高温氧探头使用说明

高温氧探头使用说明
高温氧探头使用说明

请用户仔细阅读说明书后再使用高温氧探头

一、概述

高温氧探头是指使用温度在1000℃——1700℃范围内的测氧传感器。主要是使用在玻璃炉窑,特种陶瓷炉窑,特种钢轧钢炉,真空炉测氧以及其他高温测氧场合。

其他特点是:

⑴使用进口焊接式氧化锆传感器,具有良好的密性。热震性和机械性能。

⑵由于使用温度高,外面的保护管使用刚玉管(一般氧探头使用高温合金管)

⑶内外电极采用比较粗的铂金丝来代替镍洛合金丝和管。所以生产成本比较高。所以高温氧探头的价格要比一般氧探头高得多。

⑷一般氧探头由于合金管的热胀冷缩,为了保证传感器的良好电气接触性,传感器在弹簧的推力下,可作数毫米的移动,移动间隙可用真空脂或硅橡胶圈密封。在一般渗碳炉中完全可以实现密封。而在真空炉中则会发生严重渗漏。高温氧探头是完全气密的,又可以在1200℃以上的温度中使用,可以适用于真空炉。

(5)高温氧探头有A,B两种。

A:只有一个气路,也就是参比气路(空气含氧量20.9%)

B:有两个气路

(1)参比气路(空气-含氧量20.9%)

(2)标准气路(通入标准气对氧探头进行校对)

标准气路相当于一般氧探头的自动除碳气路,由于高温氧探头使用温度很高,如果通入空气燃后温度猛然升高会造成刚玉管和传感器的损坏。如果通入1%氧含量的标准气,和1PPM 氧含量(百万分之一)的标准气,可以对测氧仪数据进行校正。

一般在工业现场用的高温氧探头都采用A型,因为现场采用标准气校正仪表十分困难。因为现场很难提供合格的标准气。现场操作常常采用一根标准氧探头来校队仪表,我们认为标准氧探头是基准,其他氧探头都采用标准氧探头来校队仪表。过程是这样的,把要校正的氧探头卸下来,把标准氧探头装上去等信号稳定后就可以对仪表进行校正,

只有在特定条件下可以采用B型氧探头,如实验等。

二.工作原理

焊接时的氧化锆传感器,氧化锆内外两侧分别处在两种不同的气氛中,管子内部通的是参比气(空气含氧量为20.9%)管子外部是放置在炉窑气氛中。当温度低于750℃时氧化锆内阻为无限大,探头开路,仪表上显示的数据无意义。当温度超过750℃时,氧化锆成为固体电解质电池,由于锆头内外侧氧分压不同,在内外电极上产生浓差电势E,E的大于符合Nernst 方程

E=0.215×T×Ln(P01/P02)=0.215×T×Ln(0.2095/P02)

其中:E为浓差电势(mV);T为氧化锆温度(K°),

P01为参比气(空气)中的氧分压。(0.2095)

P02为炉内气氛中的氧分压;0.2015为热力学常数(mV)

测量浓差电势E(氧势)及温度T,可以通过公示(1)计算出炉内气氛中的氧分压(即氧的浓度)。

特别要说明的是用高温氧探头来测控炉气中的含氧量时一般是为了解决氧化问题。再这样的情况下不建议用户直接控制含氧量方法,用仪表来测控氧势往往更加合理,控制精度也是更高。只要知道氧探头的氧势及温度,就可以通过仪表及查附表(氧势,温度,氧分压对照表)知道炉内的含氧量。

三.主要技术参数

(1)使用温度范围1000℃-1700℃

(2)测氧范围21%-10-24

(3)响应时间小于1秒

(4)1000℃时新探头内阻小雨1K

(5)新探头之间毫伏数偏差小于3mV(1000℃以上)

(6)参比气流量50-300ml/min

(7)使用寿命大于12个月

四.安装

1.高温氧探头必须正确安装才能测量到真实的氧势(含氧量),一般要求探头插入炉膛内80-100mm,用户在选用氧探头时要根据实际情况来选择氧探头的长度及直径(粗细)。炉子产生厂家在设计炉子时应考虑氧探头的安装位置及使用探头的长度。

2.高温氧探头的保护管是刚玉管,不同于一般氧探头的耐高温合金管。其优点是不会弯曲形变,缺点是装卸时容易断裂。所以安装氧探头的管道必须选用耐高温的陶瓷材料,遭高温情况下不会形变,而且尺寸应该宽松一些,这样在拆卸杨探头时刚玉管和传感器不容易断裂。

3.探头带有1英寸(或3/4)NPT管螺纹安装接头,可以与炉窖的安装实现良好的对接,调整探头插入长度后拧紧固定螺母,探头就固定了。

4.探头的电气连接采用带自锁功能的探头,一般插头输出两根线,一根是氧电势的正极(+),另一根是负极(—)。插头连接线应采用屏蔽导线防干扰。插头插入后一定要检查是否自锁,否则容易造成接触不良,信号跳动。电器插头时间长了及时更换,旧插头插在新探头上常常会信号不正常,所以更换新探头时一定要更换新插头。

5.参比气一般由维护依提供,维护仪的安装位置与探头的距离一般是这样考虑的,如果用软管连接一般要求小于3米,如果采用铜管连接一般要求小于20米。

五.探头的型号

1.HT900 澳大利亚原装进口直径:16mm 长度:900mm

安装螺母:3/4”

2.HT800 澳大利亚原装进口直径:16mm 长度:800mm

安装螺母:3/4”

3.BBCC-HT900 澳大利亚直径:19mm 长度:900mm

安装螺母:1”

4.3.BBCC-HT800 澳大利亚直径:19mm 长度:800mm

安装螺母:1”

特殊尺寸可根据用户需要定制。

六.注意事项

1.高温氧探头的核心部件及保护套管都是陶瓷材料,使用时应该尽量避免骤冷骤热,防止激烈的震动及碰撞。

2.探头应在炉子冷却时装卸,如果必须在高温下装卸,必须慢慢插入或者慢慢拔出,一般要求15分钟至30分钟时间。

3.通入参比气的容量一般在150ml/min-200ml/min,不得超过300ml/min,否则容易造成瓷管爆裂,应尽可能采用微量气泵作为气源并用小流量计限流。

4.保持参比气路的通畅,参比气路发生泄漏或者堵塞时都会造成信号明显下降,短的气路对维修带来极大的方便。

5.保持探头电路连接良好,防止短路、短路及接触不良。每次更换新探头时都要及时更换新插头,连接线要采用屏蔽导线防止干扰,还要注意高温烤焦导线引起漏电等。

6.结碳和粉尘堆积是造成信号失真的主要原因,当氧化锆传感器上结满碳和粉尘后,就相当于给眼睛蒙住了,信号当然要失真。具体处理方法最好是给氧探头装一个防尘罩,过一段时间更换一下,其次是采取措施减少炉内的烟尘和粉尘,采用这两种方法都能极大的延长探头的使用寿命。

7.手工除碳,手工除尘,就是把氧探头从炉子上卸下来用手工方式把堆积在氧化锆上的粉尘除去,需要指出的是非常仔细和小心,不要损坏探头。特别是要把氧化锆正面约直径为5mm 的圆形面上清除干净。

8.氧探头的安装孔必须留有做够的空间,保证氧探头能方便装卸,如果孔太小,装卸时往往会咬死。一不当心探头就会损坏。如果缝隙较大,中间可以垫一些隔热材料。

9.用户在任何情况下都不要自己拆卸氧探头,否则会造成无可挽救的损失。

10.炉子本身的故障如漏气、漏水、管道堵塞,风扇异常都会造成信号失真,只要排除这些故障就可以恢复正常。

七质量保证期

高温氧探头的质量保质期为一年,时间从出场日期算起,在质量保证期内对非人为因素造成的损坏实行保修。

警告:请用户注意本公司对以下几种情况不实行保修。

(1)参比气不用流量计限流或使用大流量气泵作为气源。

(2)炉子隔热不良且探头安装不当,探头外面的头部温度超过100摄氏度造成头部烧损。

(3)探头从炉子上卸下来时造成探头断裂。

(4)用户拆卸过的氧探头。

(5)其他明显的人为损坏。

探头重要参数详解

探头重要参数详解 1探头带宽同示波器带宽定义一样,探头带宽的定义也是正弦波经过该探头后幅值下降到-3dB 的频率点,选择探头带宽和选择示波器带宽方法也一样,探头带宽应该和根据待测信号所选的示波器带宽相匹配。 2探头负载之输入阻抗探头输入阻抗相当于在被测电路上并联了一个电阻,对被测信号有分压和增加负载的作用,选择不当会影响被测信号的幅度和直流偏置。另外还需要注意输入阻抗会随着频率的增加而下降。3探头负载之输入电容探头输入电容相当于在被测电路上并联了一个电容,对被测信号有滤波的作用,影响被测信号的上升下降时间测量结果以及传输延迟,通常输入电容是越小越好。4探头衰减比由于示波器或者探头内部电路耐压限制,很多探头在测量信号时先把信号等比例衰减到耐压范围内,示波器显示波形时再同比例放大信号,这个比例系数称为探头的衰减比,高的探头衰减比能够提高探头的最大可测电压,但是同时也会给测量结果带来更多的噪声。因此,衰减比同时决定着测试的最高灵敏度,比如是德科技示波器拥有最高灵敏度1mV/div,使用1:1探头时,能够达到最大灵敏度1mV/div,但是在使用10:1探头时,灵敏度就会降低10倍,变为10mV/div. 在选择探头时,耐压,带宽等规格满足测试要求的情况下应选择

最小的衰减比。5输入动态范围输入动态范围是指探头所能测试的在示波器屏幕中心线上下的电压范围,比如±2.5V动态输入范围的探头,只能测量示波器屏幕中心线上下2.5V 范围内的电压,如果输入信号波动超出这个范围,反映在测量波形上来说就是波形被削波,测量的幅度偏小。6偏置范围±2.5V输入动态范围,并不代表探头只能测试小于2.5V 的信号,因为探头还有一个指标叫偏置能力,偏置能力是指能够把0V电压基准线调整到和示波器屏幕中心线电压差的能力,根据信号的直流分量设置合适偏置,可以把具有直流分量的动态信号调整到示波器屏幕中心线附近,以满足探头动态输入范围的要求;下面图片是使用±2.5V动态输入范围的探头1130A(通道一,黄色),与BNC线缆同时测量一个含有4V直流分量2V电压peak的正弦波信号所显示的结果:▲ 1130A 探头不设置偏置,因为信号(通道一,黄色)超出示波器屏幕中心线上2.5V,因此信号失真,远小于BNC 测试结果(通道三,蓝色) ▲ 根据信号直流分量设置通道一偏置,因为通道一信号没有超出示波器屏幕中心线上下2.5V范围,因此信号没有失真,测试结果和BNC通道(通道三,蓝色)一致。

氧探头测量碳势原理

氧势法控制碳势原理 氧势法是利用ZrO2固体电解质,铂金丝氧电极组成的氧浓差电池(即氧探头),在高温下输出电压与炉气氧分压有一定的函数关系,间接控制炉气的碳势,氮势的方法。 1。氧势法控制碳势的原理: 在可控渗碳气氛中,微量氧有以下的平衡关系: []21 2CO C O =+ (1-1) []221 2CO C O =+ (1-2) 2221 2 H O H O =+ (1-3) 平衡时, 式(1-1)的平衡常数表达式: 2 12(11)o c CO p K a P -= g (1-3) 所以:2 (11)1 2CO c o P a K p -=g (1-4) 式中 (11)K -——(1-1)式的平衡常数,是温度的函数 CO P ,2O P ——炉气中的CO,O2的分压 c a ——碳在奥氏体钢中的活度,其数值可近似用/c p sat a C C =来表示。 sat C ——奥氏体钢中饱和碳浓度 p C ——炉气碳势 T ——绝对温度K 式(1-3),(1-4)有以下关系: 2 (11)1/2 CO P sat O P C K C P -= (1-5) (11)5870 lg 4.539K T --= - (1-6) 由上式公式可知,在一定温度下,碳势p C 可用21/2 /CO O P P 比值求得,这就是通过测试和控制21/2/CO O P P 的比值来控制碳势的理论基础。当炉气中CO P 变化不大时,可认为是一种常量时,碳势就可以通过测量炉气中的氧分压来控制碳势,这就是氧势法理论基础。

当式(1-2),(1-3)反应达到平衡时,则: 2 2 1 2(12)CO o CO p p K P -= g (1-7) 22 212(13)H o H O p p K P -= g (1-8) 所以: 22 1/2 (12)CO O CO P P K P -= (1-9) 22 2 1/2(13)H O O H P P K P -= (1-10) (12)14740 lg 4.521K T --= + (1-11) (13)12914 lg 2.871K T --=+ (1-12) 将(1-9),(1-10)两边取对数的下式: 2229480 lg 2lg 9.042CO O CO P P P T =--+ (1-13) 22225828 lg 2lg 5.742H O H O P P P T =-- + (1-14) 由式(1-13),(1-14)可见,当温度一定时,2O P 与2/CO CO P P 或22/H H O P P 有一定的函数关系。因此,用氧势法控制碳势有可能比红外线CO2法或露点法(2H O P )更为合理,更为准确。 根据氧势定义,氧势与氧分压得关系由下式表示: 22ln O O RT P μ= (1-15) 即: 222.303lg O O RT P μ= (1-16) 式中: R ——气体常数, 8.314J/(mol*K) 2O μ——氧势 当氧势单位为KJ/mol 时,其表达式为: 220.019159lg O O T P μ= (KJ/mol ) (1-17)

利用数字示波器测试开关电源的方法

利用数字示波器测试开关电源的方法 从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。 过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。 电源设计问题及其测量需求 理想情况下,每部电源都应该像为它设计的数学模型那样地工作。但在现实世界中,元器件是有缺陷的,负载会变化,供电电源可能失真,环境变化会改变性能。而且,不断变化的性能和成本要求也使电源设计更加复杂。考虑这些问题: 电源在额定功率之外能维持多少瓦的功率?能持续多长时间?电源散发多少热量?过热时会怎样?它需要多少冷却气流?负载电流大幅增加时会怎样?设备能保持额定输出电压吗?电源如何应对输出端的完全短路?电源的输入电压变化时会怎样? 设计人员需要研制占用空间更少、降低热量、缩减制造成本、满足更严格的EMI/EMC标准的电源。只有一套严格的测量体系才能让工程师达到这些目标。 示波器和电源测量 对那些习惯于用示波器进行高带宽测量的人来说,电源测量可能很简单,因为其频率相对较低。实际上,电源测量中也有很多高速电路设计师从来不必面对的挑战。 整个开关设备的电压可能很高,而且是“浮动的”,也就是说,不接地。信号的脉冲宽度、周期、频率和占空比都会变化。必须如实捕获并分析波形,发现波形的异常。这对示波器的要求是苛刻的。多种探头——同时需要单端探头、差分探头以及电流探头。仪器必须有较大的存储器,以提供长时间低频采集结果的记录空间。并且可能要求在一次采集中捕获幅度相差很大的不同信号。 开关电源基础 大多数现代系统中主流的直流电源体系结构是开关电源(SMPS),它因为能够有效地应对变化负载而众所周知。典型SMPS的电能信号路径包括无源器件、有源器件和磁性元件。SMPS尽可能少地使用损耗性元器件(如电阻和线性晶体管),而主要使用(理想情况下)无损耗的元器件:开关晶体管、电容和磁性元件。

E+H溶解氧DO探头说明书

/ COM2x3W COS31 -COM2x3D COS41 EMC Services Pressure Flow Temperature Liquid Analysis Registration System Components Level Solutions

: Liquisys M COM2x3 Liquisys M COM223/253 COA250CYA611COA451 CYH101 VS Chemclean 1 1CYA611 S 2V 3Liquisys M COM253 4 5 6COS61

[mg/l%SAT hPa] [,F] Liquisys M COM223/253 0...20mg/l0...20ppm) 0...200%SAT 0...400hPa -20...+60-4140F -20...+70-4...158F95%, IP68 -5...+5023...122F 10bar145psi t:60s 90 2% 0.5% 1()

TOP68 186/7.32 220/8.66 186/7.32 220/8.66 7m 22.97ft 0.7kg 1.5lb.15m 49.22ft 1.1kg 2.4lb.TOP680.3kg 0.7lb. 1.4571 AISI 316Ti POM G1 SXP 100m/328ft R 485 S 7 4

EMC EN613261997/A11998

COA110 PVC PUR SS1.4571(A1SI316Ti) (TI035C/07/en) W Dipfit CYA611 TI166C/07/en COA250 PVC TI111C/07/en Cleanfit COA451 TI368C107/en CYH101 PH ORP T1092C/07/en OMK -50004124 VS 7 IP65 50001054

探头接线方法

探头接线方法 Renishaw产品安装、使用、维护一、产品名称:Omp40-2测头,OMI接收器 二、硬件安装 2.1测头组件安装和模式设定 1)测针安装 用配件中(如图所示中的工具)旋紧探针

注意:安装的时候不要用手去拧压白色陶瓷保护杆 2)电池安装 用硬币旋开装置,放入电池旋紧 3)工件测头与刀柄及探针的组装及偏心找正

1.将测头锥尾部插入专用刀柄夹紧孔中: 2.首先初步拧紧A,B顶丝 3.将电池和探针装到测头上 4.装上拉钉并拧紧 5.将测头装入机床的主轴上 6.使用千分表及内六角扳手通过A,B顶丝大致调整探针对主轴的偏心:具体就是将千分表表针接触探针圆球侧面,用手旋转测头,观察偏心情况,使用A螺钉调整偏心,大致到0.005以内后,先后最终拧紧B,A顶丝.

4)测头模式设定 步骤:先取出电池,超过5秒装入,用手按住测针,等待测头灯闪烁(测头先会灯闪显示原有的设定模式)等待5次红灯闪烁后,既进入重新设定模式,在第一组模式(红红X)闪烁的时候松开原先按住的测针。如图所示,模式一共有4层,每层各有选项,在同一层中选择的时候只要快速拨动以下测针,要进入下一层模式需要按住测针一段时间等待下一层模式的灯闪后在松开,然后快速拨动探针就可以选择模式,以此循环,完成设定后,等待测头自动关闭即可。 2.2接收器组件安装和接线

1)硬件安装 注意:一定要在电缆线外套上保护管,安装时将蓝色塑料圈套在保护管口,将导管终止块旋入保护管,在紧固螺帽。 2)接线 FANUC机床 Hardinge机床

注意:按图示接完线后,请将多余的线用胶布包裹起来,或者将裸露在外的金属剪去避免干扰。 三、参数修改 FANUC机床参数修改 1.MDI模式下将写入参数打开 2.修改K17第2位为1,K23第0位为1 3.修改机床参数6202第1位为1,3202的NE9位改为1(测头程序输入完成后再改回来) Hardinge机床参数修改 1. 按下E-STOP 按扭 2. 菜单选择 3. 启动 4. 密码 5. 输入机床密码

宽带氧传感器的工作原理和常见故障的检查方法

宽带氧传感器的工作原理和常见故障的检查方法 发布时间: 2010-4-29 15:52 | 编辑: 汽车乐https://www.360docs.net/doc/5b12523608.html, | 查看: 1067次来源: 网络 随着汽车尾气排放限值要求的不断提高,传统的开关型氧传感器已不能满足需要,取而代之的是控制精度更高的线性宽带氧传感器(Universal Exhaust Gas Oxygen Sensor,简称UEGO)。氧传感器闭环控制调节发动机燃烧室内的混合汽,以实现最佳的三元催化转换器运行,从而满足排放限值的要求。为此,氧传感器闭环控制的任务是确保废气空燃比始终处于催化转换器的最佳工作点。氧传感器闭环控制只改变所要喷射的燃油质量、燃烧室内的空气质量,也就是说汽缸充气和点火正时均不受影响,因此氧传感器是用来帮助确定废气中氧含量而反映实际工况中的空燃比。控制单元内的氧传感器闭环控制必须通过所提供的信号来对混合汽的成分做出相应调整,控制过程很大程度上取决于氧传感器的属性。 宽带氧传感器能够提供准确的空燃比反馈信号给ECU,从而ECU精确地控制喷油时间,使汽缸内混合汽浓度始终保持理论空燃比值。宽带氧传感器的使用提高了ECU的控制精度,最大限度地发挥了三元催化器的作用,优化了发动机的性能,并可节省大约15%的燃油消耗,更加有效地降低了有害气体的排放。 宽带氧传感器通过检测发动机尾气排放中的氧含量,并向电子控制单元(ECU)输送相应的电压信号,反映空气燃油混合比的稀浓。ECU根据氧传感器传送的实际混合汽浓稀反馈信号而相应调节喷油脉宽,使发动机运行在最佳空燃比(λ=1)状态,从而为催化转换器的尾气处理创造理想的条件。如果混合汽太浓(λ<1),必须减少喷油量,如果混合汽太稀(λ>1),则要增加喷油量。 现代汽车发动机管理系统中,安装在催化转换器前的宽带氧传感器,称作控制氧传感器,安装在三元催化器的上游位置,监测尾气中氧的浓度,并将信息反馈给控制单元,用于调节喷油量,从而实现发动机的闭环控制,改善发动机的燃烧性能并减少有害气体的排放。根据OBD-Ⅱ规定,现代汽车必须对三元催化转换器效率进行持续监控,为此配有诊断氧传感器,安装在催化转换器的下游端。通过比较催化转换器上游和下游的传感器信号,可以确定催化转换器的效率。主要原因是由于控制氧传感器因老化,其向ECU输送的电压信号曲线会发生偏移,诊断氧传感器会检测控制氧传感器是否仍然处于最佳工作状态,然后ECU 就可计算出矫正偏移所需的补偿量。 由于老化而造成工作性能变差的氧传感器,也会影响燃油经济性的指标。老化的氧传感器提供给DME的混合汽浓度信号存在误差,将使DME控制单元在可燃混合汽形成的控制产生偏差,而造成燃油消耗的增加。表1是博世公司所做的氧传感器对燃油经济性影响的明细表。 一、宽带型氧传感器的分类及基本构造 根据氧传感器的制造材料不同,宽带型氧传感器可分为以ZrO2为基体的固化电解质型和利用氧化物半导体电阻变化型两大类;根据传感器的结构不同,宽带型氧传感又可分为电池型、临界电流型及泵电池型。 宽带型氧传感器的基本控制原理就是以普通氧化锆型氧传感器为基础扩展而来。氧化锆型氧传感器有一特性,即当氧离子移动时会产生电动势。反之,若将电动势加在氧化锆组件上,即会造成氧离子的移动。根据此原理即可由发动机控制单元控制所想要的比例值。 构成宽带型氧传感器的组件有两个部分:一部分为感应室,另一部分是泵氧元。 感应室的一面与大气接触,而另一面是测试腔,通过扩散孔与排气接触,与普通氧化锆传感器一样,由于感应室两侧的氧含量不同而产生一个电动势。一般的氧化锆传感器将

带加热氧探头使用说明书

目录(页) 探头的结构和工作原理: 氧化锆探头带加热器电气连线图: 用氧化锆探头在720 度C 时氧电势值和氧%值 氧化锆探头的实际工作情况 氧化锆探头的自动清尘和手动清尘 用标准气体校正氧化锆探头 警告: 1、氧化锆探头的加热器是用高压电加热,维修测量不当会对相关人员造成生命危险,千万注意安全,一般需断电后测量.探头的接地线必须接地可靠.操作人员必须是电气维护有牌照的专业人员.由操作人 员不当所发生的任何结果由本人或用户自己负责. 2、燃烧控制系统安装不当时有可能发生危险,燃烧缺氧时特别要当心一氧化碳CO,当CO值大于400PPM时会置人于死地.所有安装人员必须按图要求安装和调整.如有需要必须安装相应的报警装置.任何不当使用所产生的结果由用户自己负责. 3、因为探头的加热器会产生高于700 度C 的高温,当气体燃料泄漏时有可能会产生爆炸,所以探头必须在炉火点燃后再接通加热器,氧气分析仪有相关的加热器接通控制开关,安装人员和使用者必须清楚使用条件.任何不当使用所产生的结果由用户自己负责. 4、在测量低氧燃料时要特别注意仪器和探头的输出信号和报警信号,当燃烧不充分时有可能使探头的测量值产生偏差,如果有疑问必须与相关的专业人员询问,如果用户不当使用所产生的任何结果由用户 自己负责. 5、当测量部位的压力不是大气压时会对测量的氧量值产生相应的偏差,氧气分析仪可以给予相应的补赏,但是用户设定时必须正确,不正确的设定会产生错误的测量结果.任何不当设定使用所产生的结果 由用户自己负责. 6、探头和仪器使用在防爆区内时要按防爆具体要求配置防爆箱任何错误配置的防爆箱所产生的结果由用户自己负责.防爆探头的加热器必须在炉火燃烧后接通加热. 氧化锆探头(氧传感器)使用说明书 探头的结构和工作原理: 氧化锆探头或称氧传感器,氧电池是利用氧化锆在高温时(大于650C度时) 内外两侧不同的氧浓度所产生的氧电势来测量被测部位的氧含量。探头的外部用不锈钢外壳或合金钢外壳制成,内有合金钢加热器,氧化锆管,热电偶,导线,接线板,盒组成,见示意图. 探头的氧化锆管通过相应的密封装置使的氧化锆管的内,外气体绝缘.当氧化锆部的温度通过加热器或外部温度达到650℃ 以上后.内外两侧的不同的氧浓度会在氧化锆的表面产生相应的电动势.通过相应的引出导线可测到该电势,并通过相应的热电偶可测到该部的温度值.当知道氧化锆管里部和外部两边的氧浓度时,可按氧化锆电势计算公式计算出相应的氧电势.公式如下: E (millivolts) =RT/(4E)* log e((PO2)INSIDE/(PO2)OUTSIDE) 其中E 是氧电势, R 是气体常数,T 是绝对温度值, PO2 INSIDE是氧在氧化锆管里部的气压值,PO2 OUTSIDE 是氧在氧化锆

氧传感器的功能及工作原理全解

氧传感器的功能及工作原理 氧传感器的功能 测定发动机排气中氧气含量,确定汽油与空气是否完全燃烧。电子控制器根据这一信息实现以过量空气系数λ=1为目标的闭环控制,以确保三元催化转化器对排气中HC、CO和NOX三种污染物都有最大的转化效率。 工作原理 氧传感器的工作原理与干电池相似,传感器中的氧化锆元素起类似电解液的作用,其基本工作原理是:在一定条件下(高温和铂催化),利用氧化锆骨外两侧的氧浓度差,产生电位差,且浓度差越大,电位差越大。大气中氧的含量为21%,浓混合气燃烧后的废气实际上不含氧,稀混合气燃烧后生成的废气或因缺火产生的废气中含有较多的氧,但仍比大气中的氧少得多。 特点 抗铅;较少依赖于排气温度;起动后迅速进入闭环控制。 氧传感器的常见故障 氧传感器中毒 氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的 汽车,即使是新的氧传感器,也只能工作几千公里。如果只是轻微的铅中毒,接着使 用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。但往往由于 过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时 就只能更换了。 积碳 由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或 尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不能及时地修正空燃比。产生积碳,主要表现为油耗上升,排放浓度明显增加。此时,若将沉积物清除,就会恢复正常工作。 氧传感器陶瓷碎裂 氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。因此,处理时要特别小心,发现问题及时更换。 加热器电阻丝烧断

频谱分析仪的使用方法

电磁干扰测量与诊断 当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。 B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。 C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。 测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。 对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。 1.1 频谱分析仪的原理 频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图

氧分析仪说明书

注意事项 !使用及保存注意事项 ●仪器在使用过程中不可打开外壳,避免发生烫伤及触电危险。 ●仪器在使用、存放、及运输过程中应避免强烈震动,以免损坏氧化锆 传感器。 ●仪器在存放期间应保持清洁,要防止仪器受潮,进排气嘴应加盖防尘 帽,以防落入异物及灰尘。 请严格遵守注意事项,否则将造成人为测量误差或重大事故!!! 服务与保证

仪器自出厂之日起,仪器的保修期限为一年。凡在此期限内,工作人员在正常操作的情况下,仪器出现的软件或硬件的故障,我公司均负责免费维修及更换零部件。若由于工作人员违反操作规程、不严格按照使用说明操作仪器以及由于不可抗拒的因素而对仪器造成的损坏,我公司不负责免费维修。如需维修,我公司将根据损坏情况适当收取维修成本费用。 如有用户需要,我公司也可指派技术人员进行现场培训。 如果您对本公司的仪器在使用和操作过程中,还有什么疑问及要求请及时与我们联系,以便我们能给您提供更完善的服务。联系方式见封底。 一、概述

该氧分析仪是利用氧化锆氧浓度差电池作为检测传感器的氧量分析仪器。该仪器测控系统采用了最新型的单片机计算与控制系统,LED显示器;具有技术先进、精度高、响应快、性能稳定、功能齐全、操作方便、气体分析过程连续等特点;它不仅可测量锅炉燃烧过程中残余氧量,而且可以用于热力学研究,气体制造厂氧含量的连续监测、均热炉燃烧过程中的控制、化工、冶金、电子工业、医疗等方面的气体中氧含量的检测。 本公司生产的测量氧探头分为中温型、低温型、高温型,其基本参数及使用性能如下表1所示: 二、工作原理 2.1氧化锆原理图

仪器的工作原理如图1.0所示。它主要由气路系统、氧化锆传感器、微机测控系统三部分组成。 图1.0 测量原理框图 2.2氧化锆传感器 氧化锆传感器是由氧化锆陶瓷材料制成的氧浓度差电池,在高温时氧化锆具有氧离子的传导特性,当氧化锆管的两个电极之间的氧分压不同时,氧浓度差电池产生一个与氧浓度成比例的电势,电势大小按下式计算: E = ln 式中:R ——理想气体常数 F ——法拉第常数 T ——氧化锆加热炉绝对温度(K) n——电极反应的电子交换数目 P 0 ——空气中氧分压(20.9%) P ——样气中的氧分压 通过测量氧浓度差电池的电动势E 与温度T ,就可以计算出样气中的氧分压,即氧含量。浓度差电池的各种干扰电势,如本底电势、渗透效应、 RT 2n P 0 P

关于探头设置使用方法

关于探头设置和使用方法: A: 探头(MP10): 1.设定标准环规坐标 (1)先调校测量头,使径向跳动在0.005MM以内,具体校测方法 打开电池盖里的四个螺丝。 (2)调校测量头中心与标准环规中心重合。 (3) 手摇使测量头伸入环规内5-7MM (4)在MDI模式下执行:CALL OO18 打开MP10 灯会亮 备注:此处在MDI执行:VNCOM[1]=8 用手触摸探头看MSB SENSOR/ON/OFF 会有黄色画面显示。 (5)在AUTO模式下执行:CALL OO21 M02 系统会把当前机械坐标记入机械坐标GAUGING RESULTS 的MSB ZERO ON/OFF 的NO3(VSZO[3]) (6) 在MDI下执行CALL OO19 关闭MP10 2. 设定MP10半径补偿 (1)把测量头伸入标准环规内大约5-7MM左右 (2)AUTO下执行CALL OO18 CALL OO10 PMOD=9(半径补偿模式)PDI=50(标准环规的直径) POVT=3(超行程距离) CALL OO19 M02 执行后,MP10的半径补偿会自动记入GAUGING RESULTS的MSB TOOL ON/OFF项MSB CUTER COMP的NO1-NO4[VSTOD[1]-X VSTOD[2]-[-X] VSTOD[3]-[Y] VSTOD[4]-[-Y] VSTOD[5]-[-Z] 3 设定MP10长度补偿 (1))找一个垂直Z轴的基准面,可以用标准棒(长约200mm),注意:如果用绝对方式演算的话就是:199.997 增量方式:0 把其值记入G15H1 (2)手摇使测量头到基准面大约10mm左右 (3)AUTO模式下执行: CALL OO18 M1 CALL OO10 PMOD=8 PEI=0 PLI=270(探头的长度) CALL OO19 M30 备注:PEI=0指的是被测面在当前坐标的Z值 所测的补偿值在GAUGING RESULTS -MSB TOOL - VSTOH[5]Z PMOD=1 X MODE PMOD=2 Y MODE PMOD=3 Z MODE

氧传感器的功能及工作原理

氧传感器的功能及工作原理 来源:一大把汽车电子圈 氧传感器的功能 测定发动机排气中氧气含量,确定汽油与空气是否完全燃烧。电子控制器根据这一 信息实现以过量空气系数入=1为目标的闭环控制,以确保三元催化转化器对排气中H C、CO 和NOX 三种污染物都有最大的转化效率。 工作原理 氧传感器的工作原理与干电池相似,传感器中的氧化锆元素起类似电解液的作用,其基本工作原理是:在一定条件下(高温和铂催化),利用氧化锆骨外两侧的氧浓度差,产生电位差,且浓度差越大,电位差越大。大气中氧的含量为21% ,浓混合气燃烧后的废气实际上不含氧,稀混合气燃烧后生成的废气或因缺火产生的废气中含有较多的氧,但仍比大气中的氧少得多。 特点 抗铅;较少依赖于排气温度;起动后迅速进入闭环控制。 氧传感器的常见故障 氧传感器中毒 氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。 积碳 由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU 不能及时地修正空燃比。产生积碳,主要表现为油耗上升,排放浓度明显增加。此时,若将沉积物清除,就会恢复正常工作。 氧传感器陶瓷碎裂 氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。因此,处理时要特别小心,发现问题及时更换。 加热器电阻丝烧断 对于加热型氧传感器,如果加热器电阻丝烧蚀,就很难使传感器达到正常的工作温度而失去作用。 氧传感器内部线路断脱

氧传感器技术手册

氧传感器使用说明书 (第一版) 适用零件号:25327985 25359908

1.概述 氧传感器是现代发动机管理系统中必不可少的重要零部件。它是一种利用电化学工作原理发展出来的电器元件。 氧传感器在现代发动机管理系统的配置机构中被用于探测汽车发动机所排出的燃烧废气中氧的含量,借以判定发动机实时燃油供给空气燃料混合比的实际状态,并通过自身产生的电器反应信号反馈给发动机电子控制模块(ECM),以作为系统燃油管理系统的闭环燃油修正补偿控制的重要依据,使燃油管理子系统能够更加精确地控制调整发动机各种工作状态下的空气燃料混合比;并在绝大多数工况下使系统保持在理想空燃比工作状态,以便获得更加优良的汽车排放控制特性和燃油经济性。 氧传感器的输出信号为0 ~ 1V的交变电压信号。传感器可根据发动机所排燃烧气中氧的含量高低自动感应和探测并向发动机电子控制模块输出这一高低变化的电压信号。 现代发动机管理系统采用的氧传感器有两种主要类型:非加热型氧传感器和加热型氧传感器。 装配在发动机排气歧管上的氧传感器,由于可以利用发动机所排出燃烧废气的余热进行快速加热,故可使用价格低廉的非加热型氧传感器;当氧传感器的安装位置受到整车布置限制,氧传感器距离发动机排气歧管出口较远时,由于不能利用发动机燃烧废气对于传感器迅速加热,此时必然需要采用加热式氧传感器。 加热式氧传感器的内部设计有热敏电加热元件,可利用系统供电电压强制使氧传感器加速预热,促使其快速起燃,及早实现系统的闭环燃油管理控制。

2. 工作原理 德尔福公司生产的氧传感器是采用氧化锆元件作为传感器的基础元件。氧化锆元件是一种通体充满无数微孔的陶瓷基础元件外面镀有氧化锆涂层,该涂层外测暴露于发动机燃烧废气之中;涂层的内侧透过含微孔的陶瓷元件与大气相通。集中在氧化锆内外两侧电极之间氧含量的差别形成的微分电压信号。 当氧化锆元件被电流加热或被流经传感器的发动机燃烧废气加热所激活,空气经过通体充满无数微孔的陶瓷基础元件进入氧化锆元件的内电极,而燃烧废气流经氧化锆的外电极。氧离子将从氧化锆内电极向外电极移动,传感器的内外电极之间构成了一个简单的原电池,发动机燃烧废气中氧含量的变化不同在两个电极之间产生不同的输出电压信号。氧传感器将根据发动机燃烧废气中氧离子浓度的高低变化来改变这一输出电压信号的高低。 氧传感器通常的工作表现为在当发动机的工作时空燃比变稀时,排气中氧含量的浓度将会升高,此时,氧传感器的输出电压信号接近 0V;当空燃比变浓时,排气中氧含量的浓度降低,传感器的输出电压将接近 1V。 发动机电子控制模块(ECM)根据这一输入电压信号,配合系统控制逻辑及控制策略,通过响应的传感器和执行器,就可以调整系统输出控制指令,使发动机工作在和保持理想的空燃比燃油供给状态。 氧传感器核心元件允许的最低工作温度为300摄氏度;最高温度一般不超过850摄氏度。具体情况参照实际产品图纸规定的实际数值为准。 氧传感器是闭环燃油管理控制子系统的关键元件。正是由于有了该传感器才使得发动机的空燃比的闭环燃油控制成为可能,从而使系统实现为达到最佳三元催化转换器转化效率所需的理想空燃比的控制目标,实现最佳发动机燃烧控制目的。 3. 结构特征 德尔福公司生产的现代发动机管理系统配套用氧传感器的主要特点为: ?零部件统一设计,全球采购系统可保障全球产品性能的一致性 ?传感器具备防水功能 ?无需空气渗透过滤装置 ?通用化接口结构设计,简便易于替代竞争对手产品 ?大批量生产,大批量产品应用考核,可靠性能优良 ?超强低温适应性能

血氧探头的工作原理

血氧探头定义 血氧探头,全称为血氧饱与度探头(英文SpO2 Sensor/SpO2 Probe),就是指将探头指套固定在病人指端,利用手指作为盛装血红蛋白的透明容器,使用波长660 nm的红光与940 nm的近红外光作为射入光源,测定通过组织床的光传导强度,来计算血红蛋白浓度及血氧饱与度。通过SpO2监护,可以得到SpO2、脉率、脉搏波。应用于各种病人的血氧监护,通常另一端就是接心电监护仪。 血氧饱与度定义 血氧饱与度就是指血液中氧气的最大溶解度,血液中氧气结合主要就是靠血 红蛋白。一般情况下不会发生什么改变,但就是如果在一氧化碳含量较高的环境 下就会发生变化,造成一氧化碳中毒,也就就是煤气中毒,因为一氧化碳与血红蛋 白的亲与性很高,会优先与一氧化碳结合,从而造成血液中氧气含量降低发生危险。正常人体动脉血的血氧饱与度为98% 、静脉血为75%。 一般认为SpO2正常应不低于94%,在94%以下为供氧不足。有学者将 SpO2<90%定为低氧血症的标准,并认为当SpO2高于70%时准确性可达±2%,SpO2低于70%时则可有误差。临床上曾对数例病人的SpO2数值,与动脉血氧饱与度数值进行对照,认为SpO2读数可反映病人的呼吸功能,并在一定程度上*脉血氧的 变化。胸外科术后病人除个别病例临床症状与数值不符需作血气分析外,常规应用脉搏血氧饱与度监测,可为临床观察病情变化提供有意义的指标,避免了病人 反复采血,也减少护士的工作量,值得推广。 血氧探头工作原理 1、功能与原理 脉搏血氧饱与度SpO2指的就是血氧含量与血氧容量的百分比值。SpO2作为一种无创的、反应快速的、安全的、可靠的连续监测指标,已经得到公认。 目前在麻醉、手术以及PACU与ICU中得以广泛使用。根据氧合血红蛋白(HbO2)与还原血红蛋白(Hb)在红光与红外光区域的光谱特性,可知在红光区(600~ 700nm)HbO2与Hb的吸收差别很大,血液的光吸收程度与光散射程度极大地依赖 于血氧饱与度;而在红外光谱区(800~1000nm),则吸收差别较大,血液的光吸收 程度与光散射程度主要与血红蛋白含量有关,所以,HbO2与Hb的含量不同吸收光谱也不同,因此血氧饱与度仪血液导管中的血无论就是动脉血还就是静脉血饱与 度仪均能根据HbO2与Hb的含量准确地反映出血氧饱与度。 血液在波长660nm附近与900nm附近反射之比(ρ660/900)最敏感地反映出 血氧饱与度的变化,临床一般血氧饱与度仪(如泰嘉电子Taijia饱与度仪、脉搏血氧仪)也采用该比值作为变量。在光传导的途径上,除动脉血血红蛋白吸收光外,其她组织(如皮肤、软组织、静脉血与毛细血管血液)也可吸收光。但入射光经过手指或耳垂时,光可被搏动性血液与其她组织同时吸收,但两者吸收的光强度就 是不同的,搏动性动脉血吸收的光强度(AC)随着动脉压力波的变化而改变。而其

氧传感器工作原理

氧探头工作原理 氧探头又称氧化锆浓差电池,它的工作原理(见示意图)是:以高温氧化锆作固体电解质,在高温下若电解质两侧氧浓度不同时,便形成氧浓差电池。浓差电池产生的电势与两侧氧浓度有关,如一侧氧浓度固定,即可通过测量浓差电势来测量另一侧的氧含量。 氧化锆固体电解质是在氧化锆(ZrO2)中掺入一定数量的氧化钙(CaO),经高温焙烧而成。在氧化锆电介质的内外壁上用高温烧结(或压紧)的方法附上不易氧化的多孔性(网状)白金电极和电极(丝)引线。经过上述掺杂和焙烧而成的氧化锆,其晶型为稳定的立方晶体,晶体中部分四价锆离子被二价钙离子所取代而形成氧离子空穴。由于氧离子空穴的存在,在600-1200℃高温下,这种氧化锆材料就成为对氧离子有良好的传导性的固体电解质。在氧化锆两侧氧浓度不等时,浓度大的一侧的氧原子在该侧的表面电极上结合两个电子形成氧离子(1/2 O2+2e- - O-),然后通过氧化锆材料晶格中的氧离子空穴向氧浓度低的一侧运动,当到达低浓度一侧时,便在该侧电极上释放两个电子并结合成氧分子放出(O- -1/2 O2+2e-),于是在高氧侧和低氧侧电极上分别造成正负电荷积累,产生电势,此电势阻碍这种迁移的进一步进行,直至达到平衡为止,从而形成氧浓差电池。 氧探头在可空气氛加热炉中使用的药店及常见故障 1.在可控气氛加热炉中氧探头的使用要点 (1)氧探头属于一种高精度、高灵敏的传感器,其核心元件氧化锆头是球状或管状结构陶瓷件,很容易受冲击破碎。在新的氧探头使用前,应仔细检查氧探头是否受过碰撞,氧探头是否有弯曲,氧探头外管有无裂纹,探头部位氧化锆是否有裂纹或破裂、或有陶瓷装碎片;轻轻摇动氧探头,听听氧探头内部是否有响声。如有响声,可能是氧探头的氧化锆已经破裂。 (2)氧探头在安装时要注意安装位置插入炉膛50-100mm,安装在炉气较稳定的区域内。不要靠近各种渗剂的滴注口、分扇附近;不要安装在炉内口、角落、震动大的部位。如安装在井式炉炉盖等处时,应在氧探头前端家保护套并注意气氛流通良好。 (3)注意氧探头安装座与炉壳保持良好的密封性,不要漏气。氧探头联线使用屏蔽信号线,防止信号干扰。 (4)氧探头最好在室温装入炉内,随炉升温到使用温度,避免急冷、急热。安装时注意轻拿轻放。如遇特殊情况,在高温状态下需要拔出或插入氧探头时,拔出或插入速度控制在30mm/min以内,并且在氧探头拔出加热炉时,应停供可燃气氛,降低炉压,以避免高温氧探头拔出引燃气氛被火苗烫伤。 (5)初次使用氧探头,需对氧探头进行预渗碳8-24h,建议不要在新炉刚开始预渗碳时就安装氧探头。因为在新炉预渗碳时,炉中可能还存在较多水分等杂质,气氛不稳定,会对氧探头的使用造成不良影响;一般在新加热炉烘炉结束,用甲醇预渗碳24h以上再安装氧探

氧探头说明书

目录 (1) 前言 (2) 产品型号简介 (2) 技术指标 (2) 结构特点............................2 (3) 基本工作原理 (3) 氧探头的安装........................3 (4) 氧探头的维护 (5) 氧探头故障分析及维修................5 (6) 新装氧探头的调校 (6) 氧探头的质量保证 (7) 碳势毫伏值与温度对照表一 (8) 碳势毫伏值与温度对照表二 (9) 碳势露点与温度对照表....................10氧探头使用目录1-10页 1

感谢您在热处理渗碳工艺自动控制产品中选择SMEIM 氧探头。 SMEIM 氧探头在国内具有领先的制造技术和优良的品质管理保证,因此能适合各种渗碳气氛、工艺以及应用环境。 SMEIM 氧探头具有多项专利技术,独特的测量电极结构、整体基座和漂亮的外观造型,由表及里的体现出其优秀的品质。 SMEIM 氧探头可以确保气氛控制的可靠性、重现性和控制精度。 SMEIM 氧探头的品种和规格的完备,因此更能适应各种气氛和各种炉型控制设备的要求。 FRQ 型,球型锆头结构。 举例:FRQ5256 外电极外径Φ25mm ,长度600mm ,无热电偶; FRH 型,进口焊接锆管。 举例:FRH7258K 外电极外径Φ25mm ,长度800mm ,装K 型偶;产品型号简介 碳势测量范围:0.01%~1.60%Cp ; 使用温度范围:700~1100o C 氧势输出精度:±1mv ; 输出范围:0~1250mv ; 外电极直径:Φ25mm 、Φ22mm ; 安装方式:1"和3/4"管螺纹;技术指标前言 FRQ 型氧探头的关键元件是一个精度高达0.01μ的氧化锆球。电极环行的刃 口保证了与锆球接触的良好,锆球与磁管经过精密研磨实现相对高强度密封。 密封强度决定氧探头的质量。结构特点 2氧化锆球清洗气路 参比气路 外电极内电极磁管

智能氧化锆氧量分析仪说明书

智能氧化锆氧量分析仪 使用说明书

一、用途 SK-SZO系列氧化锆氧量分析仪可对锅炉、窑炉、加热炉等燃烧设备在燃烧过程中所产生的烟气含量进行快速、正确的在线检测分析,以实现低氧燃烧控制,达到节能目的,减少环境污染。 SK-SZO系列氧化锆氧量分析仪有氧化锆头(一次仪表)和氧量变送器(二次仪表)二部分组成。 SK-SZO型氧化锆探头外壳采用耐高温、耐腐蚀的不锈钢材料制成。 不必外加气 ,参比气能自行对流。并设有标准气接口,可在现场运行时用标准气体进行标定校验。探头锆管能方便地拆卸更换。 SK-SZO型氧量变送器结构简单,安装尺寸规范,线路设计合理,工艺质量先进,仪表性能稳定可靠,调试方便。 SK-SZO系列氧化锆氧量分析仪由于其优越的性能价格比,数年来在国内大中型电厂得到广泛应用。 二、型号规格 1、氧化锆探头的型号定义 SK-SZO-口—口 探头的长度规格分400、800、1200mm 探头的加热形式 4表示加热式,即低温式 5表示不加热式,即高温式 2、氧量变送器的型号定义 SK-SZO-口—口 Ⅰ表示盘装式 Ⅱ表示盘装横式 Ⅲ表示盘装方式 Ⅳ表示墙挂式 4表示加热式(中低温型) 三、规格尺寸 5表示不加热式(高温型) 1.氧量变送器尺寸 -1-

盘装竖式 (Ⅰ) 160×80 ×250 152 ×76 盘装横式(Ⅱ) 80 ×160 ×250 或160 76 ×152 盘装方式(Ⅲ) 160 ×160 ×250或160 153 ×153 墙挂式(Ⅳ) 325 ×250 ×110 310 ×128 2、氧化锆探头的外形尺寸:单位mm L=400,800,1200 四.技术指标 1.基本误差:<+3%F.S; 仪表精度1级 2.量程:0~25%O2 3.本底修正:-20mV~+20mV 4.被测烟气温度:ZO-4型低于800℃(低温型);ZO-5型 800℃~1200℃ (高温型) 5.输出信号:0~10mADC 4~20mADC任意设置 6.负载能力:0~1.2KΩ(0~10mA时)或0~600Ω(4~20mA时) 7.环境能力:0~50℃,相对湿度〈90% 8.电源/;220V+10%,50Hz。 9.功耗:变送器约8W,加热炉平均为50W。 10.响应时间/;90%约3秒。 11.氧化锆探头加热炉升温时间:约20分钟。 五、仪表接线氧化锆探头的端子接线图 -2- 120

摄像头使用教程

Linux2.6.33下ZC301USB摄像头使用教程要想在中芯优电的TE-2440开发板上使用使用USB接口的USB摄像头,需要作出比较多的工作,如:内核配置,编译器配置,依赖库编译,应用程序的编译等等,下面的这个教程主要用来介绍如何远程使用TE-2440下的摄像头。 1. 编译器配置 编译器配置编译器采用的版本是4.3.3,具体文件名为EABI-Top-Elec-Gcc-4.3.3.tar.bz2,将其拷贝到linux目录下,解压,并配置环境变量。 // 解压 tar –xf EABI-Top-Elec-Gcc-4.3.3.tar.bz2 // 配置环境变量,将bin目录添加到PATH环境变量中 gedit /etc/environment // 使其生效,注意此命令只会使当前终端生效,并不影响其它终端中的执行 source /etc/environment // 检测安装成功,显示arm-linux-gcc所在文件位置 which arm-linux-gcc 2. 内核配置 教程需要的是基于2.6.33的内核,为了言简意赅,我们使用的是内核文件是 linux-2.6.33.2-TE2440.tar.gz,所以如果是从https://www.360docs.net/doc/5b12523608.html,官网上下载linux-2.6.33.2.tar.bz2,还需要修改针对开发板的如分区、网卡、MMC的详细配置。 由于我们使用的摄像头是基于ZC301芯片的,以前由于2.6.12的内核只有针对OV511芯片的驱动,所以需要我们查找对应的驱动并添加到内核中;后来,2.6.27左右版本的内核中增加了针对ZC301芯片的驱动,统称为Linux UVC。那么它的驱动实现了Video4Linux API,并不计划支持V4L1。下面是关于Linux UVC的文档网址:http://linux-uvc.berlios.de/。 所以在2.6.33版本中我们只需要对内核进行简单配置,就实现功能了,如有不明白可参考下面截图

相关文档
最新文档