分块矩阵的初等变换及其应用开题报告 [开题报告]

分块矩阵的初等变换及其应用开题报告 [开题报告]
分块矩阵的初等变换及其应用开题报告 [开题报告]

毕业论文开题报告

信息与计算科学

分块矩阵的初等变换及其应用

一、选题的背景、意义

1.选题的背景

在数学的矩阵理论中,一个分块矩阵或是分段矩阵就是将矩阵分割出较小的矩形矩阵,这些较小的矩阵就称为区块。换个方式来说,就是以较小的矩阵组合成一个矩阵。分块矩阵的分割原则是以水平线和垂直线进行划分。分块矩阵中,位在同一行(列)的每一个子矩阵,都拥有相同的列数(行数)。

通过将大的矩阵通过分块的方式划分,并将每个分块看做另一个矩阵的元素,这样之后再参与运算,通常可以让计算变得清晰甚至得以大幅简化。例如,有的大矩阵可以通过分块变为对角矩阵或者是三角矩阵等特殊形式的矩阵。

2.选题的意义

矩阵的分块是处理较高阶矩阵时常用的方法,用一些贯穿于矩阵的纵线和横线将矩阵分成若干子块,使得阶数较高的矩阵化为阶数较低的分块矩阵。在运算中,我们有时把这些子块当作元素一样来处理,从而简化了表示,便于计算。分块矩阵初等变换是线性代数中重要而基本的运算,它在研究矩阵行列式、特征值、秩等各种性质及求矩阵的逆、解线性代数方程中有着广泛的应用。因此,如何直接对分块矩阵实行初等变换显得非常重要,本文的目的就是讨论分块矩阵的初等变换及其应用[1]。

二、研究的基本内容与拟解决的主要问题

2.1 分块矩阵及其初等变换

2.1.1 分块矩阵的定义:

将一个分块矩阵A用若干条纵线和横线分成许多块的低阶矩阵,每一块低阶矩阵称为A 的子块。以子块为元素的矩阵A称为分块矩阵。

我们将单位矩阵E分块:

???

?

?

??=s r r E E E 0

00

001O ,其中E r 是r i 阶单位矩阵(1

2.1.2 分块矩阵与广义初等变换[3]

分块矩阵可以解释为矩阵中的矩阵,而对这个矩阵进行初等变换, 相应的初等矩阵也要变为可计算的分块矩阵,所进行的变换陈维广义初等变换.其目的在于简化计算和证明.

定义 1 矩阵 称为分块矩阵,如果元素A ij 为 阶矩阵,其中m 1+m 2+m 3+…+m r =M 注释:定义规定分块矩阵为与同行的矩阵有相同的行数,位于同列的元素有相同的列数.它们的行数之和构成分块矩阵的行数, 列数之和构成分块矩阵的列数. 分块矩阵的运算满足矩阵的运算定义,由于它的特殊性,故此给出各自的定义.

?

设 A,B 为两个分块矩阵,则定义它们的加法为 A+B=(A ij + B ij )

条件:A,B 为同阶矩阵而且A ij , B ij 也为同阶矩阵.

?

设 A=(A ij )rxt , B=(B ij )txs 为两个分块矩阵,则定义它们的乘法为A X B=(C ij )

其中∑==

t

j kj ik

ij B A

C 1

的列数t 等于B 的行数而且A ij x B ij 也存在.

同样地,广义初等变换与广义初等矩阵可简单叙述如下:

定义 2 广义初等变换是对分块矩阵进行以下的变换的统称.

? 交换矩阵的两行(列); ? 将某行(列)左(右)乘可逆矩阵;

?

将某行(列)左(右)乘矩阵加到另一行(列)上;

定义 3 设E nXn 为分块的单位矩阵,对其进行一次广义初等变换所得到的矩阵称为广义初等矩阵[4]

.

例子 1 广义初等矩阵具体形式

???? ??→???? ?

?0000m

n n m

E E E E , ???? ??→???? ??n n m

E P E E 000

0, ???

?

??→???? ??En Q E E E m

n m

000 广义初等矩阵(变换)的作用如同一般的初等矩阵(变换),遵守"左行右列"原则. 例子 2 设 ?

??

? ??=D C B A M

那么 ???? ??=???? ?

????? ??B A D C D C B A E

E m n 00

, ????

??=???? ?????? ??D C PB PA D C B A En P 00 ???

? ??++=???? ?????? ?

?D QB C QA B A D C B A En Q E m 0

2.1.3 分块矩阵的初等行(列)变换的定义

[5]

与普通矩阵的初等行变换类似,分块矩阵也有三种类型的初等行变换:1.把一个块行的左P 倍(P 是矩阵)加到另一个块行上;2.换两个块行的位置;3.用一个可逆矩阵左乘 某一块行。

2.1.4 分块矩阵的初等变换与分块初等矩阵的关系

把单位矩阵分块得到的矩阵???

? ??I I 00经过一次分块矩阵的初等行(列)变换得到的

矩阵称为分块初等矩阵。例如:

???? ??I P I 0, ???? ??O I I 0, ???

?

??I Q 00是三种不同类型的分块初等矩阵(其中Q 是可逆矩阵)通过直接计算可以验证:用分块初等矩阵左乘(右乘)一个分块矩阵,就相当于对这个分块矩阵作了一次相应的分块矩阵的初等行(列)变换。

分块矩阵的初等行(列)变换有直观的优点,用分块初等矩阵左乘(右乘)一个分块矩阵可以得到一个等式,把两者结合起来可以发挥出很大的威力。

2.1.5 分块矩阵的初等变换与矩阵的秩[6]

由于分块初等矩阵是可逆矩阵,因此据可逆矩阵的性质和上述结论得到:分块矩阵的初等变换不改变矩阵的秩这个结论在求矩阵的秩时很有用。

2.2 分块矩阵的相关应用

2.2.1 利用矩阵分块的方法计算行列式[7]

利用初等变换可使分块矩阵的行列式的计算得到简化.为讨论分块矩阵行列式的计算,先讨论分块初等矩阵的行列式,它们的行列式有下列的计算公式。

引理 分块初等矩阵的行列式有以下性质:

(1)︱E(i,j)︱=(-1)x ,其中i=r i (r i+1+…+r j ) + r j (r i+1+…+r j-1), (i

(2)︱E(i(P))︱=︱P ︱,其中P 是r i 阶可逆矩阵; (3)︱E(j(P),i)︱=1,其中P 是r i x r j 矩阵.

定理2 设A 是一个分块矩阵:

(1) 交换|A|i,j 两行(列),行列式变为(-1)x|A|,其中i=r i (r i+1+…+r j ) + r j (r i+1+…+r j-1), (i

(2) 用一个r i 阶可逆矩阵P 左(右)乘|A|的第i 行(列)的所有矩阵,等于用|P|乘以|A|. (3) 用一个矩阵P 左(右)乘|A|的某一行(列)的所有矩阵再加到另一行(列)的对应元素上,行列式不变.

由定理2中的(2)可得如下推论:

推论: 分块行列式︱A ︱的某一行(列)的所有子矩阵的可逆左(右)因子P ,可以以行列式︱P ︱的形式提到行列式符号外。

下面通过几个例子来说明分块矩阵初等变换应用的灵活性[8]

。 例4、设?

??

? ??=D C B A M 是一个分块矩阵,其中A 是r 阶可逆矩阵,求︱M ︱. 解:由推论及定理2的(3), ︱M ︱=D

C

B A =A D

C

B A E r

1-=

A

B

CA D B A E r 110

---=A B CA D 1--?

例5、已知A,B,C,D 均是r 阶矩阵且︱A ︱≠0,AC=CA , A B M C D ??

= ???

.

证明:︱M ︱=

D

C

B A =︱AD-CB ︱.

设X 是r 阶矩阵,E 为r 阶单位矩阵,用???

?

?

?E X E 0左乘M,得 ???? ??E X E 0???? ??D C B A =???

? ??++D XB C XA B A (6) 因为︱A ︱≠0,故A -1存在.

令XA + C = 0得X=-CA -1,代入(6)式,取行列式得: B

CA D B

A D C

B A E X

E

100--=???? ?????? ?

?,即得 D

C

B A =

B

CA D B A 10--=1AD ACA B --=1

AD CAA B --=AD CB -

例6、设n D 2=

d c

d c b a b

a O

N N

O

,其中a ≠0,求︱A ︱.

解:设n D 2=

d

c

d c b a b

a O N N

O

=

A B C

D

由于A 、C 可交换,所以由例4得

n D 2= AD CB -=

n bc ad E bc ad bc

bc

ad ad

)()(-=-=-

O

O

.

2.2.2 应用分块矩阵求矩阵的逆

[9]

下面我们先将初等变换求逆矩阵的方法(M ︱E)→(E ︱M -1), 推广到分块矩阵中去。

定理 1 可逆分块矩阵?????

?

?

??=ss s s s s A A A A A A A A A M Λ

ΛΛΛΛΛΛ

21

22221

112

11可以写成分块初等矩阵的乘积,其中A 11、A 22、…、A ii 、…,A 55均为矩阵。

证明:考虑A 11,若A 11不是可逆的,由于M 满秩,故必存在与A 11同阶的不等于0的子式,用初等变换,将此子式换到A 11位置,于是A 11位置的块就是可逆的,因此不妨设A 11可逆,将第一行左乘A i1A 11-1,加到第i 行(i=2,…,s),然后将第一列右乘A 11-1A ij 加到第j

列(j=2,…,s),可得???

???

?

?

?''''ss s

s A A A A A ...0 0

0 (022)

2211

若A ’22不可逆,则A ’22用上述方法,使位置的块换成可逆的块,然后用初等变换使第二行,第二列其余的块均消为零块,如此下去,M 可变成11

22

ss B B B ??

?

? ? ? ? ???

O

O

,B ii (i=1,2,…,s ).最后用B ii -1左乘第i 行(i=1,2,…,s). 便得1

2

S E E E ??

?

? ? ? ? ??

?

O

O

,这里E i 是与B ii 同阶的单位矩

阵。

则存在分块初等矩阵P 1,…,P t ,Q 1,…,Q r ,使

矩阵的初等变换及其应用

线性代数 第一次讨论课 1.导语 2.讨论内容目录 3.正文 4.个人总结

导语: 矩阵是研究线性代数方程组和其他相关问题的有力工具,也是线性代数的主要研究啊、对象之一。它的理论和方法在自然科学、工程技术、社会科学等众多领域等都有极其广泛的应用。矩阵作为一些抽象数学的具体表现,在数学研究中占有极其重要的地位。本文从矩阵的概念讨论矩阵的运算及性质,进而讨论用途很广的矩阵的初等变换及其应用。 讨论内容目录 矩阵的初等变换及其应用 1.两个矩阵的等价 2.两个矩阵的乘积 3.将矩阵化为行阶梯型、行最简形、标准型 4.求矩阵的秩 5.求可逆矩阵的逆矩阵 6.求线性方程组的解 7.判断向量组的线性相关性 8.求向量组的秩与极大无关组 9.求矩阵的对角化矩阵(采用行列初等变换,对角线元素为特征值) 10.二次型化为标准形 正文 一、矩阵的等价 1.定义:若矩阵A经过一系列初等行变换化为B矩阵,则称A

与B 行等价;若矩阵A 经过一系列初等列变换化为B 矩阵,则称A 与B 列等价;若矩阵A 经过一系列初等变换化为B 矩阵,则称A 与B 等价(相抵)。 2.矩阵的等价变换形式主要有如下几种: 1)矩阵的i 行(列)与j 行(列)的位置互换; 2)用一个非零常数k 乘矩阵的第i 行(列)的每个元; 3)将矩阵的第j 行(列)的所有元得k 倍加到第i 行(列)的对应元上去; 即如果两个矩阵可通过有限次上述变换中的一个或几个的组合变为一样的,两个矩阵等价。 3. 矩阵等价具有下列性质 (1)反身性 任一矩阵A 与自身等价; (2)对称性 若A 与B 等价,则B 与A 等价; (3)传递性 若A 与B 等价,B 与C 等价,则A 与C 等价; 注意:矩阵作初等变换是矩阵的一种运算,得到的是一个新矩阵,这个矩阵一般与原矩阵不会相等。 下面举例说明矩阵等价及等价变换: 13640824100412204128--?? ?- ? ?-- ?-?? 13 r r +???→

【VIP专享】矩阵变换及应用开题报告

鞍山师范学院 数学系13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号:30 指导教师:裴银淑 2013年12月26日

一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义: 矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson 联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。 2 、本人对以上综述的评价:

分块矩阵在行列式计算中的应用(1)

矩阵与行列式的关系 矩阵是一个有力的数学工具,有着广泛的应用,同时矩阵也是代数特别是线性代数的一个主要研究对象.矩阵的概念和性质都较易掌握,但是对于阶数较大的矩阵的运算则会是一个很繁琐的过程,甚至仅仅依靠矩阵的基本性质很难计算,为了更好的处理这个问题矩阵分块的思想应运而生[]1. 行列式在代数学中是一个非常重要、又应用广泛的概念.对行列式的研究重在计算,但由于行列式的计算灵活、技巧性强,尤其是计算高阶行列式往往较为困难.行列式的计算通常要根据行列式的具体特点采用相应的计算方法,有时甚至需要将几种方法交叉运用,而且一题多种解法的情况很多,好的方法能极大降低计算量,因此行列式计算方法往往灵活多变.在解决行列式的某些问题时,对于级数较高的行列式,常采用分块的方法,将行列式分成若干子块,往往可以使行列式的结构清晰,计算简化.本文在广泛阅读文献的基础上,从温习分块矩阵的定义和性质出发,给出了分块矩阵的一些重要结论并予以证明,在此基础上讨论利用分块矩阵计算行列式的方法,并与其他方法相互比较,以此说明分块矩阵在行列式计算中的优势. 1.1 矩阵的定义 有时候,我们将一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样[]1.特别在运算中,把这些小矩阵当做数一样来处理.这就是所谓的矩阵的分块.把原矩阵分别按照横竖需要分割成若干小块,每一小块称为矩阵的一个子块或子矩阵,则原矩阵是以这些子块为元素的分块矩阵.这是处理级数较高的矩阵时常用的方法. 定义1[]2 设A 是n m ?矩阵,将A 的行分割为r 段,每段分别包含r m m m 21行,将 A 的列分割为s 段,每段包含s m m m 21列,则 ?? ? ? ? ? ? ??=rs r r s s A A A A A A A A A A 21 2222111211 , 就称为分块矩阵,其中ij A 是j i m m ?矩阵(,,,2,1r i =s j ,,2,1 =). 注:分块矩阵的每一行(列)的小矩阵有相同的行(列)数. 例如,对矩阵A 分块, = ?? ? ? ? ? ? ? ?-=21010301012102102301A ??? ? ??22211211 A A A A , 其中

分块矩阵的性质及其应用【开题报告】

阵的相关计算简单化, 而且还可以用于证明一些与矩阵有关的问题. 分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题, 以及求逆矩阵和方阵行列式的计算问题上, 对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解, 所以分块矩阵作为高等代数中的一个重要概念, 我们需要透彻的了解分块矩阵, 在此基础上较好地学会在何时应用矩阵分块, 从而研究它的性质及应用是非常必要的. 根据目前国内外对矩阵应用研究的发展, 可以知道矩阵已经广泛应用到线性规划、线性代数、统计分析, 以及组合数学等.在这样的形式下, 必须要求对矩阵有一种科学的处理方式以提高应用效果.本文是通过查阅相关文献和学习相关知识后总结并探讨了分块矩阵在各方面的应用.当前对分块矩阵的应用主要发展到计算和证明两大方面.证明方面: 通过对矩阵的分块证明了有关矩阵秩的定理以及其他线性代数证明问题; 计算方面,本文通过对分块矩阵的性质的研究很好的解决了求矩阵的逆矩阵问题, 求行列式, 求矩阵的秩等问题的新的快捷方式. 二、研究的基本内容, 拟解决的主要问题: 研究的基本内容: 通过学习分块矩阵的相关的几种定义, 掌握分块矩阵的性质, 从而熟练分块矩阵的应用. 解决的主要问题: 1.了解分块矩阵的基本概念. 2.探讨分块对角化的性质. 3.研究分块矩阵的应用. 三、研究步骤、方法及措施: 研究步骤: 1.查阅相关资料, 做好笔记; 2.仔细阅读研究文献资料; 3.在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告; 4.翻译英文资料; 5.撰写毕业论文; 6.上交论文初稿; 7.反复修改论文, 修改英文翻译, 撰写文献综述; 8.论文定稿.

初等变换与初等矩阵

2.3 初等变换与初等矩阵 授课题目 2.3 初等变换与初等矩阵 授课时数:4课时 教学目标:掌握初等变换的定义,初等矩阵与初等变换的关系,矩阵的等价标准形,阶梯形矩阵,和行简化阶梯形矩阵 教学重点:用初等变换求矩阵的等价标准形、阶梯形矩阵,和行简化阶梯形矩阵 教学难点:求矩阵的等价标准形、阶梯形矩阵,、行简化阶梯形矩阵 教学过程: 用初等变换化简矩阵A B B A 的性质来探讨通过为,的性质,这是研究矩阵的重要手段。为了把变换过程用运算的式子表示出来,我们要引入初等矩阵,研究初等矩阵与初等变换的关系。 一.初等变换与初等矩阵 1. 初等变换 (1)定义 定义1 矩阵的初等行(列)变换是指下列三种变换: 1)换法变换:交换矩阵某两行(列)的位置; 2)倍法变换:用一个非零数乘矩阵的某一行(列); 3)消法变换:把矩阵的某一行(列)的k 倍加到另一行(列)上去,k 为任意数。 矩阵的初等行变换和初等列变换统称为初等变换。 (2)记法 分别用)]([)],([],,[k j i k i j i +表示三种行(列)变换,写在箭头上面表示行变换,写在箭头下面表示列变换。或者行变换用i j i i j R R ,kR ,R kR ?+, 列变换用i j i i j C C ,kC ,C kC ?+ 例1 [][] ???? ? ??--??→?????? ??---???→?????? ??--=+-+131123302001121123302101121121322101)1(13)2(12A . 2. 初等矩阵 (1)初等矩阵的定义

定义2 由单位矩阵I 经过一次初等变换得到的矩阵称为初等矩阵 每个初等变换都有一个与之相应的初等矩阵 ij j i n P j i I =???? ? ?? ? ????? ??? ? ? ????→?行行 1101111011] ,[ [] )(1111)(,k D i k I i j i n =? ???????? ?? ????→?行 [] )(1111)(k T j i k I ij k itj n =? ???? ????? ? ????→?行行 列i 列j

矩阵初等变换及应用

矩阵初等变换及应用 王法辉 摘要:矩阵初等变换是高等代数的重要组成部分。本文对初等变换进行了研究探讨,详细介绍了与矩阵初等变换有关的基础知识。在阐述矩阵初等变换方法及应用原理的基础上,首先重点讨论该方法在解决高等代数相关计算问题上的应用,如求多项式的最大公因式、求逆矩阵解矩阵方程、求解线性方程组、判定向量的线性相关性、化二次型为标准型、求空间的基等。尤其是利用矩阵初等变换法求空间的基(解空间、特征子空间、核、值域等)的问题的计算,以具体实例生动的展示出问题的内在关系,最后给出了该方法在解决实际问题中的应用。本文理论分析与实际相结合,凸现了矩阵初等变换法直接、便利、有效的威力与作用。 关键词:矩阵初等变换;最大公因式;线性相关性;二次型;空间的基 1 导言 在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程。在数学的学习和应用中,矩阵理论是高等代数的重要组成部分,矩阵初等变换方法更是贯穿高等代数理论的始终。应用初等变换证明命题过程容易被接受,同时也是解决高等代数相关计算问题最直接、便利、有效的方法。此外,还有大量的各种各样的,表面上看完全没有联系的问题的解决,都可以通过相同的方法实现:矩阵的初等变换。 因此,对矩阵初等变换方法及应用进行探讨,无疑是十分必要和重要的。 目前,有许多文献涉及到对矩阵初等变换方法该的讨论,但比较零散。在研读文献的基础上,对矩阵初等变换的内涵进一步挖掘,使矩阵初等变换方法的威力作用得以充分展示是重要也是必要的。 2 矩阵及其初等变换

2.1 矩阵 由n m ?个数)j ,,,2,1(==m i a ij (i =1,2, ,j =1,2,n , )排成m 行n 列 的数表 ? ? ??? ???????=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m 行n 列的矩阵,简称n m ?矩阵。 2.2 矩阵的初等变换及初等矩阵 矩阵有行列之分,因此有如下定义 定义1 矩阵的初等行(列)变换是指如下三种变换 (1)交换矩阵某两行(列)的位置,记为j i r r ? )(j i c c ?; (2)把某一行(列)的k 倍加到另一行(列)上,记为j i kr r + )(j i kc c +; (3)用一个非零常数k 乘以某一行(列),记为i kr )(i kc ,k ≠0; 矩阵的初等行变换及初等列变换统称为矩阵的初等变换。 定义2 由单位矩阵E 经过一次初等变换得到的方阵称为初等矩阵。有以下3种形式 (1)互换矩阵E 的i 行和j 行的位置,得 ? ???? ? ??? ?? ? ????? ???????????????? ?=1101111011),( j i P ; (2)用数域P 种非零数c 乘E 的i 行,得

线性方程组的求解与应用开题报告

设计题目线性方程组理论及其应用 学生姓名陈彦语学号1111124123 专 业 数学与应用数 学(师范类) 一、课题的目的意义: 高等代数教材中只给出了运用克拉默法则(Cramer's Rule)和利用增广矩阵进行初等行变换求解线性方程组的方法,本文将更加系统的阐述求解线性方程组的几类方法,并进一步讨论线性方程组在许多领域中的应用。 线性代数是代数学的一个重要组成部分,广泛应用于现代科学的许多分支,其核心问题之一就是线性方程组的求解问题。线性方程组的求解是数值计算领域十分活跃的研究课题之一,大量的科学技术问题,最终往往归结为解线性方程组。因为计算机只能“线性”地求解问题,所以所有问题在计算机处理前都要线性化。可以说,线性方程组的求解在现代科学领域占有重要地位。 二、近几年来研究现状: 目前关于线性方程组的数值解法一般有两大类,一类是直接方法,另一类是迭代方法。直接方法最基本的是高斯消元法及其变形,这种方法是解低阶稠密矩阵方程组的有效方法,近十几年来直接法在求解具有较大型稀疏矩阵方程组方面取得了较大进展。迭代法就是用某种迭代过程去逐步逼近线性方程组的精确解,迭代法具有的优点是:需要计算机的存储单位较少、程序设计简单、原始系数矩阵在计算过程中始终不变,但存在收敛性和收敛速度的问题。迭代法是解大型稀疏矩阵方程组的重要方法,当前对迭代算法的研究已经较为成熟,但如何使之适合新体系模型,以获得更好的性能加速还有待进一步研究。 。三、设计方案的可行性分析和预期目标: 可行性分析:本文主要以查找资料,在现有知识水平上,对求解线性方程组的一般方法进行总结归纳,并根据对数学软件的学习,在借鉴前人对计算机编程科学性研究的基础上,给出利用matlab软件求解几类常见线性方程组的方法。通过广泛收集线性方程组应用方向的文献和书籍,并多次向导师请教,最终以具体实例来说明线性方程组在许多领域的应用,并实现线性方程组的求解过程。 预期目标:通过撰写论文,能让我从一个更高的角度来审视高等代数,对其中的线性方程组部分有一个更加深刻的理解和认识,锻炼自己的发散性思维和缜密的思考能力,培养自己利用所学知识解决实际问题的能力,从而达到对所学知识的融会贯通。

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

矩阵的初等变换及应用的总结

矩阵的初等变换及应用 内容摘要: 矩阵是线性代数的重要研究对象。矩阵初等变换是线性代 数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。 一矩阵的概念 定义:由于m x n 个数aij (i=1 , 2,….,m; j=1 , 2,…., n)排成的m行n列的数表,称为m行n列,简称m x n矩阵 二矩阵初等变换的概念 定义:矩阵的初等行变换与初等列变换,统称为初等变换 1. 初等行变换 矩阵的下列三种变换称为矩阵的初等行变换: ⑴交换矩阵的两行佼换一两行,记作.); (2) 以一个非零的数 '乘矩阵的某一行(第.行乘数卜,记作…); (3) 把矩阵的某一行的,倍加到另一行(第一行乘 '加到.行, 记为). 1.初等列变换 把上述中“行”变为“列”即得矩阵的初等列变换 3,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B 矩阵之间的等价关系具有下列基本性质:

⑴反身性; (2) 对称性若小丄,,则; (3) 传递性若丄丄,/,则」. 三矩阵初等变换的应用 1.利用初等变换化矩阵为标准形 定理:任意一个m x n矩阵A,总可以经过初等变换把它化为标准形 ■ 4■ ■ 1 F行二0 ■ ■ < 泓1 2. 利用初等变换求逆矩阵 求n阶方阵的逆矩阵:即对n x 2n矩阵(A| E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A A(-1) 即(A|E)经过初等变换得到(E|AA(-1)) 这种计算格式也可以用来判断A是否可逆,当我们将A化 为行阶梯形矩阵时, 若其中的非零行的个数等于n时,则A可逆,否则A不可逆。

矩阵的开题报告doc

矩阵的开题报告 篇一:矩阵变换及应用开题报告 鞍山师范学院 数学系 13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号: 30 指导教师:裴银淑 XX年 12月 26日 一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种 十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到 非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解 决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义:

矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式 识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着 不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内 外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词, 他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩 阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的 研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容, 在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在 第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金 斯大学的RogerA.Horn和威廉姆和玛丽学院的

CharlesR.Johnson联合编著的《矩 阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外 关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出 了巨大贡献。 2 、本人对以上综述的评价: 矩阵理论一直都是各个学科的基本数学工具,矩阵变换是矩阵理论的基础, 近年来有许多关于矩阵变换的研究,这些研究将一些繁琐复杂的问题简单化,也 极大地推进和丰富了电子信息、航空航天等领域的发展,同时促进了更多的数学 家加入到研究矩阵变换的队伍中,这样就使得矩阵变换知识日渐完善,并应用到 更多的领域中去。 三、论文提纲 前言 (一)、矩阵初等变换及应用 1、矩阵初等变换的基本概念 2、初等变换在方程组中的应用 3、初等变换在向量组中的应用

矩阵特征值、特征向量的研究【开题报告】

毕业论文开题报告 数学与应用数学 矩阵特征值、特征向量的研究 一、选题的背景、意义 (1)选题的背景、意义 “矩阵(Matrix)”术语是由西尔维斯特创用并由凯莱首先明确其概念的。19世纪50年代,西尔维斯特引入“矩阵”一词来表示“一项由几行H列元素组成的矩形阵列”或“各种行列式组”,凯莱作为矩阵理论的创立者,首先为简化记法引进矩阵,然后系统地阐述了矩阵的理论体系。随后,弗罗伯纽斯等人发展完善了矩阵的理论体系形成了矩阵的现代理论。然而,矩阵思想的萌芽由来已久,早在公元前l世纪中国的《九章算术》就已经用到类似于矩阵的名词。但那时矩阵仅是用来作为一种矩形阵列解决实际问题,并没有建立起独立完善的矩阵理论。18世纪末到19世纪中叶,这种排列形式在线性方程组和行列式计算中应用日益广泛,行列式等理论的发展提供了矩阵发展的条件,矩阵概念由此产生,矩阵理论得到系统的发展。20世纪初,无限矩阵理论得到进一步发展[]1。 线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中[]2。 由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量

空间的过渡矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中.线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。 “代数”这一个词在我国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至今[]3[]4。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 (2)国内外研究现状和发展趋势 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于我国古代数学名著《九章算术》)[]5。 ①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位; ②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; ③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的; ④随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如

分块矩阵的初等变换及其应用[含论文、综述、开题-可编辑]

设计 (20 届)分块矩阵的初等变换及其应用 所在学院 专业班级信息与计算科学 学生姓名学号 指导教师职称 完成日期年月

摘要:本文介绍了矩阵,分块矩阵的一些基本概念,同时也介绍了分块矩阵的初等变换,分块矩阵的初等变换在一些问题中的相关应用,如利用分块矩阵的初等变换计算矩阵的行列式,求矩阵的逆,在秩问题中的应用,在相似问题中的应用以及在其他方面的应用,用22 分块矩阵的初等变换证明实对称矩阵的正定性。并根据各种的应用给出了大量的例题,充分体现了分块矩阵的初等变换在代数学中所具有一定的优越性。 关键词:分块矩阵;初等变换;行列式;矩阵的逆;应用

Elementary block matrix transform and its application Abstract:This article introduces some basic concepts of the matrix and partitioned matrix,also introduces the elementary transformation of partitioned matrix and the related application in some problems. For example, using the elementary transformation of partitioned matrix to compute matrix's determinant or get the inverse of a matrix. Also it introduces the application of partitioned matrix in some rank problems, similar problems and other problems, using the 22 elementary transformation of partitioned matrix to prove the definiteness of symmetric matrix. According to different kinds of application, it lists a lot of examples, which fully indicate the superiority of partitioned matrix's elementary transformation in algebra. Key words:partitioned matrices; elementary transformation; determinant; the inverse of a matrix; Application

分块矩阵的初等变换及应用_百度文库.

十.研究创新题 解: 1.分块矩阵的初等变换 分块矩阵的初等变换与初等矩阵 吴云在1997年8月的《工科数学》上的《分块矩阵的初等变换》一文中提到定义1分块矩阵的行(列初等变换是指: (1)交换两行(列的位置; (2)第i行(列的各个元素分别左乘(右乘该行(列的一个阶左(右保秩因子H; (3)第i行(列的各个元素分别左乘(右乘一个阶矩阵K后加到第j行. 定义2 对应于分块矩阵的初等分块矩阵是指: (1)= 或=

(2)=或= 其中H为第i行(列的一个左(右保秩因子; (1 = (2 或= 初等分块矩阵与通常的初等矩阵类似,但由于矩阵乘法不满足交换律,故需要分为左、右两种.直接验算可得: 定理1(1交换的第i行与第j行,相当于左乘一个m阶初等分块矩阵,其中中的元素为h(i阶单位矩阵,为h(j阶单位矩阵, 当r≠i且r≠j时,为h(r阶单位矩阵;交换的第i列与第j列相当于右乘一个n阶初等分块矩阵,其中为l(i阶单位矩阵,为l(j阶单位矩阵,当r≠i且r≠j时,为l(r阶单位矩阵;

(2 的第i行的每一个元素左乘一个矩阵H相当于左乘一个m阶分块矩阵 中H为h(i阶方阵; 的第i列的每一个元素右乘一个矩阵H,相当于 右乘一个n阶初等到变换矩阵,其中H为l(i阶方阵; (3 的第j行的每个元素分别左乘一个h(i×h(j矩阵K后加到第i行,相当 于左乘一个初等分块矩阵;第j列的每一个元素分别右乘l(j×l(i矩阵K后加到第i列,相当于右乘. 定理2设A为方阵,则分块矩阵施行第一种行初等变换后,对应的行列式为 , 其中 h(i,j=h(ih(j-l+h(i+l]+…+h(j[h(i+h(i+j+…+h(j-l], l(i,j=l(ih(j-l+l(i+l]+…+l(j[l(i+l(i+j+…+l(j-l], 施行第二种初等变换后,对应的行列式为|H|·|A|;施行第三种初等变换后,对应的行列式的值不变. 证明: ,显然成立. 下证,所在的第1行逐次与它相邻的行交换,移至前,共进行h(i-1+h(i+1+…+h(j-1次交换两行,第2行逐次与它相邻的行交换,移至前,同样进行相同次交换两行,依此类推,把所在的行移至所在的行前,共进行 h(i[h(i-1+h(i+1+…+h(j-1]次交换两行,然后把移至适当的位置,同理共进行h(j[h(i+h(i+1+…+h(j-1]次交换两行,所以交换两行的总次数为h(i,j,故 ;同理. 所以有==(-1或==(-1) ==或= ==== 定理3 分块矩阵进行初等变换后,秩不变.

用矩阵初等变换逆矩阵

用矩阵初等变换逆矩阵

————————————————————————————————作者:————————————————————————————————日期:

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、问题提出 在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃) 二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理 2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。即 4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么 (2) 由(1)式 代入(2)式左边, 上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置 变换为我们所要求的1 A -,即 21121111111112112112s t s s t t m P P P AQ Q Q E A P P P P EQ Q Q Q R R R ----------=?=?L L L L L 111 21m R R R A E ---=L 111121m R R R A ----=L () () 1 22n n n n A E E A -???????→ 1* 1A A A -=( )()() 1111A A E A A A E E A ----==1111 21m A R R R ----=L ( )() 1 111 21m R R R A E E A ----=L

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

分块矩阵及其应用

分块矩阵及其应用 【摘要】矩阵论是代数学中是一个重要的组成部分和主要的研究对象。而分块矩阵可以降低较高级数的矩阵级数,使矩阵的结构更加清晰,从而使矩阵的相关计算简化,并且可以证明一些与矩阵有关的问题。本文详细且全面论述了分块矩阵阵的概念、分块矩阵的运算和其初等变换,而且证明了矩阵的分块在高等代数中的应用,包括用分块矩阵证明矩阵秩的问题,用分块矩阵求行列式问题,用分块矩阵求逆矩阵的问题,分块矩阵相似的问题。 【关键词】:分块矩阵;矩阵的秩;逆矩阵;行列式 目录 1引言 (2) 2矩阵分块的定义和性质 (2) 2.1 矩阵分块的定义 (2) 2.2 分块矩阵的运算 (2) 2.3 分块矩阵的初等变换 (3) 2.4 n阶准对角矩阵的性质 (3) 3分块矩阵在高等代数中的应用 (4) 3.1 分块矩阵在矩阵的秩的相关证明中的应用 (4) 3.2 利用分块矩阵计算行列式 (7) 3.3 分块矩阵在求逆矩阵方面的应用 (11) 3.4 分块矩阵在解线性方程组方面的应用 (16) 4总结 (19) 参考文献 (20)

1 引言 矩阵是高等代数中的一个重要内容,也是高等数学的很多分支研究问题的工具。在学习高等代数的时候常常碰到一些很难的问题,我们要经常用到矩阵的分块去解决,它可以使矩阵的结构更简单,从而使问题的解决更简明。比如当我们处理阶数较高或具有特殊结构的矩阵时,用处理一般低阶矩阵的方法,往往比较困难,为了研究问题的方便,也为了显示出矩阵中某些部分的特性,我们常把一个大型矩阵分成若干子块,把每个子块看作一个元素,从而构成一个分块矩阵,这是处理矩阵问题的重要技巧。利用矩阵的分块,可以把高阶矩阵划分成阶数较低的“块”,然后对这些以“块”为元素的矩阵施行矩阵的运算。本文就分块矩阵的加法、乘法、转置、初等变换等运算性质,及分块矩阵在证明矩阵相关秩的问题、矩阵求逆、行列式展开计算等方面的应用作了较为深入的研究。矩阵的分块能使矩阵的一些证明和计算变的非常简洁和快速,易于理解和掌握,而且能开拓思维,提高灵活应用知识解决问题的能力。

矩阵初等变换的一些性质及应用

矩阵初等变换的一些性质及应用 摘要:矩阵的初等变换是线性代数中应用十分广泛的重要工具。文章证 明了矩阵初等变换的两个性质, 以此为基础, 归纳说明了矩阵的初等变 换在线性代数课程中的应用, 并给出了一些实例。 关键词:矩阵初等变换性质应用 Abstract: The elementary alternate of matrix is an important tool broadly used in linear algebra. The paper discusses its properties and application. Key w o rd: matrix, elementary alternate, properties, application 0 引言 矩阵是数域P上的m行n列矩阵,矩阵的行(列)初等变换是指对矩阵施行如下的变换: (1)交换矩阵的两行(列),对调i,j两行,记作←(记作←); (2)以非零数 k 乘矩阵某一行( 列) 的所有元素,第i行(列)乘k,记作×k(记作×k); (3)把某一行(列)所有元素的 k 倍加到另一行(列)对应元素上去,如第j 行(列)的k 倍加到第i行(列)上, 记作+(记作+)。 矩阵的初等变换在高等代数课程中有着十分广泛的应用, 也是本课程的基本工具之一。矩阵的初等行变换和初等列变换具有同等的地位和作用, 只是在使用过程中有所区别。本文首先证明初等行变换和初等列变换具有同等的地位和作用,再以具体实例说明矩阵初等变换在求极大无关组和秩的应用。 一、初等变换的性质证明 定理1 第一种初等变换可以由第二、三种初等变换实施得到。 证明: 设是为数域P上的m×n 矩阵(i= 1,2,…,m; j=1,2,…,n) 对矩阵A 施行第二、三种初等行变换:

线性方程组的求解方法及应用开题报告

开题报告 线性方程组的求解方法及应用开题报告 一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势) 线性方程组求解在中国历史久矣。对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中。现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。在科学计算中的许多问题,例如,电学中的网络问题,船体放样中的样条函数计算,实验数据的曲线拟合以及微分方程的差分方法或有限元方法求解等问题,最终都归结为求解线性代数方程组。现行高等代数教材只用行初等变换来解线性方程组,存在一定的局限性。本文主要讨论了解线性方程组的直接法中的Gauss消元法,以及行初等变换、克莱姆法则、标准上三角形求解法等。 对于不同类型的问题,线性方程组的求解方法不尽相同。同时方程组存在解的个数的问题及线性方程组是否存在零解,如在实践中遇到的线性方程组,它的方程个数未必等于未知量个数,即使方程个数等于未知量个数,也未必有唯一解,有可能无解或有无穷多解。这就需要我们去根据相关问题去探究。 马克思曾经说过“一门科学只有成功地应用数学时,才算达到了完善的地步”。随着科学技术的进步,数学已迅速渗透到各门学科之中,因而能强烈感受到数学的重要性。而应用数学中很多用到了线性代数的相关知识,而本选题涉及的线性方程组知识尤为重要,在实际生活的数学应用中,对所需目标进行确定,接着进一步明确一些决策中的关键因素,即而确立线性方程组,进而对此方程求解。因

而求线性方程组解是线性代数中的精髓部分,恰当地使用方法,可以使计算过程比较简洁,避免了迂回复杂的计算。 二、研究的基本内容与拟解决的主要问题 也许会觉得解线性方程组会很容易,但事实上想要彻彻底底的完整得出方程组的解是非常不容易的。若要正确完整得出方程解,首先要具备一定的线性代数的知识,其次要分析对于什么样类型,采用什么样的方法去解决更便捷、更有效。对于不同类型的问题,线性方程组解法的适用就至关重要。同时方程组存在解的个数的问题及线性方程组是否存在零解,如在实践中遇到的线性方程组,它的方程个数未必等于未知量个数,即使方程个数等于未知量个数,也未必有唯一解,有可能无解或有无穷多解。这就需要我们去根据相关问题去探究。 本报告主要涉及到一些方程求解的方法,比如初等行变换、回代法、高斯消元法、标准上三角形法等。同时还介绍了线性方程组在以下几方面的应用,在几何方面求点到平面的方程,空间中向量相关性的判别方法。 2.1线性方程组的一些性质线性方程组即一次方程组。线性方程组有一般形式、矩阵形式、向量形式。 含个方程,个未知量的线性方程组的一般形式为:表示未知量,称系数项,称常数项。将方程组的系数组成矩阵来计算方程的解称为系数矩阵,在系数矩阵的右边添上一列,这一列是线性方程组的等号右边的值形成了增广矩阵。线性方程组也可以用矩阵表示。型线性方程组可表示为,称为线性方程组的系数矩阵;为线性方程组的增广矩阵;方程组的解是使矩阵等式成立的维向量。在矩阵形式下,对增广矩阵作初等变换不改变方程组的解。如矩阵和是行初等变换下等价的矩阵,即存在可逆矩阵,使,则线性方程组是等价的线性方程组。线性方程组也可以用向

相关文档
最新文档