MQTT消息传输机制(协议解读与调用实例)

MQTT消息传输机制(协议解读与调用实例)

前言

最近在研究MQTT时,我发现我身边的同事都在看类似android中实现mqtt通信、java如何调用mqtt实现消息推送等,这种方式在现实编程中见怪不怪,也是常规的解决思路,但也有诸多疑惑是常规思路中不能轻易达成的,原因有以下几点:

1.代码调用简单,仅实现基本的功能;

2.现成的类库文档较少,影响对类库的理解;

3.开发者自身知其然,不知其所以然,等等

由此产生了很多令人困惑的问题,诸如:

1.用户(非)正常断开连接,代码能对断开的用户进行后续的逻辑处理吗(断开后的业务回调)?

2.消息发布后,接收者未在线,上线能接收到之前发布的消息吗?

3.如何进行用户的登录验证?

4.消息发送失败及接收端下线,如何确保接收端再次登录后有正常接收到消息?

5.……

本篇会把连接(CONNECT)、心跳(PINGREQ/PINGRESP)、确认(CONNACK)、断开连接(DISCONNECT)和在一起,通过对协议的解读,结合类库的调用来对以上问题进行逐一解答。

CONNECT

像前面所说,MQTT有关字符串部分采用的修改版的UTF-8编码,CONNECT可变头部中协议名称、消息体都是采用修改版的UTF-8编码。前面基本上可变头部内容不多,下面

MQTT消息传输机制(协议解读与调用实例)李阳

MQTT消息传输机制(协议解读与调用实例)李阳

MQTT消息传输机制(协议解读与调用实例)李阳

可变头部

协议名称和协议版本都是固定的。

连接标志(Connect Flags)

一个字节表示,除了第1位是保留未使用,其它7位都具有不同含义。

业务上很重要,对消息总体流程影响很大,需要牢记。

Clean Session

0,表示如果订阅的客户机断线了,要保存为其要推送的消息(QoS为1和QoS为2),若其重新连接时,需将这些消息推送(若客户端长时间不连接,需要设置一个过期值)。1,断线服务器即清理相关信息,重新连接上来之后,会再次订阅。

Will Flag

定义了客户端(没有主动发送DISCONNECT消息)出现网络异常导致连接中断的情况下,服务器需要做的一些措施。

简而言之,就是客户端预先定义好,在自己异常断开的情况下,所留下的最后遗愿(Last Will),也称之为遗嘱(Testament)。这个遗嘱就是一个由客户端预先定义好的主题和对应消息,附加在CONNECT的可变头部中,在客户端连接出现异常的情况下,由服务器主动发布此消息。

只有在Will Flag位为1时,Will Qos和Will Retain才会被读取,此时消息体Playload中要出现Will Topic和Will Message具体内容,否则,Will QoS和Will Retain值会被忽略掉。

Will Qos

两位表示,和PUBLISH消息固定头部的QoS level含义一样。这里先掠过,到PUBLISH消息再回过头来看看,会更明白些。

若标识了Will Flag值为1,那么Will QoS就会生效,否则会被忽略掉。

Will RETAIN

如果设置Will Flag,Will Retain标志就是有效的,否则它将被忽略。

MQTT消息传输机制(协议解读与调用实例)李阳

当客户端意外断开服务器发布其Will Message之后,服务器是否应该继续保存。这个属性和PUBLISH固定头部的RETAIN标志含义一样,这里先掠过。

User name 和password Flag:

用于授权,两者要么为0要么为1,否则都是无效。都为0,表示客户端可自由连接/订阅,都为1,表示连接/订阅需要授权。

Playload/消息体

消息体定义的消息顺序(如上表所示),约定俗成,不得更改,否则将可能引起混乱。

若Will Flag值为0,那么在Playload中,Client Identifer后面就不会存在Will Topic和Will Message内容。

若User Name和Password都为0,意味着Playload/消息体中,找不到User Name和password的值,就算有,也是无效。标志决定着是否读取与否。

心跳时间(Keep Alive timer)

以秒为单位,定义服务器端从客户端接收消息的最大时间间隔。一般应用服务会在业务层次检测客户端网络是否连接,不是TCP/IP协议层面的心跳机制(比如开启SOCKET的SO_KEEPALIVE选项)。一般来讲,在一个心跳间隔内,客户端发送一个PINGREQ消息到服务器,服务器返回PINGRESP消息,完成一次心跳交互,继而等待下一轮。若客户端没有收到心跳反馈,会关闭掉TCP/IP端口连接,离线。16位两个字节,可看做一个无符号的short类型值。最大值,2^16-1 = 65535秒= 18小时。最小值可以为0,表示客户端不断开。一般设为几分钟,比如微信心跳周期为300秒。

Will Message编码

MQTT消息传输机制(协议解读与调用实例)李阳

另外,

相关说明:

https://www.360docs.net/doc/5b17691309.html,/wiki/doku.php/will message utf8_support

https://https://www.360docs.net/doc/5b17691309.html,/issues/browse/MQTT-2

连接异常中断通知机制

CONNECT消息一旦设置在可变头部设置了Will flag标记,那就启用了Last-Will-And-Testament特性,此特性很赞。

一旦客户端出现异常中断,便会触发服务器发布Will Message消息到Will Topic主题上去,通知Will Topic订阅者,对方因异常退出。

接收CONNECT后的响应动作

接收到CONNECT消息之后,服务器应该返回一个CONNACK消息作为响应:

1.若客户端绕过CONNECT消息直接发送其它类型消息,服务器应关闭此非法连接若客户端发送CONNECT之后未收到CONNACT,需要关闭当前连接,然后重新连接

2.相同Client ID客户端已连接到服务器,先前客户端必须断开连接后,服务器才能完成新的客户端CONNECT连接客户端发送无效非法CONNECT消息,服务器需要关

CONNACK

MQTT消息传输机制(协议解读与调用实例)李阳

MQTT消息传输机制(协议解读与调用实例)李阳

只有

从上面看出,一个CONNACT,四个字节表示。一个正常的CONNACT消息实际内容可能如下:0x20 0x02 0x00 0x00

若是在私有协议中,两个字节就足够了。

很多时候,客户端和服务器端在没有消息传递时,会一直保持着连接。虽然不能依靠TCP心跳机制(比如SO_KEEPALIVE选项),业务层面定义心跳机制,会让连接状态检测、控制更为直观。

PINGREQ

心跳频率在CONNECT可变头部“Keep Alive timer”中定义时间,单位为秒,无符号16位short表示。

PINGRESP

服务器收到PINGREQ请求之后,会立即响应一个两个字节固定格式的PINGRESP消息。

MQTT消息传输机制(协议解读与调用实例)李阳

行为一致,但对客户端的订阅不会产生影响(不会清除客户端订阅数据),这个需要牢记。

若客户端发送PINGREQ之后的一个心跳周期内接收不到PINGRESP消息,可考虑关闭TCP/IP套接字连接。

DISCONNECT

客户端主动发送到服务器端,表明即将关闭TCP/IP连接。此时要求服务器要完整、干净的进行断开处理,不能仅仅类似于关闭连接描述符类似草草处理之。需要两个字节,值固定:

1.值为0,服务器必须在客户端断开之后继续存储/保持客户端的订阅状态。这些状态包括:

MQTT消息传输机制(协议解读与调用实例)李阳

o存储订阅的消息QoS1和QoS2消息

o正在发送消息期间连接丢失导致发送失败的消息

o以便当客户端重新连接时以上消息可以被重新传递。

2.值为1,服务器需要立刻清理连接状态数据。

有一点需要牢记,服务器在接收到客户端发送的DISCONNECT消息之后,需要主动关闭TCP/IP连接。

针对上述问题提出的解决方案:

1、用户(非)正常断线后的业务回调

Will Topic

Will Flag值为1,这里便是Will Topic的内容。QoS级别通过Will QoS字段定义,RETAIN值通过Will RETAIN标识,都定义在可变头里面。

连接异常中断通知机制

CONNECT消息一旦设置在可变头部设置了Will flag标记,那就启用了Last-Will-And-Testament特性,此特性很赞。

一旦客户端出现异常中断,便会触发服务器发布Will Message消息到Will Topic主题上去,通知Will Topic订阅者,对方因异常退出。

Clean Session

0,表示如果订阅的客户机断线了,要保存为其要推送的消息(QoS为1和QoS为2),若其重新连接时,需将这些消息推送(若客户端长时间不连接,需要设置一个过期值)。1,断线服务器即清理相关信息,重新连接上来之后,会再次订阅。

Will Flag

定义了客户端(没有主动发送DISCONNECT消息)出现网络异常导致连接中断的情况下,服务器需要做的一些措施。

简而言之,就是客户端预先定义好,在自己异常断开的情况下,所留下的最后遗愿(Last Will),也称之为遗嘱(Testament)。这个遗嘱就是一个由客户端预先定义好的主题和对应消息,附加在CONNECT的可变头部中,在客户端连接出现异常的情况下,由服务器主动发布此消息。

只有在Will Flag位为1时,Will Qos和Will Retain才会被读取,此时消息体Playload中要出现Will Topic和Will Message具体内容,否则,Will QoS和Will Retain 值会被忽略掉。

Will Qos

两位表示,和PUBLISH消息固定头部的QoS level含义一样。这里先掠过,到PUBLISH消息再回过头来看看,会更明白些。

若标识了Will Flag值为1,那么Will QoS就会生效,否则会被忽略掉。

MQTT消息传输机制(协议解读与调用实例)李阳

协议中明确指出,在连接时,我们只要设置好它的Last Will【在自己异常断开的情况下,所留下的最后遗愿(Last Will),也称之为遗嘱(Testament)】

类库中对应的封装大致如下,可能会因语言版本不同而有所差异,但大致都是如此:

void Connect();

void Connect(bool cleanStart);

void Connect(string willTopic, QoS willQoS, MqttPayload willMsg, bool willRetain);

void Connect(string willTopic, QoS willQoS, MqttPayload willMsg, bool willRetain, bool cleanStart);

测试结果如下:

2、消息发布后,接收者未在线,上线能接收到之前发布的消息吗?

MQTT消息传输机制(协议解读与调用实例)李阳

答案是肯定的,消息发布时,有一重要参数:retained,建立连接函数中(willRetain)属性和PUBLISH固定头部的RETAIN标志含义一样

类库中对应的封装大致如下,可能会因语言版本不同而有所差异,但大致都是如此:

int Publish(MqttParcel parcel);

int Publish(string topic, MqttPayload payload, QoS qos, bool retained);

retained:表示消息会保留在服务器上,即接收端每一次连接后都将收到保留在服务器上的主题,保留的主题清除方式:直接将主题内容置空即可

注意:发布消息时,retained虽然为true,但接收端不希望每次连接后都收到来自服务器上驻留的消息,怎么办?协议中对此进行了专门的开关设置:属性为Clean Session,因此在与服务器建立连接时,就有一个参数void Connect(string willTopic, QoS willQoS, MqttPayload willMsg, bool willRetain, bool cleanStart);

3、如何获取消息的发送状态

其实,在发布者向服务器通信后,服务器都很礼貌地进行了消息的回复,具体消息见协议:CONNACK

类库中对应的封装大致如下,可能会因语言版本不同而有所差异,但大致都是如此:

void qosManager_MessageReceived(object sender, MqttMessageReceivedEventArgs e)

{

if (e.Message == null)

{

//a null message means we have disconnected from the broker

OnConnectionLost(new EventArgs());

return;

}

switch (e.Message.MsgType)

{

case MessageType.CONNACK:

var connack = ((MqttConnackMessage)e.Message);

if (connack.Response == MqttConnectionResponse.Accepted)

OnConnected(new EventArgs());

MQTT消息传输机制(协议解读与调用实例)李阳

else

OnConnectionLost(new MqttConnackEventArgs(connack.Response));

break;

case MessageType.DISCONNECT:

break;

case MessageType.PINGREQ:

manager.SendMessage(new MqttPingRespMessage());

break;

case MessageType.PUBACK:

MqttPubackMessage puback = (MqttPubackMessage)e.Message;

OnPublished(new CompleteArgs(puback.AckID));

break;

case MessageType.PUBCOMP:

break;

case MessageType.PUBLISH:

MqttPublishMessage m = (MqttPublishMessage)e.Message;

OnPublishArrived(m);

break;

case MessageType.PUBREC:

break;

case MessageType.PUBREL:

MqttPubrelMessage pubrel = (MqttPubrelMessage)e.Message;

OnPublished(new CompleteArgs(pubrel.AckID));

break;

case MessageType.SUBACK:

MqttSubackMessage m1 = (MqttSubackMessage)e.Message;

MQTT消息传输机制(协议解读与调用实例)李阳

OnSubscribed(new CompleteArgs(m1.AckID));

break;

case MessageType.UNSUBACK:

MqttUnsubackMessage m2 = (MqttUnsubackMessage)e.Message;

OnUnsubscribed(new CompleteArgs(m2.AckID));

break;

case MessageType.PINGRESP:

break;

case MessageType.UNSUBSCRIBE:

case MessageType.CONNECT:

case MessageType.SUBSCRIBE:

default:

throw new Exception("Unsupported Message Type");

}

}

类库对外的通知消息显得格外的简单,只是定义了一些诸如:connected,disconnected,publishArrive等事件进行处理,其实对服务器的任何通信都是有回复的,对上述代码其实已经无需做太多的解释,结果已经很明了。

4、消息发送失败及接收端下线,如何确保接收端再次登录后有正常接收到消息?

服务器要根据先前此客户端在发送CONNECT消息可变头部Connect flag中的“Clean session flag”所设置值,再次复习一下:

1.值为0,服务器必须在客户端断开之后继续存储/保持客户端的订阅状态。这些状态包括:

o存储订阅的消息QoS1和QoS2消息

o正在发送消息期间连接丢失导致发送失败的消息

o以便当客户端重新连接时以上消息可以被重新传递。

2.值为1,服务器需要立刻清理连接状态数据。

有一点需要牢记,服务器在接收到客户端发送的DISCONNECT消息之后,需要主动关闭TCP/IP连接。

MQTT消息传输机制(协议解读与调用实例)李阳

这一点与第二点问题描述是相同的,对willRetain和cleanStart两个参数配置设置即可完成此功能

5、用户登录验证,服务器需开启验证机制

原文如下:

Security

Beginning with MQTT v3.1, a username and password can now be sent by the client at connect time. For older clients which do not support username and password, there is the capability of limiting connections to those clients whose clientid starts with one of a set of prefixes, with the clientid_prefixes configuration parameter.

Authentication of Clients

By default, all clients are able to connect regardless of whether they provide a username and password or not. This can be changed by setting the password_file configuration parameter. This points at a password file that lists the valid usernames in the following format:

username:password

As the passwords are stored in clear-text, care must be taken to protect access to the file using standard Operating System file permissions.

The allow_anonymous configuration parameter can be used to control whether clients that do not provide a username and password can still connect to the broker.

译文如下:

MQTT消息传输机制(协议解读与调用实例)李阳

安全

用MQTT V3.1的开始,一个用户名和密码可以发出的客户端在连接时。旧版本客户端不支持的用户名和密码,用clientid_prefixes配置参数可限制以一组前缀连接的客户的ClientID。

认证的客户

默认情况下,所有的客户端都可以连接不管他们是否提供用户名和密码。可以通过设置password_file配置参数的变化。密码文件中列出了有效的用户名,格式:用户名:密码[username:password]

密码以明文形式存储,必须注意保护访问使用标准的操作系统文件的权限的文件。

该allow_anonymous配置参数可用于控制客户是否不提供用户名和密码可以连接到代理。

类库中对应的封装大致如下,可能会因语言版本不同而有所差异,但大致都是如此:

public static IMqtt CreateClient(string connString, string clientId, string username= null, string password= null, IPersistence persistence = null)

{

return new Mqtt(connString, clientId, username, password, persistence);

}

Linux下开启登录验证方法:

1.allow_anonymous false

2.password_file pwfile.example

需写上绝对路径并且不带空格(经测试,非绝对路径将无法启动服务)

以下内容引用互联网:

如果需要配置一些用户名、密码、用户权限的参数,则需要修改安装目录下的mosquitto.conf文件

下面来说说用到的一些参数吧:

MQTT消息传输机制(协议解读与调用实例)李阳

①用户密码:#password_file pwfile.example 后面跟着是用户密码配置文件,需写上绝对路径并且路径不带空格

②创建用户密码:打开doc窗口,进入mosquitto安装目录,运行mosquitto_passwd -c pwfile.example userName 回车,然后输入密码(密码输入两遍后,在该文

件里会自动加密密码)

生成的文件内容格式例如:

userName:$6$Ls7JYQTdn9xagJJ2$zngeT758n1Wn1hnVLjFdK2cHb6lcmI5CMrMTNZe2SqkUj0fBgKts62gvlyWYwdY3/WArx/SAtFRKlvKKnHRCUg==

userName2:$6$bymgVcrtj+7wj8mR$nq1atPD3nreRgA6gDbDjfbUGZIlrmenOcWrXMoneBp+zmAxnOybqJvrBZboxX1XXPnz/TKZwz9aKQJ72zJym5A=

③如果想再增加用户,则执行mosquitto_passwd -u pwfile.example userName2即可

④用户权限:#acl_file aclfile.example 后面跟着是用户权限配置文件,需写上绝对路径并且路径(经测试,非绝对路径将无法启动服务)

文件内容格式为:

user userName

原配置内容介绍如下:

# This affects access control for clients with no username.

topic read $SYS/#

# This only affects clients with username "roger".

user roger

topic foo/bar

# This affects all clients.

pattern write $SYS/broker/connection/%c/state

这里要对官方提供的文档进行纠正,原文“As the passwords are stored in clear-text”,经验证,密码是经过加密的,并非明文

经本人验证,以上方法在Windows无法验证通过

MQTT消息传输机制(协议解读与调用实例)李阳

超文本传输协议(HTTP)

《计算机网络实验》实验报告实验名称:超文本传输协议(HTTP) 年级: 2014级 专业:软件工程专业 班级: 2班 姓名:王香香 学号: 1425161018 成绩: 指导教师:卢正添 提交报告时间: 2017年 6月 3日

一、实验目的 1.掌握HTTP的报文格式 2.掌握HTTP的工作原理 3.掌握HTTP常用方法 二、实验环境 网络结构一 三、实验步骤与实验结果 练习一:页面访问 各主机打开协议分析器,进入相应的网络结构并验证网络拓扑的正确性,如果通过拓扑验证,关闭协议分析器继续进行实验,如果没有通过拓扑验证,请检查网络连接。 本练习将主机A和B作为一组,主机C和D作为一组,主机E和F作为一组。现仅以主机A、B所在组为例,其它组的操作参考主机A、B所在组的操作。 1. 主机A清空IE缓存。 2. 主机B启动协议分析器开始捕获数据,并设置过滤条件(提取HTTP协议)。 3. 主机A启动IE浏览器,在“地址”框中输入http://服务器的ip/experiment,并连接,服务器IP默认为172.16.0.253。

4. 主机B停止捕获数据,分析捕获到的数据,并回答以下问题: ●本练习使用HTTP协议的哪种方法?简述这种方法的作用。答:Get方法。客户要从服务器读取文档时使用。 ●根据本练习的报文内容,填写下表。

表13-3 实验结果 ●参考“会话分析”视图显示结果,绘制此次访问过程的报文交互图(包括TCP协议)。 ●简述TCP协议和HTTP协议之间的关系。 答:HTTP是基于TCP的应用层协议。 思考问题: 1.一个主页是否只有一个连接? 答:否。一个主页可能对应多个连接。 练习二:页面提交 本练习将主机A和B作为一组,主机C和D作为一组,主机E和F作为一组。现仅以主机A、B所在组为例,其它组的操作参考主机A、B所在组的操作。 1. 主机B启动协议分析器开始捕获数据,并设置过滤条件(提取HTTP协议)。 2. 主机A启动IE浏览器,在“地址”框中输入“http://服务器的ip/experiment/post.html”,并连接,服务器IP 默认为172.16.0.253。在返回页面中,填写“用户名”和“密码”,点击[确定]按钮。 3. 主机B停止捕获数据,分析捕获到的数据,并回答以下问题:

实时传输协议RTP

实时传输协议RTP 1.RTP协议: RTP( Real-time Transport Protocol)协议最初是在70年代为了尝试传输声音文件,把包分 成几部分用来传输语音,时间标志和队列号。经过一系列发展,RTP第一版本在 1991年8月由美国的一个实验室发布了。到本世纪1996年形成了标准的的版本。很多著名的公司如Netscape ,就宣称“Netscape LiveMedia”是基于RTP协议的。Microsoft 也宣称他们的“NetMeeting”也是支持RTP协议. RTP被定义为传输音频、视频、模拟数据等实时数据的传输协议。最初设计是为了数据传输的多播,但是它也用于单播的。与传统的注重的高可靠的数据传输的运输层协议相比,它更加侧重 的数据传输的实时性。此协议提供的服务包括时间载量标识、数据序列、时戳、传输控制等。RTP与辅助控制协议RTCP一起得到数据传输的一些相关的控制信息。 2.RTP协议的工作原理: 如上所说明的,影响多媒体数据传输的一个尖锐的问题就是不可预料数据到达时间。但是流媒体的传输是需要数据的适时的到达用以播放和回放。RTP协议就是提供了时间标签,序列号以及 其它的结构用于控制适时数据的流放。 在流的概念中‘时间标签’是最重要的信息。发送端依照即时的采样在数据包里隐蔽的设置了时间标签。在接受端收到数据包后,就依照时间标签按照正确的速率恢复成原始的适时的数据。不同的媒体格式调时属性是不一样的。但是RTP本身并不负责同步,RTP只是传输层协议,为了 简化了运输层处理,提高该层的效率。将部分运输层协议功能(比如流量控制)上移到应用层 完成。同步就是属于应用层协议完成的。它没有运输层协议的完整功能,不提供任何机制来保 证实时地传输数据,不支持资源预留,也不保证服务质量。RTP报文甚至不包括长度和报文边界的描述。同时RTP协议的数据报文和控制报文的使用相邻的不同端口,这样大大提高了协议的灵活性和处理的简单性。 RTP协议和UDP二者共同完成运输层协议功能。UDP协议只是传输数据包,是不管数据包传输的时间顺序。RTP的协议数据单元是用UDP分组来承载的。在承载RTP数据包的时候,有时候一帧数据被分割成几个包具有相同的时间标签,则可以知道时间标签并不是必须的。而UDP的多路复用让RTP协议利用支持显式的多点投递,可以满足多媒体会话的需求。 RTP协议虽然是传输层协议但是它没有作为OSI体系结构中单独的一层来实现。RTP协议通常根据一个具体的应用来提供服务, RTP只提供协议框架,开发者可以根据应用的具体要求对协议进行充分的扩展。目前,RTP的设计和研究主要是用来满足多用户的多媒体会议的需要,另外它也适用于连续数据的存储,交互式分布仿真和一些控制、测量的应用中。基于RTP的实验和商业产品也层出不穷。最常用的协议是RTMP(Real Time Messaging Protocol,实时消息传送协议),RTMP是Adobe Systems公司为Flash播放器和服务器之间音频、视频和数据传输开发的开放协议。还有RTSP,HLS等。 实时传输控制协议RTCP协议 1. RTCP协议: RTCP(Real-time Transpor、Control Protocol)是设计和RTP一起使用的进行流量控制和拥塞控制的服务控制协议。 2. RTCP协议如何工作: 当应用程序开始一个RTP会话时将使用两个端口:一个给RTP,一个给RTCP。RTP本身并不能为按顺序传送数据包提供可靠的传送机制,也不提供流量控制或拥塞控制,它依靠RTCP提供这些服务。在RTP的会话之间周期的发放一些RTCP包以用来传监听服务质量和交换会话用户信息等功能。RTCP包中含有已发送的数据包的数量、丢失的数据包的数量等统计资料。因此,服务器可以利 用这些信息动态地改变传输速率,甚至改变有效载荷类型。RTP和RTCP配合使用,它们能以有效的反馈和最小的开销使传输效率最佳化,因而特别适合传送网上的实时数据。根据用户间的数

HTTP超文本传输协议

http

http和其他几种网络协议 [1] 多个中间层,比如代理,网关,或者隧道(tunnels)。尽管TCP/IP协议是互联网上最流行的应用,HTTP协议并没有规定必须使用它和(基于)它支持的层。事实上,HTTP可以在任何其他互联网协议上,或者在其他网络上实现。HTTP只假定(其下层协议提供)可靠的传输,任何能够提供这种保证的协议都可以被其使用。 通常,由HTTP客户端发起一个请求,建立一个到服务器指定端口(默认是80端口)的TCP连接。HTTP服务器则在那个端口监听客户端发送过来的请求。一旦收到请求,服务器(向客户端)发回一个状态行,比如"HTTP/1.1 200 OK",和(响应的)消息,消息的消息体可能是请求的文件、错误消息、或者其它一些信息。 HTTP协议的网页 HTTP使用TCP而不是UDP的原因在于(打开一个)一个网页必须传送很多数据,而TCP协议提供传输控制,按顺序组织数据,和错误纠正。 通过HTTP或者HTTPS协议请求的资源由统一资源标示符(Uniform Resource Identifiers)(或者,更准确一些,URLs)来标识。 编辑本段协议功能 HTTP是超文本传输协议,是客户端浏览器或其他程序与Web服务器之间的应用层通信协议。在Internet上的Web服务器上存放的都是超文本信息,客户机需要通过HTTP协议传输所要访问的超文本信息。HTTP包含命令和传输信息,不仅可用于Web访问,也可以用于其他因特网/内联网应用系统之间的通信,从而实现各类应用资源超媒体访问的集成。 当我们想浏览一个网站的时候,只要在浏览器的地址栏里输入网站的地址就可以了,例如www.*****.com,但是在浏览器的地址栏里面出现的却是:http://www.*******,你知道为什么会多出一个“http”吗? 我们在浏览器的地址栏里输入的网站地址叫做URL (Uniform Resource Locator,统一资源定位符)。就像每家每户都有一个门牌地址一样,每个网页也都有一个Internet地址。当你在

(完整版)RTP协议分析

RTP协议分析 一.RTP协议背景 (2) 二.RTP协议原理及工作机制 (2) 2.1 RTP协议原理 (3) 2.1.1 RTP协议原理 (3) 2.1.2 RTCP协议原理 (3) 2.2 RTP数据包格式 (4) 2.2.1 RTP数据包格式 (4) 2.2.2 RTCP数据包格式 (6) 2.3 RTP工作机制 (9) 2.3.1 RTP工作机制 (9) 2.3.2 RTCP工作机制 (9) 三.RTP协议关键技术指标 (10) 3.1 时间戳 (10) 3.2时延 (10) 3.3 抖动 (11) 3.4丢包率 (11) 3.5 会话和流两级分用 (11) 3.6 多种流同步控制 (12) 四.RTP协议应用方案 (12) 4.1 RTP协议应用方案之单播 (12) 4.2 RTP协议应用方案之广播 (12) 4.3 RTP协议应用方案之组播 (13) 4.3.1 RTP协议组播方案总体概述 (13) 4.3.2 RTP协议组播方案服务器端实现 (14) 4.3. 3RTP协议组播方案客户端实现 (14) 4.3. 4RTP协议视频帧率和质量调整策略 (15) 五.RTP协议移植计划 (16) 六.RTP协议安全方面考虑 (16)

一.RTP协议背景 流(Streaming)是近年在Internet上出现的新概念,其定义非常广泛,主要是指通过网络传输多媒体数据的技术总称。流媒体包含广义和狭义两种内涵:广义上的流媒体指的是使音频和视频形成稳定和连续的传输流和回放流的一系列技术、方法和协议的总称,即流媒体技术;狭义上的流媒体是相对于传统的下载-回放方式而言的,指的是一种从Internet上获取音频和视频等多媒体数据的新方法,它能够支持多媒体数据流的实时传输和实时播放。通过运用流媒体技术,服务器能够向客户机发送稳定和连续的多媒体数据流,客户机在接收数据的同时以一个稳定的速率回放,而不用等数据全部下载完之后再进行回放。 流式传输有顺序流式传输(Progressive Streaming)和实时流式传输(Realtime Streaming)两种方式。实时流式传输是实时传送,特别适合现场事件,实时流式传输必须匹配连接带宽,这意味着图像质量会因网络速度降低而变差,以减少对传输带宽的需求。“实时”的概念是指在一个应用中数据的交付必须与数据的产生保持精确的时间关系,这需要相应的协议支持,这样RTP和RTCP就相应的出现了。 实时传输协议RTP(Realtime Transport Protocol):是针对Internet上多媒体数据流的一个传输协议, 由IETF作为RFC1889发布,现在最新的为RFC3550。RTP被定义为在一对一或一对多的传输情况下工作,其目的是提供时间信息和实现流同步。RTP的典型应用建立在UDP上,但也可以在TCP等其他协议之上工作。RTP本身只保证实时数据的传输,并不能为按顺序传送数据包提供可靠的传送机制,也不提供流量控制或拥塞控制,它依靠RTCP提供这些服务。 实时传输控制协议RTCP(Realtime Transport Control Protocol):负责管理传输质量,在当前应用进程之间交换控制信息,提供流量控制和拥塞控制服务。在RTP会话期间,各参与者周期性地传送RTCP包,包中含有已发送的数据包的数量、丢失的数据包的数量等统计资料,因此,服务器可以利用这些信息动态地改变传输速率,甚至改变有效载荷类型。RTP 和RTCP配合使用,能以有效的反馈和最小的开销使传输效率最佳化,故特别适合传送网上的实时数据。 二.RTP协议原理及工作机制 让我们先看一下RTP和RTCP在网络层次中的位置,以便我们更加清楚的了解该协议,如下图1-1所示:

第4章_传输层协议_练习

第 4 章传输层协议练习 1.TCP/IP参考模型的(传输层)主要为网络应用程序完成端到端的数据传输服务,即进 程到进程的数据传输服务。 2.传输层把应用程序交付的数据组成传输层数据报,然后交给(网络层)去完成网络传输。 3.传输层不关心报文是怎样通过网络传输的。(正确) 4.网络通信的最终对象是(网络应用程序进程)进程。程序进程在需要通信时,要通过某 种方式和对方程序进程进行通信。 5.在计算机网络中,为了使网络应用程序之间能够顺利地通信,通信的一方通常需要处于 (守候)状态,等待另一访通信请求的到来。这种一个应用程序被动地等待,另一个应用程序通过请求启动通信过程的通信模式称作(客户/服务器模式)交互模式。 6.在设计网络应用程序时,都是将应用程序设计成两部分,即(客户程序和服务器程序)。 安装有服务器程序的计算机称作(服务器),安装有客户程序的计算机称作(客户机/客户端),客户/服务器交互模式一般简写为(C / S)模式。 7.应用程序工作时,服务器一般处于(守候)状态,监视客户端的请求;若客户端发出服 务请求,服务器收到请求后执行操作,并将结果回送到客户端。 8.在Internet中,许多应用程序的客户端可以使用(浏览器)程序代替。只需要开发Web 应用程序安装在服务器上,而客户端使用浏览器(Browser)就可以和服务器通信。这种以浏览器作为客户端的网络应用程序通信模式称作(浏览器/服务器)交互模式,简称(B / S)模式。 9.根据数据传输服务的需求,TCP/IP协议传输层提供两种类型的传输协议:(面向连接的 传输控制协议/TCP)和(非连接的用户数据报协议/UDP)。两种传输层协议分别提供(连接型)传输服务和(非连接型)传输服务。 10.传输层的(连接型)传输服务类似于数据交换中的电路交换方式,需要通信双方在传输 数据之前首先建立起(连接),即交换握手信号,证明双方都在场。 11.(传输控制协议TCP)是TCP/IP协议传输层中面向连接的传输服务协议。 12.连接型传输服务在(传输数据)之前需要建立起通信进程之间的连接。在TCP协议中建 立连接过程是(比较麻烦)。首先发出建立连接请求,(服务器)收到建立连接请求后回答同意建立连接的应答报文,(客户端)收到应答报文之后还要(确认)报文,双方才能建立通信连接。这样做的主要原因是传输层报文需要通过下层网络传输,而传输层对下层网络没有足够的信任,需要自己完成(连接差错控制)。 13.在连接型传输服务中,由于通信双方建立了连接,能够保证数据正确有序地传输,应用 程序可以利用建立的连接发送连续的数据流,即支持数据流的传输。在数据传输过程中可以进行(差错控制)、(流量控制),可以提供端到端的(可靠性)数据传输服务。 14.连接型传输服务适用于(传输可靠性)要求较高的应用程序。 15.连接型传输服务虽然可以提供可靠的传输层数据传输服务,但在传输少量信息时的通信 (效率)却不尽如人意。从提高通信(通信效率)出发,TCP/IP协议的传输层设计了(面向非连接的用户数据报协议UDP)。 16.非连接型传输服务的通信过程由于通信双方没有建立连接,报文可能会丢失,所以非连 接型传输服务的(可靠性)较差。 17.对于(非连接型)传输服务,由于通信进程间没有建立连接,只是发送数据时才占用网 络资源,所以占用网络资源少。 18.非连接型传输服务传输控制简单,通信效率高,它适用于发信息较少、对传输可靠性要 求不高或为了节省网络资源的应用程序。(正确)

RTP协议中文版

RFC3550 RTP:实时应用程序传输协议 摘要 本文描述RTP(real-time transport protocol),实时传输协议。RTP在多点传送(多播)或单点传送(单播)的网络服务上,提供端对端的网络传输功能,适合应用程序传输实时数据,如:音频,视频或者仿真数据。RTP没有为实时服务提供资源预留的功能,也不能保证QoS(服务质量)。数据传输功能由一个控制协议(RTCP)来扩展,通过扩展,可以用一种方式对数据传输进行监测控制,该协议(RTCP)可以升级到大型的多点传送(多播)网络,并提供最小限度的控制和鉴别功能。RTP和RTCP被设计成和下面的传输层和网络层无关。协议支持RTP标准的转换器和混合器的使用。 本文的大多数内容和旧版的RFC1889相同。在线路里传输的数据包格式没有改变,唯一的改变是使用协议的规则和控制算法。为了最小化传输,发送RTCP数据包时超过了设定的速率,而在这时,很多的参与者同时加入了一个会话,在这样的情况下,一个新加入到(用于计算的可升级的)计时器算法中的元素是最大的改变。 目录(Table of Contents) 1. 引言(Introduction) 1 1 术语(Terminology) 2 RTP使用场景(RTP Use Scenarios) 2 1 简单多播音频会议(Simple Multicast Audio Conference) 2 2 音频和视频会议(Audio and Video Conference) 2 3 混频器和转换器(Mixers and Translators) 2 4 分层编码(Layered Encodings) 3 定义(Definitions) 4 字节序,校正和时间格式(Byte Order, Alignment, and Time Format) 5 RTP数据传输协议(RTP Data Transfer Protocol) 5 1 RTP固定头域(RTP Fixed Header Fields) 5 2 多路复用RTP会话(Multiplexing RTP Sessions) 5 3 RTP头的配置文件详细变更(Profile-Specific Modifications to the RTP Header) 5 3 1 RTP报头扩展(RTP Header Extension) 6 RTP控制协议(RTP Control Protocol)-- RTCP 6 1 RTCP包格式(RTCP Packet Format) 6 2 RTCP传输间隔(RTCP Transmission Interval) 6 2 1 维护会话成员数目(Maintaining the number of session members) 6 3 RTCP包的发送与接收规则(RTCP Packet Send and Receive Rules) 6 3 1 计算RTCP传输间隔(Computing the RTCP Transmission Interval) 6 3 2 初始化(Initialization) 6 3 3 接收RTP或RTCP(非BYE)包(Receiving an RTP or Non-BYE RTCP Packet) 6 3 4 接收RTCP(BYE)包(Receiving an RTCP BYE Packet) 6 3 5 SSRC计时失效(Timing Out an SSRC)

数据传输和接口标准技术规范(212)协议Fix

污染源在线自动监控系统数据传输和接口标准技术规范FIX 超时重发机制: 请求回应的超时,在一个请求命令发出后在规定的时间内未收到回应,认为超时。超时后重发,重发规定次数后仍未收到回应认为通讯不可用,通讯结束。超时时间根据具体的通讯方式和任务性质可自定义。超时重发次数根据具体的通讯方式和任务性质可自定义。 执行超时 请求方在收到请求回应(或一个分包)后规定时间内未收到返回数据或命令执行结果,认为超时,命令执行失败,结束。缺省超时定义表(可扩充): 所有的通讯包都是由ACSII码字符组成(CRC校验码除外)。 通讯包结构组成:

系统编码表(可扩充)(GB/T16706-1996)见《环境信息标准化手册》第一卷第236页

执行结果定义表(可扩充) 命令列表(可扩充)

附录A:循环冗余校验(CRC)算法 CRC校验(Cyclic Redundancy Check)是一种数据传输错误检查方法,CRC码两个字节,包含一16位的二进制值。它由传输设备计算后加入到消息中。接收设备重新计算收到消息的CRC,并与接收到的CRC 域中的值比较,如果两值不同,则有误。 CRC是先调入一值是全“1”的16位寄存器,然后调用一过程将消息中连续的8位字节各当前寄存器中的值进行处理。仅每个字符中的8Bit数据对CRC有效,起始位和停止位以及奇偶校验位均无效。 CRC校验字节的生成步骤如下: ①装一个16位寄存器,所有数位均为1。 ②取被校验串的一个字节与16位寄存器的高位字节进行“异或”运算。运算结果放入这个16位寄存器。 ③把这个16寄存器向右移一位。 ④若向右(标记位)移出的数位是1,则生成多项式1010 0000 0000 0001和这个寄存器进行“异或”运算;若向右移出的数位是0,则返回③。 ⑤重复③和④,直至移出8位。 ⑥取被校验串的下一个字节 ⑦重复③~⑥,直至被校验串的所有字节均与16位寄存器进行“异或”运算,并移位8次。 ⑧这个16位寄存器的内容即2字节CRC错误校验码。 校验码按照先高字节后低字节的顺序存放。

超文本传输协议(HTTP1.1)中文

应用层 超文本传输协议(HTTP) 一、前言 TCP/IP应用层协议有许多种,本文档讲解我们最熟悉的超文本传输协议(HTTP)。 超文本传输协议(HTTP)版本1.1是一个草案标准,其描述见RFC 2612。旧的HTTP 1.0是一个指示性协议,RFC 1945对它进行了描述。超文本传输协议是为了传输超文本标记语言(Hypertext Markup Language,HTML)而设计的协议。HTML是一种用于创建超文本文档的标记语言。有关HTML的信息请参见相关的超文本标记语言的书籍。 二、HTTP综述 HTTP基于请求—响应活动。客户端运行浏览器应用程序,它建立与服务器的连接,并以请求的形式发送一个请求到服务器。服务器用一个状态行做出响应,包括信息的协议版本以及成功或者错误代码,后面跟着一个消息,它包含服务器信息、实体信息和可能的内容。 HTTP事务被划分为如下4个步骤。 除了实验性应用程序之外,现行习惯要求客户在发出每个请求之前先建立连接,并由服务器在发送响应之后关闭连接。客户和服务器都应当注意任何一方都有可能过早地关闭连接,原因可能是用户操作、自动超时或者程序故障等,他们应当以一种可预见的并且所期望的方式处理这种关闭行为。在任何一种情况下,任何一方或者双方关闭的连接总是终止当前请求,而不管它的状态如何。简单的说HTTP是一种无状

态协议,因为它不跟踪连接。例如:为了装入包含两个图形的页面,支持图形的浏览器将打开三个TCP 连接:一个连接用于页面,而另外连个连接用于图形。然而大多数浏览器能够同时处理几个这样的连接。 如果一个页面包含大量要素,每个资源都新建一个TCP连接,这将占用大量资源。在HTTP1.1中缓和了这个问题,它为每种类型元素建立一个TCP连接,同样类型的元素使用同一个TCP连接。HTTP 1.1不同于HTTP 1.0的地方就是它使用了永久连接。 三、统一资源标识URI URI亦可称为web地址,是统一资源定位器(URL)和统一资源名称(URN)的组合。依照RFC 1945种的定义,“统一资源标识符是通过名称、位置或者其他的特征标识资源的简单格式字符串”。 四、HTTP消息类型 HTTP消息既可以是客户端请求也可以是服务器响应。下面说明了HTTP消息类型:HTTP-message = Request | Response 五、消息头 HTTP消息头字段为如下形式之一: ●一般报文头 ●请求报文头 ●响应报文头 ●实体报文头 ●消息体:如果未使用传输编码,可以把消息体称为实体。 ●消息长度 5.1一般报文头 一般报文头字段既可以用于请求消息,又可以用于响应消息。当前的一般报文头字段选项如下: ●缓存控制(Cach-Control) ●连接 ●日期 ●标记(Pragma) ●传输编码(Transfer-Encoding) ●升级(Upgrade) ●通过(Via)

实时视频传输与控制协议-v2

全球眼 实时视频传输和控制协议v2 修改历史 复审人

一、说明 这份协议描述了视频服务器与流媒体分发服务器、视频服务器与企业客户端之间传输实时视频的方法。文档中没有针对媒体分发服务器与企业客户端(第三方播放器)之间的通信方法,但是媒体分发服务器与企业客户端(第三方播放器)之间的通信方法尊守RTC1889和RPC2326定义的规范。 在这篇文档里我们把象视频服务器这样能够给观看者提供视频数据的设备称为逻辑上的服务端角色(也就是视频源),象企业客户端这样播放视频的终端设备称为逻辑上的客户端角色(也就是接收者或观看者)。流媒体分发服务器同时具有两种角色。 交互流程中列出了两种模式,我们当前要先实现接模式。推模式是为了视频服务器在私网环境时也可以通过流媒体发服务器向用户提供视频服务。推模式暂不实现。 协议中没有提及RTCP协议,但并不影响视频通信质量,而且目前很难实现有效的编解码之间返馈的处理方法,所以现在,以及将来的一段时间都不会考虑RTCP协议,除非出现有效的视频质量控制机制。 本文参考RFC 1889、1890、2326、3550完成,如有不符合标准的、或者不完善的陈述,请提出来,发电子邮件到piaoxichuang@。如果您有更好的想法也可以通过邮件进行交流。 二、协议 通信方式使用RTP over TCP方式。(RTC1889、RFC2326) 1、一个完整的包 网络字节顺序

2、RTP包的封装(RTP over TCP) 网络字节顺序 Channel Identifier:取值0。因为只有一个流在一个TCP连接中传递,同时不使用RTCP协议。参见RFC 2326 [10.12]节。 Lenth:取值为RTP包的大小,包括RTP头部,但不包含本身的4个字节,以BYTE为单位。 3、RTP 12字节头部 网络字节顺序 V:版本,取值2。[可能会使用0值,还没想清楚,可能的使用情况是为了实现防火墙穿透] P:附加数据,取值为0。 X:扩展头,取值为1。 CC:CSRC列表数量,取值为0。 M:记号,取值0或1。关于M字段的取值:如果扩展头中T字段为1,则当一个包(RTP Packet)是一个帧(Sample)的最后一个包时取值1,否则取值0;扩展头中T字段为1时,由于指令长度较小,一个RTP就可以传输完成,所以取值为1。除非要使用多个RTP包传输,最后一个RTP包取值为1,前面的包取值为0。 PT:负载类型,动态,取值96。参见RFC 1890 [7]节。 Sequence Number:RTP包的序号,初始值是随机的,不是0。 Timestamp:以视频编码算法提供者的需要填写或单调增长的时间戳。[将来可能把这个值也传递给视频解码算法中去。] SSRC:随机数,用于在同一个会话中区分不同的流。建议使用MD32。 UINT Y[4] If Y = MD5(X) Then MD32(X) = Y[1] ^ Y[2] ^ Y[3] ^ Y[4] 注:RTP包大小最大值为2048。(因为DSS支持的最大包为2048Bytes)

各种无线传输方式以及通信协议

目前随着通信技术的发展,无线通信技术的使用已经渗透到社会的各个角落。要实现全球对无人驾驶智能车的监控,无线通信自然不能少。在我们实际生活中,可以接触到的无线通信技术有:红外线、蓝牙、UWB、以及我们早期使用的Zigbee、无线数传电台、WIFI、GPRS、3G等等。下面针对这些技术做一些简单的介绍。 1. 常见的短距离无线通信技术 红外数据传输(IrDA):IrDA是一种利用红外线进行点对点通信的技术,是由红外线数据标准协会(InfraredDataAssociation)制定的一种无线协议,其硬件及相应软件技术都已比较成熟。IrDA是第一个实现无线个人局域网(PAN)的技术。起初,采用IrDA标准的无线设备仅能在1m范围内以115.2kb/s速率传输数据,很快发展到4Mb/s(FIR技术)以及16 Mb/s(VFIR技术)的速率。在小型移动设备,如PDA、手机上广泛使用。事实上当今出厂的PDA以及许多手机、笔记本电脑、打印机等产品都支持IrDA,多用于室内短距离传输,目前很多应用场合逐渐被蓝牙所取代。 其优点:IrDA无需申请频率使用权,因而红外线通信成本低。并且具有移动通信所需要的体积小,功耗低,连接方便,简单易用的特点。此外,红外线发射角娇小传输上安全性高。 其缺点:IrDA是一种视距传输,两个相互通信的设备之间必须对准,中间不能有其他的物体阻隔,也就是穿透能力差。其点对点的传输连接,也导致无法灵活地组成网络。 蓝牙(Bluetooth):蓝牙是我们生活随处可见的传输技术,蓝牙的数据速率为1Mbps,传输距离约10米左右。支持点对点及点对多点通信,工作在全球通用的2.4GHz ISM(即工业、科学、医学)频段。蓝牙较多用于手机,游戏机,PC外设,表,体育健身,医疗保健,汽车,家用电子等。 其优点:使得各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信,也就是一点可以对多点,在10m范围内可以实现1Mb/s的高传输速率。 其缺点:芯片大小和价格难以下调、抗干扰能力不强、传输距离太短、信息安全问题等等。 WIFI(WirelessFidelity,无线高保真技术):Wi-Fi与蓝牙一样,同属于短距离无线技术。wifi的频段很多,2.4G,也有用5G的,一般的传输功率要在1毫瓦到100毫瓦之间。根据使用的标准不同,WIFI的速度也有所不同。最高传输速率为54Mbps(Netgear SUPER g技术可以将速度提升到108Mbps)。虽然在数据安全性方面,该技术比蓝牙技术要差一些,但是在电波的覆盖范围方面则要略胜一筹,WiFi的覆盖范围则可达300英尺左右(约合90米),广泛的应用于机场、酒店、以及办公室等公共场合。 其优点:可以大大减少企业成本,提供WLAN接入,是目前WLAN的主要技术标准,不受墙壁等干扰物的阻隔。

智能卡数据传输T1传输协议及详解

智能卡数据传输T=1传输协议 类别:消费电子阅读:883 T=1传输协议是智能卡的异步半双工通信协议。它立足于国际标准ISO/IEC 7816-3。EMV 规范也和此协议有关。T=1协议是面向字组的协议,这就是说一个字组是卡和终端之间可以传输的最小数据单元。 这项协议以严格的层次划分为特点,可作为数据链路层归入OSI参考模型中。在这种意义上,层次划分也就意味着数据指向较高的层次,诸如应用层,并可完全由数据链路层透明地处理。除了这一层直接和所传输的数据的内容的解释与修改有关之外,不再需要别的层次。 特别是报文的安全性需要严格地遵守层次划分,只有这样才能使用户加密的数据通过接口而不必求助于复杂的方法或技巧。目前,T=1是惟一的国际智能卡协议可以使安全数据得以在其所有变型的情况下传输而没有任何问题或危及其安全性。 传输的过程开始于卡送出ATR之后,或在成功执行了PTS之后。第1个字组由终端发送,下一个则由卡发送。于是,通信按此方式继续,发送权在终端与卡之间轮换。 顺便提及,T=1协议的应用不限于智能卡/终端的通信,它被用于多种终端和它们与之相连的计算机间交换有用的数据和控制数据。 数据传输率对任何协议自然都是一个最令人感兴趣的方面,表1列出了T=1协议传输某些典型命令的时间。 表1 T=1传输协议对某些典型命令的数据传输时间 (时钟频率为3.5712MHz,分频值为372,X0R差错检测码,每条命令有2位停止位和8位数据字节,C=命令,R=应答)1,字组结构所传送的字组实质上用于两种不同的目的,其中之一是透明传输的应用专用数据,另一个则是传输协议控制数据或对传输差错的处理。 传输的字组由开始的组头字段,信息字段和最后的组尾字段组成,组头和组尾字段是强制性的,必须总是发送的。相反,信息字段是可选的,它含有应用层的数据,它可能是发送给

实时传输协议(RTP)和实时控制协议(RTCP

公告:2010年SD2.0大会即将在上海召开了~历届参会网友精彩心得集锦[意见反馈][官方博客] 实时传输协议(RTP)和实时控制协议(RTCP)收藏 RTP是一种提供端对端传输服务的实时传输协议,用来支持在单目标广播和多目标广播网络服务中传输实时数据,而实时数据的传输则由RTCP协议来监视和控制。 RTP定义在RFC 使用RTP协议的应用程序运行在RTP之上,而执行RTP的程序运行在UDP的上层,目的 、

从应用开发人员的角度来看,可把RTP执行程序看成是应用程序的一部分,因为开发人员必需把RTP集成到应用程序中。在发送端,开发人员必需把执行RTP协议的程序写入到创建RTP信息包的应用程序中,然后应用程序把RTP信息包发送到UDP的套接接口(socket interface),如图16-13所示;同样,在接收端,RTP信息包通过UDP套接接口输入到应用程序,因此开发人员必需把执行RTP协议的程序写入到从RTP信息包中抽出媒体数据的应用程序。 图16-13 RTP和UDP之间的接口

现以用RTP传输声音为例来说明它的工作过程。假设音源的声音是64 kb/s的PCM编码声音,并假设应用程序取20毫秒的编码数据为一个数据块(chunk),即在一个数据块中有160个字节的声音数据。应用程序需要为这块声音数据添加RTP标题生成RTP信息包,这个标题包括声音数据的类型、顺序号和时间戳。然后RTP信息包被送到UDP套接接口,在那里再被封装在UDP信息包中。在接收端,应用程序从套接接口处接收RTP信息包,并从RTP 信息包中抽出声音数据块,然后使用RTP信息包的标题域中的信息正确地译码和播放声音。 如果应用程序不使用专有的方案来提供有效载荷类型(payload type)、顺序号或者时间戳,而是使用标准的RTP协议,应用程序就更容易与其他的网络应用程序配合运行,这是大家都

HTTP:超文本传输协议(Hypertext Transfer Protocol)

HTTP:超文本传输协议(Hypertext Transfer Protocol) 超文本传输协议(HTTP)是应用层协议,由于其简捷、快速的方式,适用于分布式和合作式超媒体信息系统。自1990 年起,HTTP 就已经被应用于WWW 全球信息服务系统。 HTTP 允许使用自由答复的方法表明请求目的,它建立在统一资源识别器(URI)提供的参考原则下,作为一个地址(URL)或名字(URN),用以标志采用哪种方法,它用类似于网络邮件和多用途网际邮件扩充协议(MIME)的格式传递消息。 HTTP 也可用作普通协议,实现用户代理与连接其它Internet 服务(如SMTP、NNTP、FTP、GOPHER 及WAIS)的代理服务器或网关之间的通信,允许基本的超媒体访问各种应用提供的资源,同时简化了用户代理系统的实施。 HTTP 是一种请求/响应式的协议。一个客户机与服务器建立连接后,发送一个请求给服务器,请求的格式是:统一资源标识符(URI)、协议版本号,后面是类似MIME 的信息,包括请求修饰符、客户机信息和可能的内容。服务器接到请求后,给予相应的响应信息,其格式是:一个状态行包括信息的协议版本号、一个成功或错误的代码,后面也是类似MIME 的信息,包括服务器信息、实体信息和可能的内容。 HTTP 的第一版本HTTP/0.9 是一种简单的用于网络间原始数据传输的协议。而由RFC 1945 定义的HTTP/1.0 ,在原HTTP/0.9 的基础上,有了进一步的改进,允许消息以类MIME 信息格式存在,包括请求/响应范式中的已传输数据和修饰符等方面的信息。但是,HTTP/1.0 没有充分考虑到分层代理服务器、高速缓冲存储器、持久连接需求或虚拟主机等方面的效能。相比之下,HTTP/1.1 要求更加严格以确保服务的可靠性。关于安全增强版的HTTP (即S-HTTP),将在相关文件中再作介绍。协议结构 HTTP报文由从客户机到服务器的请求和从服务器到客户机的响应构成。请求报文格式如下: 请求行-通用信息头-请求头-实体头-报文主体

超文本传输协议http实验报告

超文本传输协议http实验报告 篇一:计算机网络实验超文本传输协议Http分析 实验二超文本传输协议 Http分析 一、实验目的 通过分组捕获软件Wireshark来分析Http协议的以下内容: 1、 Http协议的Get/Resonse互动机制; 2、 Http协议的分组格式; 3、如何利用Http传输Html文件; 4、如何利用Http传输图片、动画等嵌入式文件; 5、观察Http的安全性能。 二、实验条件 1、Wireshark软件 2、IE浏览器 三、实验预习要求: 复习课本节的相关内容 四、实验内容:

1. Http的基本请求/响应互动机制 本实验通过访问一个最简单的页面展开,即该html 文件中不引用任何其它嵌入式文件(如图片、视频等)。操作步骤如下: 1、打开IE浏览器; 2、打开Wireshark软件,打开抓包菜单中的网络接口子菜单,从中选择本机使用的网络接口。 3、切入包捕获界面后,在过滤栏中输入http && == || == ,即只观察与交互的http分组。 4、在IE浏览器输入:;此时浏览器应该会显示一个最简单的html页面(只有一行)。 5、此时,你的Wireshak软件应该如下所示: 图1: 访问后的 Wireshark显示界面 从上图中可观察到总共捕获到四个http包,其中,包括两对Http的Get分组(由本机浏览器向服务器发出的请求)以及服务器返回的响应分组。需要注意的是,第一轮请求与回复请求的是具体的页面;而第二轮请求与回复涉及的却是一个文件。分组内容展示窗口中可以观察这两个分组

的详细信息。从展开的分组内容中可以看出:Http包是经由Tcp协议传输,而Tcp又是附加在IP数据包的基础上,后者又附加在一个以太网帧内。以第一轮分组为观察目标,试着回答如下问题: 1. 你的浏览器运行的是什么协议版本?还是 ? 服务器运行的又是什么版本呢? 2. 你的浏览器告诉服务器它能够接受的语言是? 3. 你浏览器所在的IP是?服务器的Ip又是? 4. 服务器返回给浏览器的状态代码是?这次访问成功了么? 5. 浏览器所访问的Html文件上次被修改的时间是? 6. 间隔两分钟后再重新访问该Html文件(即刷新IE 浏览器),再次查看Html文件上被修改的时间是?对比与问题5的答案,你观察出了什么结论? 7. 服务器返回给浏览器的分组的内容长度是多少? 2. Http附加条件判断的请互动机制 从课本节中我们知道,当前主要浏览器都有一个缓存机制,即将刚访问的页面内容保存在IE缓存区。在此基础上,当用户重新访问该页面时,浏览器会智能地发出一个带

网络摄像机传输协议概述

网络摄像机传输协议概述 1、传输协议 网络摄像机提供很多基于IP网络的传输协议,以尽可能地保证音视频数据,PTZ控制数据网络传输质量。实时视频流经过IP网络传输,通过多种协议组合,适应各种复杂的网络传输环境。 RTP(Realtime Transport Protocol),实时传输协议,其专门针对实时流媒体而设计, RTP 的基本功能是将几个实时数据流复用到一个UDP分组流中,这个UDP流可以被发送给一台主机(单播模式),也可以被传送给多台目标主机(多播模式)。因为RTP仅仅封装成常规的UDP,理论上路由器不会对分组有任何特殊对待,但现在高级的路由设备都有针对RTP协议优化选项。RTP协议的时间戳机制,不仅减少了抖动的影响,而且也允许多个数据流相互之间的同步,这样可以很方便地基于I/O事件对视频图像进行字幕添加,网络摄像机往往将音视频编码数据封装成RTP分组。 RTCP(Realtime Transport Control Protocol)实时传输控制协议,其是RTP的姊妹协议,它处理反馈、同步和用户界面等,但是不传输任何数据。它的主要功能是用来向源端提供有关延迟、抖动、带宽、拥塞和其它网络特性的反馈信息,编码进程可以充分利用这些信息。因此当网络状况较好时,可以提高数据速率(从而达到更好的质量),而当网络状况不好时,它可以减少数据速率。通过连续的反馈信息,编码算法可以持续地作相应的调整,从而在当前条件下尽可能地提供最佳的质量。 RTSP(Real Time Streaming Protocol)实时流协议,RTSP协议利用推式服务器 (push server)方法,让音视频浏览端,发出一个请求,网络摄像机只是不停地向浏览端推送封装成RTP分组的音视频编码数据,网络摄像机可以用很小的系统开销实现流媒体传

文件传输协议和文本传输协议

文件传输协议和文本传输协议 一.文本传输协议(HTTP)协议简介: HTTP是一个属于应用层的面向对象的协议,由于其简捷、快速的方式,适用于分布式超媒体信息系统。它于1990年提出,经过几年的使用与发展,得到不断地完善和扩展。目前在WWW中使用的是HTTP/1.0的第六版,HTTP/1.1的规范化工作正在进行之中,而且HTTP-NG(Next Generation of HTTP)的建议已经提出。 HTTP协议的主要特点可概括如下: 1.支持客户/服务器模式。 2.简单快速:客户向服务器请求服务时,只需传送请求方法和路径。请求方法常用的有GET、HEAD、POST。每种方法规定了客户与服务器联系的类型不同。 由于HTTP协议简单,使得HTTP服务器的程序规模小,因而通信速度很快。 3.灵活:HTTP允许传输任意类型的数据对象。正在传输的类型由Content-Type加以标记。 4.无连接:无连接的含义是限制每次连接只处理一个请求。服务器处理完客户的请求,并收到客户的应答后,即断开连接。采用这种方式可以节省传输时间。 5.无状态:HTTP协议是无状态协议。无状态是指协议对于事务处理没有记忆能力。缺少状态意味着如果后续处理需要前面的信息,则它必须重传,这样可能导致每次连接传送的数据量增大。另一方面,在服务器不需要先前信息时它的应答就较快。 二.文件传输协议(FTP) 文件传输协议(File Transfer Protocol, FTP)是一个用于在两台装有不同操作系统的机器中传输计算 机文件的软件标准。它属于网络协议组的应用层。 FTP是一个8位的客户端-服务端协议,能操作任何类型的文件而不需要进一步处理,就像MIME或Unencode一样。但是,FTP有着极高的延时,这意味着,从开始请求到第一次接收需求数据之间的时间会非常长,并且不时的必需执行一些冗长的登陆进程。 FTP实现的目标: 1.促进文件的共享(计算机程序或数据) 2.鼓励间接或者隐式的使用远程计算机 3.向用户屏蔽不同主机中各种文件存储系统的细节 4.可靠和高效的传输数据 缺点: 1.密码和文件内容都使用明文传输,可能产生不希望发生的窃听。 2.因为必需开放一个随机的端口以建立连接,当防火墙存在时,客户端很难过滤处于主动模式下的FTP 流量。这个问题3.通过使用被动模式的FTP得到了很大解决。 服务器可能会被告知连接一个第三方计算机的保留端口。 FTP虽然可以被终端用户直接使用,但是它是设计成被FTP客户端程序所控制。 运行FTP服务的许多站点都开放匿名服务,在这种设置下,用户不需要帐号就可以登录服务器,默认情况下,匿名用户的用户名是:“anonymous”。这个帐号不需要密码,虽然通常要求输入用户的邮件地址作为认证密码,但这只是一些细节或者此邮件地址根本不被确定,而是依赖于FTP服务器的配置情况。 FTP有两种使用模式:主动和被动。主动模式要求客户端和服务器端同时打开并且监听一个端口以建立连接。在这种情况下,客户端由于安装了防火墙会产生一些问题。所以,创立了被动模式。被动模式只要求服务器端产生一个监听相应端口的进程,这样就可以绕过客户端安装了防火墙的问题。 一个主动模式的FTP连接建立要遵循以下步骤:

相关文档
最新文档