出了纹理特征的6个特征参数:粗糙度(coarseness)、对比度(contrast)、方向度(directionality)、线像度(linelikeness)、规整度(regularity)和粗略度(roughness)。其中,前三项用的最多,定义如下: 1.粗糙度 粗糙度指图像纹理变化的粒度。当图像的纹理变化间隔较大时,图像给人的感觉比较粗糙;当图像的纹理变化间隔很小时,图像给人的感觉比较细腻,也就是粗糙度较小。粗糙度与图像的分辨率有关,分辨率大,纹理元尺度大,重复次数少,则图像比较粗糙。 粗糙度是纹理最本质的特性,计算方法可以按以下几个步骤进行。 (1)计算图像中每个像素在2k *2k 邻域内的平均亮度,即: ∑∑ -+-=-+-=----= 1221 2221111 2/),(),(k k k k x x i y y j k k j i g y x A 其中k=0,1,2,…,5,g(i,j)是图像中(i,j)点的像素亮度值。 (2)对于每个像素,在水平和垂直方向上分别计算不同尺度的互不重叠的窗口之间的平均亮度差,即: |),2(),2(|),(11,y x A y x A y x E k k k k h k ----+=

上海交通大学图象处理与模式识别专业考研

上海交通大学图象处理与模式识别专业 考研 本学科创建于80年代初,是国内首批有权授予硕士学位、博士学位并设有博士后流动站的重点学科,也是国家“211工程”资助学科。1998年该学科改名为模式识别与智能系统。本学科点的创建人是我国著名图像处理和模式识别专家、美国匹兹堡大学访问学者李介谷教授。他的研究方向是模式识别和计算机视觉。 本学科依托图象处理与模式识别研究所,主要从事数字图象(图形)分析、文本信息处理、模式识别、机器视觉、自然语言理解、智能技术和系统等信息技术领域中前沿性的应用基础研究,具有基于数字信号处理器的硬件开发工具和网络环境下的工作站,个人机及专用的图象输入输出设备。包括序列图像分析,三维图像重构理论及应用,远程医疗和诊断;模式识别和计算机视觉是该学科的一个研究特色,已取得重大研究成果的项目有动态目标识别,字符和人脸识别,机器人视觉;计算机图形学和虚拟现实,多媒体技术和计算可视化;智能中文信息处理,中(英)文全文检索,基于内容的网上检索;人工智能和智能系统,主要从事人工神经网理论及应用,机器学习和推理、智能交通指挥系统等。目前正在进行的科研项目有国家高科技863项目,国家自然科学基金,国家教委博士点科研基金项目。省、部、市重大科技开发和国际合作项目。 模式识别和智能系统学科拥有设备先进的图像工程实验室。1978年恢复招收研究生来,已培养硕士、博士生216名,主要在国内外大学、科研机构和高新技术产业从事教学、科研及高新技术的开发研究工作。该学科有广泛的国际合作和交流,招收国内外访问学者和国外留学生。本学科所从事的研究项目曾多次荣获过国家科技进步一等奖、省部级的奖励,并有着广泛的国际合作和交流。 研究方向 a.数字图象处理 b.计算机模式识别 c.计算机图形学与CAD技术 d.人工智能与专家系统 e.计算机视觉 f.语音识别及机器翻译 g.人工神经网络 h.虚拟现实 i.算法理论与分析 j.网络信息处理 k.文本信息处理 l.网上三维图象重建 m.城市交通监控与管理系统 n.生物信息特征识别 o.网络信息智能处理 p.自然语言理解与人机界面 q.成像光谱技术与遥感 r.三维空间信息处理与分析 s.多媒体与网络信息智能处理 t.智能理论与系统。 本学科依托图象处理与模式识别研究所,主要从事数字图象(图形)分析、文本信息处理、模式识别、机器视觉、自然语言理解、智能技术和系统等信息技术领域中前沿性的应用基础研究,具有基于数字信号处理器的硬件开发工具和网络环境下的工作站,个人机及专用的图象输入输出设备。包括序列图像分析,三维图像重构理论及应用,远程医疗和诊断;模式识别和计算机视觉是该学科的一个研究特色,已取得重大研究成果的项目有动态目标识别,字符和人脸识别,机器人视觉;计算机图形学和虚拟现实,多媒体技术和计算可视化;

树叶分类数字图像处理在树叶识别中的应用

树叶分类数字图像处理 在树叶识别中的应用 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

数字图像处理研究报告 数字图像处理在树叶识别中的应用 侯杰:土木系 侯晓鹏:林科院 苏东川:航院 张伟:精仪 指导教师:马慧敏教授 日期:数字图像处理在树叶识别中的应用 一、课题意义及背景 1 课题背景 植物的识别与分类对于区分植物种类,探索植物间的亲缘关系,阐明植物 系统的进化规律具有重要意义。因此植物分类学是植物科学乃至整个生命科学 的基础学科。然而,由于学科发展和社会等原因,全世界范围内目前从事经典 分类(即传统的形态分类)的人数急剧下降,且呈现出明显的老龄化趋势,后 继乏人,分类学已经成为一个“濒危学科”(Buyck,1999)。这不仅对于植物分类学 本身,而且对整个植物科学和国民经济的发展带来重大的不利影响。目前植物 识别和分类主要由人工完成。然而地球上仅为人所知的有花植物就有大约25万 种,面对如此庞大的植物世界,任何一个植物学家都不可能知道所有的物种和 名称,这就给进一步的研究带来了困难。在信息化的今天,我们提出的一种解

决方案是:建立计算机化的植物识别系统,即利用计算机及相关技术对植物进行识别和管理[1]。 2 课题意义[2-3] (1)人工进行植物叶形的分类难度很大。这种传统的判别方法要求操作者具有丰富的分类学知识和长期的实践经验,才能开展工作。要做到准确和快速地识别手中的植物是非常困难。并且相应人才极为短缺。 (2)仅为人所知的有花植物就有大约25万种,面对如此庞大的植物世界,任何一个植物学家都不可能知道所有的物种和名称。建立植物识别系统和数据库十分必要。 (3)植物学研究人员在野外考察时, 时常需要获取植物叶片面积等参数。(4)叶子面积大小对植物的生长发育、作物产量以及栽培管理都具有十分重要的意义。 因此,基于计算机图像处理识别技术的树叶图像识别技术对于植物学,农业科学等都具有重大意义。 二、相关理论综述 1 图像预处理 (1)边缘检测[4] 图像的边缘是指图像局部亮度变化最显着的部分,即在灰度级上发生急剧变化的区域。从空域角度看,二维图像上的边缘相邻像素灰度从某一个值跳变

基于matlab数字图像处理与识别系统含程序

目录 第一章绪论 (2) 1.1 研究背景 (2) 1.2 人脸图像识别的应用前景 (3) 1.3 本文研究的问题 (4) 1.4 识别系统构成 (4) 1.5 论文的内容及组织 (5) 第二章图像处理的Matlab实现 (6) 2.1 Matlab简介 (6) 2.2 数字图像处理及过程 (6) 2.2.1图像处理的基本操作 (6) 2.2.2图像类型的转换 (7) 2.2.3图像增强 (7) 2.2.4边缘检测 (8) 2.3图像处理功能的Matlab实现实例 (8) 2.4 本章小结 (11) 第三章人脸图像识别计算机系统 (11) 3.1 引言 (11) 3.2系统基本机构 (12) 3.3 人脸检测定位算法 (13) 3.4 人脸图像的预处理 (18) 3.4.1 仿真系统中实现的人脸图像预处理方法 (19) 第四章基于直方图的人脸识别实现 (21) 4.1识别理论 (21) 4.2 人脸识别的matlab实现 (21) 4.3 本章小结 (22) 第五章总结 (22) 致谢 (23) 参考文献 (24) 附录 (25)

第一章绪论 本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。 1.1 研究背景 自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。 在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。 同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而开发研究的实际意义更大。并且与指纹图像不同的是,人脸图像受很多因素的干扰:人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等。使得同一个人,

基于数字图像处理技术的答题卡识别方法(图像处理课程练习)

××大学2013-2014学年第二学期课程考核 《图像处理》综合设计报告 基于数字图像处理技术的答题卡识别方法 学号 姓名 班级 日期 本人郑重声明:本人认真、独立完成了查找资料、编写程序、撰写报告等考核任务。 签字: 日期:

摘要 背景: 随着科技的发展,电子与计算机技术的进步,答题卡的出现大大减轻教学工作者们批改试卷的工作量。答题卡是光标阅读机输入信息的载体,是配套光标阅读机的各种信息录入表格的总称。答题卡将用户需要的信息转化为可选择的选项,供用户涂写。OMR是用光学扫描的方法来识别按一定格式印刷或书写的标记,并将其转换为计算机能接受的电信号的设备,并根据信息点的涂与未涂和格式文件设置将信息还原。因此,如何将答题卡填涂的黑色区域识别出来并使用计算机进行处理是极为关键的。本论文探索了有效识别答题卡的方法,以matlab为工具,基于数字图像处理技术对答题卡填涂区域进行了识别,并对识别的结果进行了处理,得到了结果。本论文利用Hough 变换的直线检测技术检测图像的倾斜度,判断图像是否倾斜,对存在倾斜的图像进行旋转校正。最终实现答题卡答案的定位和检测。论文使用像素统计方法进行识别,利用黑白颜色灰度值的巨大差异对二值图像的灰度值进行累加并进行阈值判定,识别错误效率极低,能够准确的识别答题卡的涂卡标记。 关键词:Hough变换,答题卡识别,matlab,

一、设计任务、目的和要求 本设计以matlab为工具利用数字图像处理技术对答题卡进行了识别,并对识别结果进行了处理。注意到答题卡在采集图像的过程中由于各种原因可能会产生图像倾斜、水平或垂直错位,要进行正确识别首先必须对其进行校正,再依据像素检索技术进行识别。 二、总体方案设计 说明系统运行环境,编程软件平台,编码算法原理,算法流程图设计 本系统运行在当今主流的Windows7系统,使用较新的MATLAB2012b进行设计。在进行旋转校正时,先使用Hough变换检测出答题卡边缘直线,调用lines函数的参数得到倾斜角度并进行旋转变换从而消除答题卡倾斜状态。将扫描部分分为7个扫描区域,分别使用像素检索技术,对各个检索区域内的灰度值进行累加,并对累加和进行阈值判定,从而得出检索区域颜色,完成判定。最后再与标准答案进行比对,得出成绩。 流程图:

图像处理与识别论文.doc

辽宁工业大学 关于图像识别技术的论述 --图像处理与识别结课论文 学院:电子与信息工程学院 班级:电子102班 学号:100404054 姓名:包媛

关于图像识别技术的论述 随着科学技术的不断发展,计算机应用领域的不断开拓,一种全新的图像处理方法应运而生,这就是数字图像处理技术,即利用计算机设备将图像转变成数字信息来进行保存、处理、传输和重现。数字图像识别技术则是从数字图像处理技术中延伸出来的一个重要的研究方向。目前,数字图像处理与识别的应用范围越来越广。但就目前的水平而言,计算机对外部的感知能力还比较薄弱,还需要投入大量人力、物力从事数字图像处理与识别的理论和应用的研究。图像处理与识别的应用有很多种,如指纹识别,条码识别,人脸识别,车牌识别,残损纸币识别等等在生活,生产中,和警方侦破案件中都有很多很重要的应用。数字图像处理方法的分类以及数字图像处理系统的基本部件,“数字图像处理的基本方法”、“人脸识别”及“残损纸币识别”进行详细叙述。一些数字图像处理的基本方法,包括图像增强与图像检测两部分。人脸识别”当中,可采用SN-tuple神经网络的方法进行识别,同时网络参数的变化对识别率也会有所影响影响。对于“残损纸币识别”,可以选择边缘检测、Fisher判别和神经网络三种方法进行识别。其中,边缘检测需要区分纸币的面值和正反,之后方可识别,但性能较为稳定,识别效果较好;Fisher判别无需区分纸币的面值和正反,但识别率受样本选择的影响,不同样本,识别率有可能相差较大;神经网络方法也可不区分纸币的面值与正反,但识别率较低,若区分面值与正反,则可获得较高的识别率。下面分别对车牌识别,纸币、票据识别和手势识别做陈述。 随着我国国民经济的迅速增长,机动车的规模与流量大幅增加,随之而来的管理问题也日益严重。因此迫切需要采用高科技手段,对这些违法违章车辆牌照进行登记,汽车牌照识别系统的出现成为了交通管制必不可少的有力武器。汽车牌照的识别系统在公共安全,交通管理,及相关军事部门有着重要的应用价值。它是一个基于数字图像处理和字符识别的智能化交通管理系统,该系统先通过图像采集,再对图像进行处理以克服图像干扰,改善识别效果,而后进行二值化,归一化等处理,最后进行识别。车牌识别系统使得车辆管理更趋于数字化,网络化,大大提高了交通管理的有效性与方便性。车牌识别系统作为整个智能交通系统的一部分,其重要性不言而喻。 车牌识别是一项涉及到数字图像处理、计算机视觉、模式识别、人工智能等多门学科的技术,它在交通监视和控制中占有很重要的地位,已成为现代交通工程领域中研究的重点和热点之一。该项技术应用前景广泛,例如用在自动收费系统、不停车缴费、失窃车辆的查寻、停车场车辆管理、特殊部门车辆的出入控制

图像处理与模式识别实验手册

图像处理与模式识别 实验手册 统计与计算科学系 2012年2月

实验一Matlab图像处理工具箱 实验目的与要求: 1. 回顾Matlab开发环境; 2. 初步熟悉Matlab图像处理工具箱函数。 作业: 在6.28.22:22/download/图像素材下载图像,熟悉图像工具箱中各命令并能完成matlab的基本编程。 实验二BMP位图的读写 实验目的与要求: 1. 初步熟悉VC++6.0开发环境; 2. 了解VC++6.0环境下BMP图像的读写过程,进而了 解BMP图像的文件结构。 作业: 在 6.28.22:22/download/图像素材下载图像,在VC++6.0中读入BMP图像,熟悉其全部过程,将上面读入的图像进行反色等常用图像处理操作后保存。 实验三图像的几何变换 实验目的与要求:

1. 熟悉Matlab图像处理工具箱中有关几何变换的函数; 2. 通过具体的应用实例进一步理解和熟悉图像的几何变换。 作业: 在6.28.22:22/download/图像素材下载图像,自己编写算法完成图像的平移、旋转、放大和缩小,并与图像工具箱命令结果作比较。 实验四图像的频域变换 实验目的与要求: 1. 通过实例熟悉和理解图像的傅立叶变换和逆变换; 2. 通过实例熟悉和理解图像的离散余弦变换和逆变换。 作业: 在6.28.22:22/download/图像素材下载图像,自己编写算法完成图像的Fourier变换、反变换快速、Fourier变换和其他可分离变换算法,并与图像工具箱命令结果作比较。 1237a63231126edb6f1a103a.html 实验五图像增强与平滑 实验目的与要求: 1. 熟悉图像的直方图,了解图像的直方图均衡化;

模式识别及其在图像处理中的应用

武汉理工大学 模式识别及其在图像处理中的应用 学院(系):自动化学院 课程名称:模式识别原理 专业班级:控制科学与工程1603班 任课教师:张素文 学生姓名:王红刚 2017年1月3日

模式识别及其在图像处理中的应用 摘要:随着计算机和人工智能技术的发展,模式识别在图像处理中的应用日益广泛。综述了模式识别在图像处理中特征提取、主要的识别方法(统计决策法、句法识别、模糊识别、神经网络)及其存在的问题, 并且对近年来模式识别的新进展———支持向量机与仿生模式识别做了分析和总结, 最后讨论了模式识别亟待解决的问题并对其发展进行了展望。 关键词:模式识别;图像处理;特征提取;识别方法 Pattern Recognition and Its Application in Image Processing Abstract:With the development of computer and artificial intelli-gence , pattern recognition is w idely used in the image processing in-creasingly .T he feature extraction and the main methods of pattern recognition in the image processing , w hich include statistical deci-sion, structural method , fuzzy method , artificial neural netw ork aresummarized.T he support vector and bionic pattern recognition w hich are the new developments of the pattern recognition are also analyzed .At last, the problems to be solved and development trends are discussed. Key words:pattern recognition ;image processing ;feature extrac-tion;recognition methods

数字图像处理知识点总结

数字图像处理知识点总结 第一章导论 1.图像:对客观对象的一种相似性的生动性的描述或写真。 2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段), 按空间坐标和亮度的连续性(模拟和数字)。 3.图像处理:对图像进行一系列操作,以到达预期目的的技术。 4.图像处理三个层次:狭义图像处理、图像分析和图像理解。 5.图像处理五个模块:采集、显示、存储、通信、处理和分析。 第二章数字图像处理的基本概念 6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0

图像识别技术和图像处理技术

摘要 本文对图形图像处理系统的发展现状和所采用的主要技术进行了详细分析,确定了相应的结构和主要功能,以及实际开发中所采取的技术。系统在Windows XP平台下实现,本课题是采用Visual C++作为编程工具,采用面向对象的程序设计技术实现一个图形绘制和图像处理的应用软件。主要工作分为三类,包括基本图形绘制与编辑、简单的图像处理、图像格式的转换。图形方面主要是设计图形基类,以及继承图形基类的具体图形类。通过对独立功能的封装,可以为今后需要的图形图像的应用奠定基础。系统的优点有:充分体现了面向对象的设计思想,充分运用了C++的特性,比如封装、多态、继承。程序结构清晰,可读性好,程序中做了充分的注释。图形绘制部分避免了传统的switch case的繁琐结构。容易扩充和移植。 最后,对系统进行测试表明,系统功能达到了预期的要求,界面友好,操作简便,运行也较稳定,是一个完成基本功能的图形图像系统。 总体上,本文介绍了系统开发设计的全过程和设计过程中部分代码,也对系统测试的过程进行简单描述,同时对系统中采用的关键技术也作了一些必要的说明,对图像变换的基本原理,图像处理的基本原理和各种图像格式做了详细的阐述。 关键词:图形;图像;多态;继承

Abstract This article has carried on the detailed analysis about graph image processing system development and using of the key technology,identify the corresponding structure and central function, as well as the system adopts technology in the actual development. The system realizes under the Windows XP platform, the topic use Visual C++ as a programming tool, use object-oriented programming techniques to achieve a graphic and image processing software. Major work is divided into three categories, basic drawing and editing graphics, simple image processing, and image format conversion. The graph aspect is designs the graph base class , as well as inherits the graph bas e class’s specific graph class. Through independent function's encapsulation, for the future’s needs of the graphic images lays the foundation. The system merit has: the object-oriented design’s thought application of the c++ properties, for example encapsulation, pol ymorphism, and inheritance. Program’s structure is clear, good readability, codes has the full annotation in the program. The graph plan’s part has avoided complicated structure of the traditional switch case. Easy expansion and transplantation. Finally, system’s testing shows, s ystem’s functions achieve the expected demand, friendly interface, and the operation is simple, also a much stable operation, it has basic functions of the graphic image system. As a whole, this paper describes the system design process and part of the process of designing code, also carries on the simple description to the system test process, meanwhile it made some necessary explanations about key technology in the system, it made the detailed description to image transform of the basic

相关文档
最新文档