地铁列车应急牵引允许控制电路的设计

地铁列车应急牵引允许控制电路的设计

地铁列车应急牵引允许控制电路的设计

要:原牵引允许控制系统电器故障对车辆牵引严重影响,极大影响行车效率,为此,在电路原理分析和充分考虑安全因素的基础上,提出了一套应急电路改进措施,改进后既能保障运行安全,又能提高运营效率,减少故障对运营造成的影响。关键词:地铁车辆;牵引控制;故障处理

1 车辆概况

南京地铁采用A 型车辆,其牵引、制动分别系统采用阿尔斯通和克诺尔公司的产品。

车辆单元分为带驾驶室的控制车A、带受电弓的动车B 和不带受电弓的动车C 三种类型。6车编组,每一列车由2个单元构成,即为 A B C C B A,A 车头采用自动车钩,两单元之间采用半自动车钩,单元内部车钩用半永久性连接杆连接。

2 影响车辆正常牵引的故障

2006年3月9日,2122列车在奥体中心站启动时,车辆不能正常牵引,制动缓解指示灯无显示(不亮),司机显示单元DDU 显示22A车制动缓解故障,降下受电弓推牵引,制动缓解指示灯无显示,仍不能正常牵引。下车查看发现,22A车的制动闸瓦实际已经缓解,因此,分析此车

地铁牵引变电所保护原理

0 引言 在我国,地铁是城市公共交通的重点发展方向,设备国产化又是发展的主要原则。在地铁直流供电继电保护领域内,国产保护设备还处于起步阶段,目前,国内主要城市的地铁直流保护设备均来自国外,例如广州地铁二号线选用的是德国Siemens公司的DPU96,武汉轻轨选用的是瑞士sechron公司的SEPCOS。通过对部分国外产品的研究,笔者认为,直流保护设备的原理并不是十分复杂,功能实现在理论上也没有任何障碍,希望通过本文的抛砖引玉,在将来的不久,能够看到国产的直流保护设备在我国甚至国际市场成为主流。 1 一次系统简介 图1显示了一个典型的牵引变电所的电气主接线图,该所将主变电所来的交流高电压(典型值:33kV)经整流机组(包括变压器及整流器)降压、整流为直流1500V,再经直流开关柜向接触网供电。我国上海和广州地铁的直流牵引供电系统均是如此,北京地铁采用的是第三轨受流器(上海和广州地铁则是架空接触网),其馈电电压为750V。由于750V馈电电压供电距离短、杂散电流大,现在多采用1500V。图2显示的是采用双边供电的上行接触网的分区段示意图(下行亦相同),一个供电区由相邻的2个牵引变电所同时供电,这种双边供电的方式提高了供电的可靠性,同时分区段的方式使故障被隔离在某个区段以内,而不致影响其它供电区段,因而被广泛采用。本文中所讨论的保护原理均基于1500V架空接触网双边供电方式。 图1 典型牵引变电所电气主接线参考图 图2 双边供电接触网分区段示意图

图3 短路电流与列车运行电流示意图 2牵引变电所内直流保护的配置 牵引变电所内的直流保护系统必须在系统发生故障时快速、准确地切除故障,同时又要避免列车正常运行时一些电气参数的变化引起保护装置误跳闸。后备保护的存在增加了故障切除的可靠性,同时也增加了与主保护配合的难度,所以保护的配置也不宜过多。不同的牵引变电所其电气特性不同,运行要求不同,所以保护装置的整定值不同,甚至保护的配置亦不相同。通常,牵引变电所内的直流保护安装于开关柜中,其可能的配置如下: A.馈线柜(图1中对应211,212,213,214开关柜): a.大电流脱扣保护(over-current protection); b.电流上升率保护(di/dt protection); c.定时限过流保护(definite-time over-current protection); d.低电压保护(under-voltage protection); e.双边联跳保护(transfer intertrip protection); f.接触网热过负荷保护(cable thermal overload protection); g.自动重合闸(automatic re-closure)。 B.进线柜(图1中对应201,202开关柜): a.大电流脱扣保护(over-current protection); b.逆流保护(reverse current protection)。 C.负极柜: a.框架保护(frame fault protection)。 D. 轨道电压限制装置

旅客列车尾部安全防护装置常见故障判断及处理2300字

旅客列车尾部安全防护装置常见故障判断及处理2300字 摘要:介绍列车尾部安全防护装置的工作原理及故障判断方法,总结车务站段在列车尾部安全防护装置使用过程中存在的常见故障、原因及处理措施。 关键词:列尾装置;工作原理;故障分析;处理措施 一、列尾?b置工作原理 列尾主机和司机控制盒的联系列尾主机和司机控制盒的联系如图1所示。 当首尾之间一对一的关系成功建立后,司机操作司机控制盒的按键,相应的操作编码就由机车电台发送出去,尾部列尾主机接收到编码后,通过发射盘将编码送入主控盘内的解码器还原成指令,列尾主机电气部件进行相应的处理,并将处理结果通过编码和模拟语音方式送入发射盘进行调制,由天线发射出去,当司机控制盒接收到一对一的编码时,再将其还原成数字显示和语音。 二、列尾装置故障排查及处理 (一)列尾主机故障排查 1、将输码器与列尾主机的相应插座连接,检查主机内置操作码是否发生变异,此方法适用于CP-B/C/D 型列尾主机。 2、对于机车乘务员反映无反馈信息,而常规检测又一切正常的列尾主机,用功率计检测主机发射盘的功率和天线的驻波比。 3、列尾主机通电后,闪光灯不亮,可采用替换法继续排查。 4、列尾主机发射性能检查。主机通电后,红键消号无反应,可通过检查主控盘内的PTT指示灯与发射盘的发射指示灯是否正常闪烁来排查,若主控盘PTT指示灯不亮,则可能是PTT电路故障,更换主控盘;若发射盘发射指示灯不亮则可能是发射盘故障,更换发射盘。 5、传感器性能检查。主机通电后,红键消号正常,风压达到480kPa或580kPa,但主机不提示输号请求。可用红外设备输号后,检查风压值的精度来判断是否传感器故障,若传感器正常,主机在风压达到输号规定值时仍无发射,则应更换主控盘。 6、主机接收性能检查。主机通电后,红键消号正常,风压达到480kPa或580kPa,主机提示输号请求,但无法进行无线输号。应先检查发射机接收指示灯是否有指示,无指示则说明发射机故障;若有指示,且发射机音量开关位置正常,故障可能产生在发射盘的接收或主控盘的解调方面,则应更换主控盘或发射盘进行判断。 (二)司机控制盒故障排查 1、检测司机控制盒参数。 2、利用无线电综合测试仪或示波器,检测司机控制盒发码信号频偏和失真度。 3、调节司机控制盒内SMC跳针的位置,并配合1/3衰减跳针位置,观察接受尾部主机反馈时,语音和显示是否正常,以判断解码器、语音芯片、数码显示管等是否工作正常。 4、按某键时,操作指示灯不亮,按其他键都正常,可判断该键失效。 5、按任一键,操作指示灯均不亮,重新拔插司机控制盒电缆,观察显示屏上是否有“P01”的复位显示,如无此显示,则是司机控制盒电源部分故障;如有此显示,则是司机控制盒PTT控制电路故障。 6、采集、分析司机控制盒的运行数据,并对照相应列尾主机内的数据,以判断故障是否发生在司机控制盒。 三、列尾装置常见故障及处理措施 (一)无电或按压红键无反馈。原因分析:电池无电,接触不良或电源反应;主机电源簧片故障;主控盘或发射硬件故障;红键故障;监控电台与主机频道不一致。处理方法:调整电池及簧片、更换电池更换主机按列尾故障行车办法处理;调整监控电台频道。

列车运行图课程设计报告

单线区段列车运行图分析实验报告 姓名黎文皓 学号 1104121013 专业班级运输1203 指导教师邓连波 中南大学交通运输工程学院 2015年 6月

一、通过能力计算 由表可得,T 周调整后最大为36min 。 区间现有通过能力为: a)当不考虑固定作业时间和有效度系数时 n =144036 =40(对) n 货 非=n ?ε客n 客?(ε摘挂?1)n 摘挂=40?1.2×5?(1.6?1)×2 =32.8≈33(对) b)当考虑固定时间而不考虑有效度系数时 n =1440?9036 =37.5≈38(对) n 货 非=n ?ε客n 客?(ε摘挂?1)n 摘挂=38?1.2×5?(1.6?1)×2 =30.8≈31(对)

c)当同时考虑固定作业占用时间和有效度系数时 n =(1440?T 固)×d 有效 T 周 =(1440?90)×0.8936 =33.375≈33(对) n 货 非=n ?ε客n 客?(ε摘挂?1)n 摘挂=33?1.2×5?(1.6?1)×2 =25.8≈26(对) 二、列车运行图技术指标统计及分析 1、数量指标 (1)按列车性质分类的旅客列车及货物列车对数 (2)旅客列车及货物列车走行公里 a) A-B 区段长度为:13+14+12+10+12+13+15+14=103km b) 旅客列车走行公里:103×10=1030km c) 货物列车走行公里:103×26=2678km (包括摘挂) (3)由各始发站发出的各种旅客列车数和货物列车对数 A 和B 发出的各种旅客列车数和货物列车数分别为5对、13对。 (4)机车台数 本设计中共用机车台数7台

地铁1号线供电系统设计

(此文档为word格式,下载后您可任意编辑修改!) 工作总结 地铁牵引供电系统设计 分校(站、点):国顺 年级、专业:08秋机电一体化 教育层次:大专 学生姓名:朱臻 指导教师:李杰 完成日期: aufwiedesan

目录 一、牵引站一次系统 (3) 二、牵引供电系统各主要设备介绍 (5) (一)交流系统 (5) (二)整流器 (6) (三)直流高速断路器 (9) (四)中央信号屏…………………………………………………………………… 11 参考文献…………………………………………………………………………… 14 致谢……………………………………………………………………………… 15

地铁牵引供电系统设计 随着城市的发展,轨道交通越来越离不开人们的日常生活,上海地铁的客流也与日聚增,而供电系统在整个地铁运营中则起着举足轻重的作用。地铁供电系统主要可分为:主变电系统,牵引供电系统和车站及附属设备供电系统(降压站)三大部分,主变电系统就是将电网的110KV高压电转换为33KV 和10KV供牵引和降压站。牵引供电系统(以下简称牵引站)要求:供电安全系数高,能适应地铁列车大密度、高频率启动和制动,相邻供电区域间必须没有无电区域。因此,上海地铁采用了33KV的交流高压电通过整流器转为1500V的直流电并送到触网为列车供电技术。下面就以92年建成的地铁一号线衡山路牵引站为例作一下系统的介绍。 一、牵引站一次系统 地铁供电系统不同于一般的工业和民用电,属于一级负荷,对安全性和可靠性有着较高的要求,所以牵引站也是按照上述要求来设计的。衡山路牵引站33kv有两条回路供电,分别是上衡牵和广衡牵33KV进线开关,平时上衡牵运行,广衡牵作备用:采用西门子公司制造的GIS(六氟化硫全封闭高压开关柜)组合式开关柜,比传统高压柜占地面积小,可靠性高,维护工作也大大减少。 本牵引站由两台4.4MVA整流变压器将33KV降到1220V并送往整流器,采用干式双绕组变压器,一次侧为Dd0接法,有利于简少谐波干扰;二次侧为DY5接法利用三角形和星形互差30度的特点组成交流6相整流电路通过整流以后得到12脉波直流电,比一般三相6脉波整流电路大大减少了脉动系

列车牵引计算课程设计

课程设计 课程名称机车车辆方向课程设计题目名称 SS4列车牵引计算 学院 _ 专业 班级__ 学号_____ __ 学生姓名______ __ 指导教师___

目录 摘要 (2) 0 引言 (3) 1.设计任务 (4) 2.机车基本参数 (4) 2.1计算牵引质量 (4) 2.2校验并确定区间牵引质量 (6) 2.3列车换算制动率的计算 (6) 3 合力图 (7) 3.1 机车各种工况的曲线 (7) 3.2绘制合力曲线 (11) 4计算制动距离和运行时间 (15) 4.1计算列车制动的距离 (15) 4.2运行时间 (19) 结束语 (27) 参考文献 (27)

摘要 本次课程设计主要进行了列车的计算牵引质量,校验了区段牵引质量,以及制动率。利用matlab画出了机车各工况的单位合力曲线。对化简的线路纵断面进行了运行时间计算及制动距离的计算。手绘出了绘制列车运行速度线和列车运行时间线。 关键词:列车;牵引;制动;计算

0 引言 提高列车牵引质量和运行速度,保证铁路行车安全和尽量节约机车能耗,是扩大铁路运输能力提高铁路工作效益的重要内容。为此,必须讲究科学管理和经济操纵,提高运输管理和列车操纵水平;很好的研究列车的牵引质量,运行速度,制动距离及机车能耗等与哪些因素有关,怎样在保证行车安全和节能的条件下“多拉快跑”;同时,要让铁路运输管理工作人员及其后备军都有这方面的知识,即会分析也会计算。列车牵引计算正是这方面必须有的,故进行本次课程设计。

1.设计任务 SS 4型电力机车牵引70辆货车,均为滚动轴承(牵引质量5000t ),其中标记载重50t ,装有GK 型制动机的重车48辆,空车5辆;标记载重25t ,装有120型制动机的重车12辆;标记载重25t ,装有120型制动机空车5辆。车辆按高磷闸瓦计算,列车管受空气压力为500KPa 。制动初速度为104Km/h 。SS 4型电力机车电功率6400KW ,轴式为2×(Bo —Bo ),轴重23t 。机车单位阻力 20'000320.00190.025.2v v ++=ω(N/KN ) 1.1求解 (1)计算牵引质量,校验并确定区段牵引质量;计算列车换算制动率等。 (2)绘制合力表,绘制合力曲线。 (3)化简线路纵断面的运行时间及制动距离等。 (4)绘制列车运行速度线和列车运行时间线。 (5)便知点算程序计算,并计算及绘图,编程语言不限。 2.机车基本参数 额度工作电压 单相交流50Hz 25kV ;传动方式 交—直流电传动;轴 式 2×(Bo —Bo );机 车 重 量 2×92 t ;轴 重 23t ;持 续 功 率 2×3200kW;最高运行速度 100 km/h ;持 续 速 度 51.5 km/h ;起动牵引力 628kN ;持 续 牵 引 力 450kN ;电制动方式 加馈电阻制动 电制动功率 5300kW ;电制动力 382kN (10~50km/h ); 传动方式 双边斜齿减速传动;传 动 比 88/21;

地铁牵引电路分析

牵引电路分析 1.列车牵引 02K06接合,通过02K56主风缸继电器检测到压缩空气系统中最小压力,所有停放制动缓解,02K57接合,所有门关闭,08K09 08K10激活。HSCB 接通 如果司机被激活(02K04得电)02S04 HSCB接通键。 HSCB接通指令通过B车的04A15DX 模块被传输到控制和通讯系统。 高速断路器HSCB1 (LCB1)和HSCB2(LCB2)位于01A01箱内。 通过01A01箱内的DX输出,在继电器和接触器的帮助下,可以接通或切断这些高速断路器。

如果所有HSCB断开列车线被接通,那么01A01箱内的紧急跳闸继电器能够缓解高速断路器。 列车线断开连接:如果操作任何一司机室紧急切断按钮或由于某种原因将布置在整个列车上的紧急按钮安全回路中断。 2.警惕按钮 警惕按钮就是驾驶控制器主手柄头上的蘑菇形按钮。主要防止驾驶员精神不集中,失去意识,神志不清。在牵引过程中一旦松开警惕按钮,3到5秒内未重新按下,列车就紧急制动并报警。 自动运行时,可以通过继电器04K04触点33-34和触点43-44连接。 继电器02K09必须闭合才能使紧急制动无效。 手动驾驶时02K09得电,如果02K05触点43-44闭合,2K10被激活,列车静止。 当列车运行时,警惕按钮松开,就有报警。如果超过了02K08的延时设置,02K09就会断开,施加紧急制动直到列车完全停止。牵引制动控制器02A01-S20必须被设置在牵引槽外。 这时操作02A01-S00 警惕按钮列车可继续运行。 如果运行期间在非允许状况下改变了方向手柄的位置,02K09通过02K12和02K14触点33-34被断开,开始施加紧急制动直到列车完全停止。 3.方向选择 手柄打到F前进,S12闭合,继电器02K14得电,前行列车控

SS4改型电力机车常见故障处理

二、DK一1型电空制动机故障处理部分 (一)故障:均衡风缸与列车管均无压力 现象:空气制动阀手柄在“运转位”,电空制动器手柄在“运转位”,均衡风缸与列车管均不充风。 原因:1.电源开关未合; 2.电一空转换扳键未在电空位; 3.紧急阀及电联锁故障; 4.缓解电空阀故障。 处理:1.电空制动控制器在各位置均不能工作,则恢复电源开关。 2.空气制动阀移缓解位,均衡风缸有压力上升,但不能达定压,则转换扳键至电空位。 3.断开464开关即恢复充风。检查紧急阀及电联锁,一时无法恢复,即应断开464开关。 4.手按258缓解电空阀头部,即能恢复充风。检查258电空阀,一时无法恢复,转空气位操纵。 (二)故障:均衡风缸有压力,列车管无压力 现象:空气制动阀手柄在“运转位",电空制动器手柄在“运转位”,均衡风缸充风正常,列车管不充风。 原因:1.253中立电空阀下阀口未复位或被异物垫住; 2.中断阀遮断阀卡,不复位。 处理:1.电空制动控制器手柄置中立位2~3次,看是否能恢复正常,若运转位253中立电空阀继续排风不止,关闭157塞门,转换至空气位操纵。检测更换253中立位电空阀。 2.转空气位操纵后,列车管仍无压力,拆检遮断阀,一时修不好,抽出遮断阀,维持运行,到段检修。 (三)故障:制动后中立位移运转位,均衡风缸不充风。 现象:空气制动阀手柄在“运转位",电空制动器手柄,制动后中立位移运转位,均衡风缸不充风。 原因:1.258缓解电空阀接线松脱或803线无电; 2.203止回阀固着或过风慢; 3.157塞门关闭。 处理:1.检查258缓解电空阀接线及803线无法修复,转空气位操纵。 2.抽出,203止回阀清洗,并吹扫管路。 3.恢复157塞门至开位。 (四)故障:均衡风缸及列车管充风缓慢 现象:空气制动阀手柄在“运转位",电空制动器手柄在“运转位”,均衡风缸及列车管充风缓慢。 原因:1.中继阀主膜板破; 2.二极管263、264同时击穿;。 3.259重联电空阀卡漏。 处理:1.电空制动控制器放制动位不减压,拆检中继阀。运行中则用手动放风阀减压,待停车后拆中继阀,抽出供风阀,维持运行。 2.充风先快后慢。转空气位恢复正常,则可切除264二极管(断开800-264接线),维持运行。 3.转空气位操作正常。则确认259重联电空阀故障,检修此阀。运行中,则转空气位操作。 (五)故障:制动后中立位,均衡风缸风压继续下降。 现象:空气制动阀手柄在“运转位”电空制动器手柄,制动后中立位,均衡风缸风压继续下降。 原因:1.某端空气制动阀转换柱塞第二道0形圈漏: 2.257制动电空阀上阀口不严: 3.二极管262断路。 处理:1.检查调压阀53(54)溢流孔,判断泄漏端。操纵端0形圈漏,可在减压后放中立后,将电空扳键转至空气位,空气制动阀回运转位后,扳键再扳回电空位即可缓解。非操纵端0形圈漏,则须转至空气位运行。

地铁直流牵引供电系统

地铁直流牵引供电系统 地铁直流牵引供电系统GB 10411--89 1 主题内容与适用范围 1.1 主题内容 本标准规定了地铁直流牵引供电系统中供电制式、牵引电压等级、变电所及接触网德各项性能指标和设备运行指标等。 1.2 本标准适用于城市地铁德直流牵引供电系统。 2 引用标准 GB 5951 城市无轨电车供电系统 GBJ 54 低压配电装置及线路设计规范 GBJ 62 工业与民用电力装置德继电保护和自动装置设计规范 GBJ 64 工业与民用电力装置德电压保护设计规范 3 术语 3.1 供电、馈电 在城市地铁牵引供电系统中,通常将交、直流配电系统称为供电,仅直流配电称为馈电。 3.2 系统最高电压 指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.3 系统最低电压 指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.4 设备最高电压 指系统正常运行时,设备所承受德最高运行电压。 3.5 供电制式 指系统中采用的电流制、馈电方式及电压等级等。 3.6 牵引变电所 供给地铁一定区段内直流牵引电能的变电所。 3.7 整流机组 整流器与牵引变压器组合在一起的电流变换设备。 3.8 整流机组负荷等级 根据负荷曲线的性质特征所划分的整流机过载能力等级。 3.9 接触网最小短路电流 在最小运行方式下,接触网中离馈入点最远端发生正负极间短路的电流。 3.10 接触网最大短路电流 在最大运行方式下,接触网馈入点处发生正负极间短路时的电流。 3.11 未端电压 接触网中离馈入点最远端的电压。 3.12 馈线 从牵引变电所向接触网输送直流电的馈电线。 3.13 双边馈电 一个馈电区间由相邻牵引变电所各经一路馈线同时馈电。

旅客列车信息显示屏常见故障处理方法

旅客列车信息显示屏常见故障处理方法旅客列信息显示系统由: 主控站、顺号调节器、LED信息显示屏、数据通讯线路等构成。整个系统以主控站为中心,顺号调节器为节点,显示屏为控制对象。 旅客列车信息显示系统主要是由主控站、顺号调节器.、LED信息显示屏.数剧通信线路等构成。整个系统以主控站为中心,顺号调节器为节点,显示屏为主控对象。系统采用RS485总线标准,最大传输距离可达 1.2KM。系统的通讯对象以顺号调节器为主体,主控站通过安装在列车顶部的GPS天线接收美国24颗公共导航卫星发送数据,然后由主控站进行处理,与事先存储在存储器内的列车运行信息进行比较生成列车运行时的动态公共信息,这些信息包括: (1)当前时间、日期和星期 (2)前方到达车站名、正点时间和停留时间 (3)列车运行速度 (4)车厢外温度 (5)列车运行状态、包括晚点信息和临时停车信息 (6)列车距前方站的距离;此外显示屏还可以显示一些预先存在存储器内的固态信息: 如广告、列车的运行线路等。 一、主控站及其常见故障 主控站是由显示模式的LCD液晶显示器,GPS天线、车外温度传感器、通讯总线光隔离接口、PCMCIA存组成。主控站在一般情况下无需人工干预便能自动运行。这在很大程度上降低了它故障率。但也由几种常见的故障,在日常检修中会出现,在这里介绍以下我们的工作经验和检修方法。

1.故障现象 (1)LCD液晶显示器显示不正常 这样的故障应先检查其接插件是否有松动现象,若有松动使其接触良好。如果没有松动,查看其后面的拨码开关的位置是否正确,如果位置不对,请恢复。如以上均正常,请更换主机板。 (2)LCD液晶显示器不亮 先检查器接插件是否有松动,若松动使其接触良好,若正常在检查开关电源是否有+12V电压输出,若没有请更换开关电源,若以上均正常用替换法检查液晶显示器和主机板,至找出故障所处。 (3)主控站不能定位 首先要确定GPS天线所在的位置是否可以接收到GPS信号,如果可以接收到信号,就应检查一下开关电源输出电压是否正常,接收器的工作电压是+5V,若电压不正常,须更换开关电源,若电压正常请进行下一步,退出工作界面,在TOOLS目录下键入C: >\GPS U/C2←,若液晶显示器上能检测到GPS信号,说明GPS与主机间的工作正常,应检查天线与GPS的接插间是否接触良好,若接触不好,重新插上插头使其接触良好;若接触良好,请用替换法检验天线,若能定位更换天线;也可以通过测量天线阻值来确定其好坏.若液晶显示器仍检测不到GPS信号,首先应更换GPS试验,若能定位更换GPS,否则应更换扩展板试验.若能定位,可能是主机板损坏,若仍不能定位请更换主机板. (4)不显示车外温度 不显示车外温度多数是由车外温度传感其损坏造成的.其判断方法: 测量外温传感器的工作电压是否正常,工作电压应为+ 4.8~+

地铁车辆电气牵引及控制系统分析

地铁车辆电气牵引及控制系统分析 摘要:目前,我国地铁行业发展十分迅速,地铁运输系统是城市发展规划的重 要基础工程,是保证城市交通运输体系顺利运行的重要组成部分。电气牵引系统 作为地铁列车的电力供给方式,其和其所搭载的控制系统对列车顺利运行起到了 至关重要的作用。本文,重点对地铁电气牵引系统和其搭载的控制系统进行分析。 关键词:电气牵引;牵引电机;逆变器;制动设备 引言 电气牵引系统是地铁正常运行的保障,其主要负责地铁运行期间所需的电能。随着城市轨道交通的迅速发展,地铁车辆检修工作变得越发重要,而电气牵引与 控制系统作为地铁运行的重要依靠,其能确保地铁安全稳定运行。因此,加强对 车辆的检修尤为关键。 1地铁车辆电气牵引系统的结构特点 地铁车辆中的牵引系统主要是由受电弓、牵引电动机、高压箱、牵引逆变器、制动电阻和避雷器等部分组成的。其中高压箱是由主隔离开关、相应的充电设备 和断高速路器等部分组成,但是在地铁车辆中,大部分都是由两台受电弓组成, 从而防止由于其中一台在遇到故障问题后导致辅助逆变器和牵引逆变器停止运行 等问题。这几个受电弓由于可以向动力单元分别输送动力产生所必须的高压电源,因此假如其中一台受电弓发生故障问题,而另一个受电弓可以依然促进辅助逆变 器和逆变器的正常运行。在牵引系统同时还设置有牵引逆变器,将支撑电容输入 进逆变器中可以促进点电压输入的稳定性,同时还能发挥出能量缓冲的效果。地 铁车辆中的牵引系统是由各种电路和设备组成的,而系统的顺利运行也需要以相 关电路设备为支撑,在大部分设备之中,车辆停车和减速等行动都离不开制动装 置的支持,因此制动装置能够有效保障地铁的安全运行。目前我国城市中的地铁 车辆都是通过电阻制动、再生制动以及机械制动等形式来进行运行的,而机械制 动主要是通过空气的不断压缩来实现制动效果的,而电阻制动以及再生制动都是 通过轨道电磁制动和铁路电磁铁来实现的,再生制动当中,利用地铁的制动牵引 能够将动能顺利转化成电能,随后再生制动能量能够返回到电网当中,从而将制 动电能在提供给其它车辆。 2地铁车辆电气牵引及控制系统 2.1制动控制 众多设备中,制动设备是最重要的设备之一,地铁列车减速、加速、停车都 是通过制动装置完成的,制动装置高效的响应、运行是保证列车安全运行的重要 保障。在地铁列车牵引运行过程中,牵引力控制系统的作用至关重要,只有科学、合理的设计电气控制系统,才能有效的对地铁列车进行制动。目前我国城市地铁 列车使用的制动形式主要以机械制动、电阻制动和再生制动为主。所谓的机械制 动主要依靠压缩空气实现制动,而电阻制动则依赖轨道电磁制动,而再生制动可 以有效的将动能转化为电能进行能量循环使用。在列车的实际运行中,三种制动 方式和发挥出的功效差别较大,通常来说,在进行列车制动控制时,一般按照先 再生制动,随机电阻制动,最后进行机械制动的步骤顺序。但是在列车的实际运 行过程中,综合考虑制动效率和制动过程的能量损耗,在每个制动步骤中,一般 不会使用单独的制动方式,需要将多种制动方式耦合使用达到正向协同作用,提 高制动效果,减少制动过程中的能量损耗。根据地铁运行经验总结来看,地铁列 车设计的制动方式主要为电阻制动和再生制动,而机械制动方式主要起到辅助的

地铁直流牵引供电系统(GB 10411--89)

地铁直流牵引供电系统 GB 10411--89 1 主题内容与适用范围 1.1 主题内容 本标准规定了地铁直流牵引供电系统中供电制式、牵引电压等级、变电所及接触网德各项性能指标和设备运行指标等。 1.2 本标准适用于城市地铁德直流牵引供电系统。 2 引用标准 GB 5951 城市无轨电车供电系统 GBJ 54 低压配电装置及线路设计规范 GBJ 62 工业与民用电力装置德继电保护和自动装置设计规范 GBJ 64 工业与民用电力装置德电压保护设计规范 3 术语 3.1 供电、馈电 在城市地铁牵引供电系统中,通常将交、直流配电系统称为供电,仅直流配电称为馈电。 3.2 系统最高电压 指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.3 系统最低电压 指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.4 设备最高电压 指系统正常运行时,设备所承受德最高运行电压。 3.5 供电制式 指系统中采用的电流制、馈电方式及电压等级等。 3.6 牵引变电所 供给地铁一定区段内直流牵引电能的变电所。 3.7 整流机组 整流器与牵引变压器组合在一起的电流变换设备。 3.8 整流机组负荷等级 根据负荷曲线的性质特征所划分的整流机过载能力等级。 3.9 接触网最小短路电流 在最小运行方式下,接触网中离馈入点最远端发生正负极间短路的电流。 3.10 接触网最大短路电流 在最大运行方式下,接触网馈入点处发生正负极间短路时的电流。 3.11 末端电压 接触网中离馈入点最远端的电压。 3.12 馈线 从牵引变电所向接触网输送直流电的馈电线。 3.13 双边馈电 一个馈电区间由相邻牵引变电所各经一路馈线同时馈电。 3.14 单边馈电 一个馈电区间由相邻两牵引变电所各经一路馈线同时馈电。

地铁列车紧急牵引模式分析与对策

地铁列车紧急牵引模式分析与对策 魏武忠 深圳地铁有限公司运营分公司车辆管理中心 SGWWZ@https://www.360docs.net/doc/5b5210087.html, 摘要:本文分析了深圳地铁列车紧急牵引模式的功能和原理,指出紧急牵引模式存在问题,并提出改进措施。 关键词:紧急牵引模式,原理,改进措施 1.引言 城市轨道交通中,列车设备发生故障造成无法牵引,需要救援时,对整个城市轨道交通的运营造成重大的影响,因此,在列车系统的设计中,对牵引系统等关键设备采取冗余设计或备用模式的方式,来提高设备运行的可靠性,减少直接救援。本文以深圳地铁列车紧急牵引模式为研究对象,介绍深圳地铁列车紧急牵引模式的功能和原理,指出列车紧急牵引模式存在的问题,并提出改进措施。 2.深圳地铁列车控制和通信概述 深圳地铁列车是由4动2拖车组成的6列编组的列车,A-B-C三车为一单元列车,具有完整、独立的列车功能,两单元列车设备在功能上互为冗余设计。列车控制核心是车辆控制和通信系统(TCC),车辆控制和通信系统协调所有总线之间的通信和控制列车的功能。TCC系统的核心是VTCU,它是一个总线管理器,连接车辆总线MVB和列车总线WTB,管理列车控制和网关通信[1]。 2.1TCC结构概述 如图1TCC结构图所示,列车和车辆控制系统有3个层次:列车控制,车辆控制,子系统控制(包括牵引控制,空气制动控制等)。 当两个单元组成一组车时,列车控制系统传送控制信号和故障信息,两个并行的WTB 列车线构成了冗余结构。 车辆控制系统通过MVB和串口或I/O单元给本车的分布式系统控制信号。 子系统都有自己的控制系统,例如牵引系统、制动系统助逆变器控制系统等,都直接联到MVB上。子系统是最底层的控制系统,VTCU向子系统提供控制信号。 -1-

地铁列车应急牵引允许控制电路的设计

1 车辆概况 南京地铁采用A 型车辆,其牵引、制动分别系统采用阿尔斯通和克诺尔公司的产品。 车辆单元分为带驾驶室的控制车A、带受电弓的动车B 和不带受电弓的动车C 三种类型。6车编组,每一列车由2个单元构成,即为A—B —C —C —B —A,A 车头采用自动车钩,两单元之间采用半自动车钩,单元内部车钩用半永久性连接杆连接。 2 影响车辆正常牵引的故障 2006年3月9日,2122列车在奥体中心站启动时,车辆不能正常牵引,制动缓解指示灯无显示(不亮),司机显示单元DD U 显示22A车制动缓解故障,降下受电弓推牵引,制动缓解指示灯无显示,仍不能正常牵引。下车查看发现,22A车的制动闸瓦实际已经缓解,因此,分析此车为制动缓解控制电路故障,现场无法处理,只能按特殊情况下应急低速牵引(3 km/h)回库。回库后更换制动压力控制开关触点BCPS ,试车线试验正常。 此种故障运营1年以来已发生多次,此种故障的偶然性、突发性特别强,有时能自动恢复,在运行中不易找到故障的原因,从而,导致车辆不能正常牵引。3 控制原理 根据牵引允许控制原理分析(图1),牵引允许时要激活1个牵引允许继电器MA R,通过M A R 接点可以激活牵引指令列车线并启动牵引逆变器电源,列车可正常牵引。在正常情况下激活M A R 得电通路条件是: (1)110 V 供电正常且钥匙闭合,司机室激活继电器COR3 常开点闭合; (2)所有的门都关闭,车门互锁继电器DIR_A1 和DIR_A2 常开点闭合; (3)所有停放制动都缓解,所有停放制动缓解继电器A P BR R 常开点闭合; (4)所有常用空气制动缓解,所有常用空气制动缓解继电器ABRR或制动未缓解延时继电器BNRDYR常开点闭合; (5)没有常用制动指令,制动需求继电器BDR 在常开点位置,接通回路; (6 )紧急制动接触器E B K 1 、EBK2是得电状态(没有紧急制动),EBK1 和EBK2 的常开触点均闭合。 这样,MAR 就得电激活了,牵引指令列车线也就可以激活,列车就可以正常牵引。 在列车没有开动之前,所有制动缓解继电器A B R R 是不得电的,M A R 不能靠A B R R 来激活。而是需要制动未缓解继电器B N R D Y R的常开触点临时激活一段时间。 4 致车辆不能正常牵引的原因 空气制动的制动“施加”与“缓解”2根列车线串入每辆车制动缓解控制器BRG 中的压力开关触点BCPS(图2),其中空气制动施加列车线(Brake applied trainline)串入的是常开触点,当它闭合时,则激活所有空气制动施加继电器ABAR ;空气制动缓解列车线(Brake re-leased trainline)串入的是常闭触点,要激活的所有空气制动缓解继电器(ABRR)。在BRG 开关内,若施加了空气制动,则开关压力会高于0.7 bar,然后开关触点动作,BRG状态发生翻转,制动施加指示列车线导通,

地铁交流牵引供电系统探讨

地铁交流牵引供电系统探讨 发表时间:2019-07-05T14:57:06.667Z 来源:《电力设备》2019年第4期作者:潘宏锋 [导读] 摘要:随着研究的不断深入,大负荷牵引情况下直流供电系统杂散电流等问题对城市建设的影响不断显现。 (南宁轨道交通集团有限责任公司广西南宁 530029) 摘要:随着研究的不断深入,大负荷牵引情况下直流供电系统杂散电流等问题对城市建设的影响不断显现。同时,直流系统所亭多、投资大也不利于地铁的进一步运用。本文对地铁直流供电系统现状进行了分析,并对建设交流供电系统的可能性提出了一些看法与建议。 关键词:地铁;交流;牵引供电 1地铁供电系统 1.1地铁供电系统的发展 自1903年英国利物浦地铁使用电力作为牵引动力以来,地铁供电技术的变化和革新就一直伴随着隧道的不断掘进而变化。地铁牵引供电系统伴随着科技的进步,其供电方式也发生着不断的改变。目前,新建成的地铁项目中绝大多数选用DC750V、DC1500V接触网或接触轨的供电系统。 1.2地铁牵引供电系统的基本结构 以新建成的南宁地铁1号线为例,其采用了DC1500V,简单悬挂接触网供电的模式。全线设有2个中心变电站,14个牵引变电所,27个降压变电站。 地铁采用的变压器由两部分组成,即移相变压器和整流机组。移相变压器负责将通过供电线路从中心变电站输送而来的35kV三相电降压。降压后,直接进入整流机组,整流为直流的十二脉冲波形。 为改善整流装置的高次谐波对电网、通信等设备的影响,目前地铁牵引供电系统中广泛使用等效24脉波整流电路,每个脉波相差15°的相位角,如图1所示。 图1 移相变压器原理图与向量图 直流供电系统虽然具有网侧3/5/7次谐波小的优点,但因其特点而产生的杂散电流危害影响较大。 2地铁杂散电流 2.1杂散电流的成因 在理想情况下,走行轨的电阻RR应为0,走行轨对大地的泄漏电阻RT为无穷大。此时,从接触网上取流IT与轨回流IR相等,所有的电 流都回流到变电所。但因现实中,,因此,存在杂散电流:(1) 杂散电流的存在,对地下布满管线的城市的影响尤为巨大。根据法拉第电解第一定律可知道,有[2]:(2) 根据(2)式,按照10min车辆追踪时间,每天96列列车经过,每列杂散电流100A,通过时间为1min,对于铸铁水管一年可腐蚀掉60.7kg。而且由于管道一般为合金管或纯度不高的金属材质制成,因此,其中难免会形成不同杂质与金属之间的电池效应,从而加快管道的腐蚀速度。 虽然目前大量采用复合材料管线代替原有的金属材质管线,但建筑、桥梁基础中的钢筋、各种供电设备的接地、天然气管道、供暖管路等仍无法用复合材料制成。因此,杂散电流的影响仍不可忽视。 2.2杂散电流常用的防治手段 杂散电流的防治可通过以下几种渠道实现: (1)采用杂散电流收集网收集杂散电流。通过将道床内的结构钢筋的电气通路导通,使其成为杂散电流收集的主要渠道[3]。 (2)涂抹绝缘材料。在隧道内或管线外涂抹绝缘涂层达到防腐蚀的效果。 (3)预埋特殊阳极材料,使其代替管线被腐蚀。 (4)将走行轨进行绝缘处理,使,从而使杂散电流能绝大多数通过走行轨回流到变电所内。 但(1)方案中牺牲了道床的安全性,结构钢筋将长时间受到腐蚀,不利于地铁运行安全。(2)、(3)作为被动方式,其日常运行中难以实时进行监控,存在隐性安全隐患。(4)方案的一次性投资和后期维护成本都较高。 3地铁交流牵引供电技术初探 3.1交流供电的优势 采用交流供电的优势在于供电能力强,不存在杂散电流的影响。同时,建设费用低,能满足大运量、快速起停的要求。与直流供电相比,虽然交流电需建设电分相,因地铁采用的电压较低,可采用结构相对简单的分段绝缘器作为分相。同时,目前地铁采用的变压器大多为D,Yn11型变压器,采用交流供电后,可采用V/V或V/X接线方式,大大提高功率因数,同时降低能耗。

HXD3列车牵引计算

课程设计 课程名称__机车车辆方向课程设计__题目名称____HXD3列车牵引计算 学院________机械工程学院 _ _专业机械工程及自动化 班级__ 学号_____ _ __ 学生姓名________ __ __ 指导教师________ __ 2012年3 月2日

目录 摘要 (2) 0 引言 (3) 1.设计任务 (4) 2.机车基本参数 (4) 2.1计算牵引质量 (4) 2.2校验并确定区间牵引质量 (5) 2.3列车换算制动率的计算 (6) 3 合力图 (7) 3.1 机车各种工况的曲线 (7) 3.2绘制合力曲线 (11) 4计算制动距离和运行时间 (15) 4.1计算列车制动的距离 (15) 4.2运行时间 (19) 5.绘制列车运行速度线和列车运行时间线 (24) 结束语 (26) 参考文献 (27)

摘要 本次课程设计主要进行了列车的计算牵引质量,校验了区段牵引质量,以及制动率。利用matlab画出了机车各工况的单位合力曲线。对化简的线路纵断面进行了运行时间计算及制动距离的计算。手绘出了绘制列车运行速度线和列车运行时间线。 关键词:列车;牵引;制动;计算

0 引言 提高列车牵引质量和运行速度,保证铁路行车安全和尽量节约机车能耗,是扩大铁路运输能力提高铁路工作效益的重要内容。为此,必须讲究科学管理和经济操纵,提高运输管理和列车操纵水平;很好的研究列车的牵引质量,运行速度,制动距离及机车能耗等与哪些因素有关,怎样在保证行车安全和节能的条件下“多拉快跑”;同时,要让铁路运输管理工作人员及其后备军都有这方面的知识,即会分析也会计算。列车牵引计算正是这方面必须有的,故进行本次课程设计。

城市轨道交通供电系统中压网络

城市轨道交通供电系统的中压网络研究一、供电系统的简介及中压网络的概念 1、城市轨道交通供电系统的功能 城市轨道交通供电系统,担负着运行所需的一切电能的供应与传输,是城市轨道交通安全可靠运行的重要保证。 城市轨道交通的用电负荷按其功能不同可分为两大用电群体。一是电动客车运行所需要的牵引负荷,二是车站、区间、车辆段、控制中心等其他建筑物所需要的动力照明用电,诸如:通风机、空调、自动扶梯、电梯、水泵、照明、AFC系统、FAS、BAS、通信系统、信号系统等。 在上述用电群体中,有不同电压等级直流负荷、不同电压等级交流负荷;有固定负荷、有时刻在变化的运动负荷。每种用电设备都有自己的用电要求和技术标准,而且这种要求和标准又相差甚远。城市轨道交通供电系统就是要满足这些不同用户对电能的不同需求,以使其发挥各自的功能与作用。保证电动客车畅行,安全、可靠、迅捷、舒适地运送乘客,是供电系统的根本目的。 2、供电系统的构成 根据功能的不同,对于集中式供电,城市轨道交通供电系统可分成以下几部分:外部电源、主变电所、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。对于分散式供电,城市轨道交通供电系统则可分成以下几部分:外部电源、(电源开闭所)、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。牵引供电系统,又可分成牵引变电所与牵引网系统。动力照明配电系统,又可分成降压变电所与动力照明。 但在进行初步设计与施工设计时,为便于设计管理,供电系统往往被划分成:系统设计;主变电所设计;牵引变电所(或牵引降压混合变电所)及降压变电所设计;牵引网设计;电力监控系统设计;杂散电流腐蚀防护设计(注:动力照明随同土建一起设计)。 3、外部电源方案 城市轨道交通系统的外部电源方案,根据城市电网构成的不同特点,可采用集中式、分散式、混合式等不同形式。 (1) 确定外部电源方案的原则 城市轨道交通作为城市电网的特殊用户,一般用电范围多在10km~30km之间。城市轨道交通系统的外部电源方案,主要有集中式、分散式、混合式等不同形式。究竟采用何种方式,应通过计算确定需要负荷之后,根据城市轨道交通路网规划、城市电网构成特点、工程实际情况综合分析确定。 (2) 集中式供电 在城市轨道交通沿线,根据用电容量和线路长短,建设专用的主变电所,这种

列车牵引计算复习题

列车牵引计算复习题 一、填空题: 1、《列车牵引计算》是专门研究铁路列车在的作用下,沿轨道运行及其相关问题的学科。它是以为基础,以科学实验和先进 为依据,分析列车运行过程中的各种现象和原理,并以此解算铁路运营和设计上的一些主要问题和技术经济问题。(外力实用力学操纵经验 技术) 2、机车牵引力(轮周牵引力)不得机车粘着牵引力,否则,车轮将发生。(大于空转) 3、机车牵引特性曲线是反映了机车的和之间的关系。在一定功率下,机车运行速度越低,机车牵引力越。(牵引力速度大) 4、列车运行阻力可分为阻力和阻力。(基本附加) 5、列车附加阻力可分为阻力、阻力和阻力。(坡道附加曲线附加隧道空气附加) 6、列车在6‰坡道上上坡运行时,则列车的单位坡道附加阻力为。(6 N/kN) 7、列车在2‰坡道上下坡运行时,则列车的单位坡道附加阻力为。(-2 N/kN) 8、在计算列车的基本阻力时,当货车装载货物不足标记载重50%的车辆按 计算;当达到标记载重50%的车辆按计算。(空车重车) 9、列车制动力是由制动装置引起的与列车运行方向的外力,它的大小可由司机控制,其作用是列车速度或使列车。(相反调节停车) 10、轮对的制动力不得轮轨间的粘着力,否则,就会发生闸瓦和车轮现象。(大于“抱死”滑行) 11、目前,我国机车、车辆上多数使用闸瓦。(中磷铸铁) 12、列车制动一般分为制动和制动。(紧急常用) 13、列车制动力是由列车中各制动轮对产生的制动力的。(总和)

14、列车单位合力曲线是由牵引运行、和三种曲线组成。(隋力运行制动运行) 15、作用于列车上的合力的大小和方向,决定着列车的运动状态。在某种工况下,当合力零时,列车加速运行;当合力零时,列车减速运行;当合力零时,列车匀速运行。(大于小于等于) 16、加算坡道阻力与列车运行速度。(无关) 17、列车运行时间的长短取决于列车运行和作用在列车上的大小。(速度单位合力) 18、在某工况下,当列车所受单位合力为零时对应的运行速度,为列车的 速度。列车将运行。(均衡匀速) 19、列车制动距离是自司机施行制动开始到列车为止,所运行的距离。(完全停车) 20、列车的制动距离是距离和距离之和。(制动空走制动有效) 21、我国普通列车紧急制动距离的限值为米。(800) 22、列车制动时间是时间和时间之和。(制动空走制动有效) 23、列车在长大下坡线路上施行紧急制动时,其最高允许速度必须有所限制,该速度称为列车或称。(紧急制动限速 最大制动初速度) 24、列车换算制动率的大小,表示列车的大小。(制动能力) 25、列车和列车运行速度是铁路运输工作中最重要的指标。对于一定功率的机车,在线路条件不变的情况下,若要列车运行速度快则牵引质量要相应地;若要增加列车牵引质量,则列车运行速度要相应地;因此,最有利的牵引质量和运行速度的确定,需要进行和等方面的分析比较。(牵引质量、减少降低技术经济) 26、计算牵引质量的区段中,最困难的上坡道,称为。(限制坡道)

相关文档
最新文档