基于多尺度和多特征融合的面向对象的变化检测方法

基于多尺度和多特征融合的面向对象的变化检测方法
基于多尺度和多特征融合的面向对象的变化检测方法

基于多尺度和多特征融合的面向对象的变化检测方法

王文杰,赵忠明,朱文清

中科院遥感应用研究所图像处理部

邮箱中国,北京100101,9718

wangwenjie@https://www.360docs.net/doc/5b8763674.html,

摘要--高分辨率卫星影像为遥感应用提供了丰富的地球表面信息。利用变化检测技术从高分辨率遥感影像中提取目标区域变化并且迅速地更新地图数据库已经成为遥感信息处理研究的焦点。然而传统的变化检测方法并不适用于高分辨率遥感影像。为了克服传统的像素级变化检测方法的局限和高分辨率遥感影像变化检测的困难,本文以面向对象的分析方法为基础呈现了一种新颖的用于检测高分辨率遥感影像变化的多尺度,多特征融合方法。实验结果表明在高分辨率遥感影像变化检测方面这种方法与传统的像素级方法相比有较强的优势。

关键词:面向对象;多尺度分割;光谱特征;纹理特征;形状特征;融合

一简介

由于从环地卫星获取的数据的短间隔重复性覆盖和始终如一的图像质量,变化检测是其主要应用之一[1]。20年来,高分辨率遥感影像变化检测已成为遥感影像处理领域一项重要研究并且已被广泛应用于地理信息系统更新,资源、环境监测,城市规划和国防建设等领域[2]。

目前已经存在各种各样的变化检测方法。图像差分法,主成分分析法,分类后比较法,向量分析法是传统变化检测中最常用的一些方法[3-4]。这些方法被典型地应用于像Landsat TM这样的中等空间分辨

率的卫星影像[5-9]。然而,当涉及高分辨率影像变化检测研究的时候,这些方法就有了一些缺点。

传统的基于像素级的遥感影像变化检测方法主要是建立在光谱信息分析的基础上的。他们共同的特点是仅利用像素值的统计信息而几乎不分析地物的形状特征和结构特征。然而高分辨率遥感影像已经给遥感影像带来了重大变革,它可以清晰地展现景观的结构,纹理和细节信息。除了获得光谱信息之外,它也可以获取表面物体的机构,形状和纹理信息。传统的遥感图像变化检测方法不能真正利用高分辨率遥感影像的优势,因此它不能解决高分辨率遥感影像变化检测的问题。

面向对象的变化检测是变化检测研究新方法的主要内容。面向对象方法的基本特征是分割影像并把对象当做操作的基本单元而不是像传统的面向像素的方法那样把单个像素当做操作的基本单元。通过图像分割获取的对象有一些属性,不仅包含光谱信息还包含纹理,尺寸,形状,密度,环境和其他的从图像中提取的信息。高分辨率遥感影像的面向对象的变化检测方法不再依赖对光谱信息的分析而是靠对对象属性变化的分析来判断变化结果。因此它极大地提高了高分辨率遥感影像变化检测的精度[10-12]。

本文为高分辨率遥感影像提供了一种创新性的基于多尺度和多特征融合的面向对象的变化检测方法。由于对面向对象思维的主要特征的的良好应用,这种新颖的方法能充分利用高分辨率影像的特点并且

在检测高分辨率遥感影像变化方面取得比传统检测方法好得多的检测结果。

二研究数据和方法论

A.研究数据描述

以下两张CBERS-2数据影像分别在2004年十月和2005年五月获取。空间分辨率高达2.5米。两张数据影像的主要变化为社区的拆除和建设和道路的变动。研究影像包含复杂和简单两种人为建设。这种数据体现了城市发展的一种典型变化形式。图像预处理包括几何校正,图像校准和参照第二幅图像的直方图匹配。

CBERS-2 图像(2004年,10月)

基于多特征融合的图像匹配模式

第16卷 第3期强激光与粒子束Vol.16,No.3 2004年3月HIGH POWER LASER AND PARTIC LE BE AMS Mar.,2004 文章编号: 100124322(2004)0320281205 基于多特征融合的图像匹配模式Ξ 彭真明1,2, 张启衡2, 魏宇星2, 张覃平2 (1.电子科技大学光电信息学院,四川成都610054; 2.中国科学院光电技术研究所,四川成都610209) 摘 要: 常规图像匹配模式主要利用了像素的灰度信息和形状信息,而弱小目标检测与跟踪过程中,这 两种信息都缺乏明显特征,难于满足高精度、稳定跟踪的要求。提出一种新的匹配模式,即从图像数据里提取 包括灰度、形状在内的多种特征信息。寻找一种简单有效的信息融合手段,进而获取一种综合特征,利用“综合 特征”进行相似度量来确定目标的最佳定位。仿真计算结果表明,该方法是可行和有效的。 关键词: 图像处理; 多特征融合; K2L变换; 图像匹配; 弱目标检测 中图分类号: O413; T L56 文献标识码: A 图像匹配技术是决定图像中彼此对应的物体相似性度量的过程,即图像匹配总是使相似性度量最大。图像匹配过程中至关重要的三个因素就是:匹配的数据类型、相似性的度量函数以及搜索方法。这三个因素都是匹配技术必不可少的环节,每一种因素都有其深入研究的价值所在。而本文讨论的重点将放在匹配的数据类型上。 从匹配数据类型上看,匹配可初步分为以下几种模式:基于灰度相关的匹配模式,基于特征的匹配模式,基于解释的图像匹配模式。基于灰度相关的匹配就是逐像素地把一个以一定大小的实时图像窗口的灰度矩阵与参考图像的所有可能的窗口灰度矩阵按某种相似性度量方法进行搜索比较的匹配方法。其优点是具有相对较小的计算量,易于硬件实现。基于特征的匹配模式是首先提取反映图像重要信息的特征,而后以这些特征为模型进行匹配。一般来说绝大多数都是指基于点、线和边缘的局部特征匹配。而基于解释的图像匹配技术需要建立在图片自动判读的专家系统上,目前尚未取得突破性进展[1~3]。 成像跟踪系统中弱小目标的检测一直被认为是一个难题,主要表现在远距离、低对比度;目标形状为点状或模糊斑点状,点、角、边缘等特征不明显;甚至运动过程中出现目标闪烁、间断等现象。不言而喻,针对这种灰度差异、几何特征不明显的断续目标的检测跟踪,利用上述的匹配检测模式是难于满足高精度、稳定跟踪的要求的。为此,本文提出一种新的多特征融合的图像匹配模式。即综合利用目标的灰度特性、几何特性以及图像中蕴藏的其他典型特性,然后经过一种数学变换,得到其融合特性,以此作为图像匹配的相似度量依据。仿真计算结果表明,该方法是可行和有效的,尤其适用于低对比度弱小目标的检测与跟踪。 1 多特征提取 特征也称为目标特性,通常是指不同传感器获取的反映同一目标的图像数据,它直接携带的是目标的灰度信息以及点、角点、边缘特征等。由于图像数据获取过程中的各种干扰,它可能会受到各种畸变,甚至是不可恢复的扭曲。所以单一特性作为目标识别检测的度量会带来计算结果的不可靠性。对图像数据进行各种数学变换获取的信息同样可以从侧面反映物体或目标的几何形态、运动学特征和统计学特征,它们也的确蕴藏在图像数据之中,是间接的目标特性。大量的理论和实践表明,在直接特征不明显的情况下,辅于其间接特征,进而寻找一种综合目标特性,是解决问题的根本,同时也是当代信息技术领域数据融合的重要思想。通过反复实验验证,这些有效间接特征包括时频特征、分形特征和突变特征。 1.1 时频特征 根据图像信息在时、频域的分布情况,可知能量集中点在频率轴和时间轴的截距分别是信号的主频和群延迟。信号在时频域中的能量密度函数可表示为 ε(t,f)=|u(t)||u(f)|e i[φ(f)-θ(t)+2πft](1) Ξ收稿日期:2003204223; 修订日期:2003210229 基金项目:国家863计划项目资助课题 作者简介:彭真明(1966—),男,博士后,副研究员,主要从事信号处理、图像处理与成像跟踪技术研究;E2mail:pypzm@https://www.360docs.net/doc/5b8763674.html,。

图像分割方法综述

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点,本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract:Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering

analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方

多尺度几何分析详解

多尺度几何分析详解 一、从小波分析到多尺度几何分析 小波分析取在从多学科领域中取得巨大成功的一个关键原因在于它比傅里叶分析能更“稀疏”地表示一维分段光滑或者有界变差函数。遗憾的是,小波分析在一维时所具有的优异特性并不能简单的推广到二维或更高维。这是因为一维小波张成的可分离小波(Separable wavelet)只具有有限的方向,不能“最优”表示含线或者面奇异的高维函数,但事实上具有线或面奇异的函数在高维空间中非常普遍,例如,自然物体光滑边界使得自然图像的不连续性往往体现为光滑曲线上的奇异性,而并不仅仅是点奇异。换句话说,在高维情况下,小波分析并不能充分利用数据本身特有的几何特征,并不是最优的或者说“最稀疏”的函数表示方法;而继小波分析之后发展起来的多尺度几何分析(Multiscale Geometric Analysis,MGA)发展的目的和动力正是要致力于发展一种新的高维函数的最优表示方法,为了检测、表示、处理某些高维空间数据,这些空间的主要特点是:其中数据的某些重要特征集中体现于其低维子集中(如曲线、面等)。比如,对于二维图像,主要特征可以由边缘所刻画,而在3-D图像中,其重要特征又体现为丝状物(filaments)和管状物(tubes)。 由一维小波张成的二维小波基具有正方形的支撑区间,不同的分辨率下,其支撑区间为不同尺寸大小的正方形。二维小波逼近奇异曲线的过程最终表现为用“点”来逼近线的过程。在尺度j,小波

支撑区间的边长近似为2-j,幅值超过2-j的小波系数的个数至少为O(2j)阶,当尺度变细时,非零小波系数的数目以指数形式增长,出现了大量不可忽略的系数,最终表现为不能“稀疏”表示原函数。因此,我们希望某种变换在逼近奇异曲线时,为了能充分利用原函数的几何正则性,其基的支撑区间应该表现为“长条形”,以达到用最少的系数来逼近奇异曲线。基的“长条形”支撑区间实际上是“方向”性的一种体现,也称为这种基具有“各向异性(anisotropy)”。我们希望的这种变换就是“多尺度几何分析”。 图像的多尺度几何分析方法分为自适应和非自适应两类,自适应的方法一般先进行边缘检测再利用边缘信息对原函数进行最优表示,实际上是边缘检测和图像表示方法的结合,此类方法以Bandelet和Wdgelet为代表;非自适应的方法并不要先验地知道图像本身的几何特征,而是直接将图像在一组固定的基或框架上进行分解,

图像分割区域生长法

江苏科技大学 数字图像处理 图像分割——区域生长法专题 1 图像分割简介 图像分割( image segmentation) 就是把图像分成各具特征的区域并提取出感兴趣目标的技术和过程。这里特征可以是象素的灰度、颜色、纹理等, 预先定义的目标可以对应单个区域也可以对应多个区域。图像分割是图像处理到图像分析的关键步骤, 在图像工程中占据重要的位置。一方面, 它是目标表达的基础, 对特征测量有重要的影响。另一方面, 因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式, 使得更高层的图像分析和理解成为可能。 图像分割是一种重要的图像处理技术, 它不仅得到人们的广泛重视和研究, 在实际中也得到大量的应用。图像分割包括目标轮廓、阈值化、图像区分或求差、目标检测、目标识别、目标跟踪等技术。 从大的方面来说,图像分割方法可大致分为基于区域的方法、基于边缘的方法、区域与边缘相结合的方法,以及在此基础上的采用多分辨率图像处理理论的多尺度分割方法。 其中基于区域的方法采用某种准则,直接将图像划分为多个区域。而基于边缘的方法则通过检测包含不同区域的边缘,获得关于各区域的边界轮廓描述,达到图像分割的目的,而区域与边缘相结合的方法通过区域分割与边缘检测的相互作用,得到分割结果。 图像分割中基于区域的方法主要有直方图门限法、区域生长法、基于图像的随机场模型法、松弛标记区域分割法等。本文主要讨论基于区域分割的区域生长法。区域生长是一种古老的图像分割方法,最早的区域生长图像分割方法是由Levine等人提出的。该方法一般有两种方式,一种是先给定图像中要分割的目标物体内的一个小块或者说种子区域,再在种子区域基础上不断将其周围的像素点以一定的规则加入其中,达到最终将代表该物体的所有像素点结合成一个区域的目的;另一种是先将图像分割成很多的一致性较强,如区域内像素灰度值相同的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的,典型的区域生长法如T. C. Pong等人提出的基于小面(facet)模型的区域生长法,区域生长法固有的缺点是往往会造成过度分割,即将图像分割成过多

多聚焦图像融合源代码

针对经典的最大系数法不准确和方差法计算量大的问题,本文给出了一种混合多级式多聚焦图像融合方法。对于三层小波分解的多聚焦图像融合,每幅图像被分解为三层十个频带。对这十个频带本文分别采用三种方法进行融合。对于低频系数,本文仍然采用求平均法;对于高频系数本文采用方差法和最大系数法进行融合。它们的计算量比最大系数法大一些,但是融合结果更接近于原始清晰图像,而相比于方差法,它们的计算量小的多,但是融合质量稍差一些,应用者可以根据不同的需要进行选择。 本文还给出了一种基于Canny算 子边缘检测的小波变换多聚焦图像融 合方法。首先对图像进行三层小波分 解,然后用Canny算子进行边缘检测, 得到各层分辨率下的边缘图像;对相 应分辨率的高频小波系数根据其是否 为图像的边缘点采用最大系数法或方 差法分别进行融合。仿真实验证明该 方法效果良好,计算量可以灵活调节。 关键词:小波变换;多尺度几何分析;多聚焦图像融合;边缘检测主要程序: clear all; close all; leo1=imread('a1.bmp');%读入图片 leo2=imread('a2.bmp') T=0.4;k1=0.5;k2=0.5;w='db4';m='edge'; tic; outdoor1=leo1; outdoor2=leo2; %三层小波分解 [ca11,chd11,cvd11,cdd11]=dwt2(outdoor1,w); [ca12,chd12,cvd12,cdd12]=dwt2(ca11,w); [ca13,chd13,cvd13,cdd13]=dwt2(ca12,w); [ca21,chd21,cvd21,cdd21]=dwt2(outdoor2,w); [ca22,chd22,cvd22,cdd22]=dwt2(ca21,w); [ca23,chd23,cvd23,cdd23]=dwt2(ca22,w); %求边缘图像 e11=edge(ca11,'canny',T); e12=edge(ca12,'canny',T); e13=edge(ca13,'canny',T); e21=edge(ca21,'canny',T); e22=edge(ca22,'canny',T); e23=edge(ca23,'canny',T); %矩阵融合 chd3=matfusion(chd13,chd23,e13,e23); cvd3=matfusion(cvd13,cvd23,e13,e23); cdd3=matfusion(cdd13,cdd23,e13,e23); chd2=matfusion(chd12,chd22,e12,e22); cvd2=matfusion(cvd12,cvd22,e12,e22); cdd2=matfusion(cdd12,cdd22,e12,e22); chd1=matfusion(chd11,chd21,e11,e21); cvd1=matfusion(cvd11,cvd21,e11,e21); cdd1=matfusion(cdd11,cdd21,e11,e21); ca3=k1*ca13+k2*ca23; %反小波变换 L2=size(chd2);L1=size(chd1); ca2=idwt2(ca3,chd3,cvd3,cdd3,w); ca1=idwt2(ca2(1:L2(1),1:L2(2)),chd2,cvd2,cd d2,w); I=idwt2(ca1(1:L1(1),1:L1(2)),chd1,cvd1,cdd1, w);

图像分割算法研究与实现

中北大学 课程设计说明书 学生姓名:梁一才学号:10050644X30 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法研究与实现 指导教师:陈平职称: 副教授 2013 年 12 月 15 日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践: 图像分割算法研究与实现 起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日

课程设计任务书 1.设计目的: 1、通过本课程设计的学习,学生将复习所学的专业知识,使课堂学习的理论知识应用于实践,通过本课程设计的实践使学生具有一定的实践操作能力; 2、掌握Matlab使用方法,能熟练运用该软件设计并完成相应的信息处理; 3、通过图像处理实践的课程设计,掌握设计图像处理软件系统的思维方法和基本开发过程。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): (1)编程实现分水岭算法的图像分割; (2)编程实现区域分裂合并法; (3)对比分析两种分割算法的分割效果; (4)要求每位学生进行查阅相关资料,并写出自己的报告。注意每个学生的报告要有所侧重,写出自己所做的内容。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 每个同学独立完成自己的任务,每人写一份设计报告,在课程设计论文中写明自己设计的部分,给出设计结果。

小波分析的发展历程

小波分析的发展历程 一、小波分析 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 (1)操作过程:Haar正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。 (2)优点:Haar小波变换具有最优的时(空)域分辨率。 (3)缺点:Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。 1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。1981年,Stromberg引入了Sobolev空间H p的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造L2(R)的规范正交基(即Meyer基),从而证明了正交小波系的存在。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。 1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。它标志着第一代小波的开始? (1)操作过程:先滤波,再进行抽二采样。 (2)优点:Mallat算法在小波分析中的地位相当于FFT在经典傅立叶分析中的地位。它是小波分析从纯理论走向实际应用。 (3)缺点:以傅立叶变换为基础,直接在时(空)域中设计滤波器比较困难,并且计算量大。 1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。 Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。 1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 (1)操作过程:利用两组互为对偶的尺度函数和小波函数实现函数的分解与重构。 (2)优点:具有正交小波无法同时满足的对称性、紧支撑、消失矩、正则性等性质。

小波分析笔记

过去10年来,小波变换在图像压缩领域取得了巨大的成功。它在处理具有点状奇异性的一维信号时远胜于傅立叶分析,在应用中,大多数的二维小波变换使用的可分离滤波器组是一维小波变换在行和列方向的张量积。由于小波基函数仅能表示水平、垂直、对角三个方向,因此在表示高维奇异信号如图像的几何边界等就显得无能为力。因此小波变换在捕捉0维奇异性或处理分片光滑区域时是最优工具,但是在处理高维信号时就不是最优的。 小波分析在一维时所具有的优异特性并不能简单的推广到二维或更高维,由一维小波张成的可分离小波(Separable wavelet)只具有有限的方向,不能“最优”地表示含线或者面奇异的高维函数,但事实上具有线或面奇异的函数在高维空间中非常普遍,例如,自然物体光滑边界使得自然图像的不连续性往往体现为光滑曲线上的奇异性,而并不仅仅是点奇异。 实现函数的稀疏表示是信号处理、计算机视觉等很多领域中一个非常核心的问题。对于模型(7)(焦李成谭山图像的多尺度几何分析:回顾和展望),正交基所能达到的最优逼近误差应该具有s M-的衰减级[D L Donoho: Sparse component analysis and optimal atomic decomposition[j]. Constructive Approximation, 1998, 17:353-382],然而小波变换的非线性逼近误差只能达到1 M-的衰减级。其中重要的原因是二维可分离小波基只具有有限的方向,即水平、垂直、对角,方向性的缺乏使小波变换不能充分利用图像本身的几何正则性。据生理学家对人类视觉系统的研究结果和自然图像统计模型,一种“最优”的图像表示法应具有如下特征:(1)多分辨:能够对图像从粗分辨率到细分辨率进行连续逼近,即“带通”性;(2)局域性:在空域和频域,这种表示方法的“基”应该是“局部”的;(3)方向性:其“基”应该具有“方向”性,不仅仅局限于二维可分离小波的3个方向。 上图表示了分别用傅立叶分析、二维可分离小波变换以及Bandelet变换来逼近图像中奇异曲线的过程。由一维小波张成的二维小波基具有正方形的支撑区间,不同的分辨率下,其支撑区间为不同尺寸大小的正方形。二维小波逼近奇异曲线的过程,最终表现为用“点”

多尺度法初识和应用

多尺度法初识和应用 摘要:简要介绍多重尺度发的中心思想,另外,举例说明多重尺度法在求解方程中的应用。 非线性问题的研究 非线性问题的“个性”很强,处理起来十分棘手。历史上曾有过一些解非 线性方程的“精品”,但与大量存在的非线性方程相比,只能算是“凤毛麟角”。 因此,长期以来,对非线性问题的研究一直分散在自然科学和技术科学的各个 领域。本世纪六十年代以来,情况发生了变化。人们几乎同时从非线性系统的 两个极端方向取得了突破:一方面从可积系统的一端,即从研究多自由度的非 线性偏微分方程的一端获得重大进展。如在浅水波方程中发现了“孤子”,发 展起一套系统的数学方法,如反散射法,贝克隆变换等,对一些类型的非线性 方程给出了解法;另一方面,从不可积系统的极端,如在天文学、生态学等领 域对一些看起来相当简单的不可积系统的研究,都发现了确定性系统中存在着 对初值极为敏感的复杂运动。促成这种变化的一个重要原因十计算机的出现和 广泛应用。科学家们以计算机为手段,勇敢地探索那些过去不能用解析方法处 理的非线性问题,从中发掘出规律性的认识,并打破了原有的学科界限,从共性、普适性方面来探讨非线性系统的行为。 线性与非线性的意义 “线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在 的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系 统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。 “非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲线。 最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函 数关系,如一切高于一次方的多项式函数关系,都是非线性的。由非线性函数关系 描述的系统称为非线性系统。 多尺度法的基本思想 多尺度法首先是由Sturrock(1957) 、Cole(1963) 、 Nayfeh(1965)等提 出的,此后得到进一步的发展。 上面介绍该法的基本思想与方法。我们考虑形式为 的方程所控制的系统,设方程的解为 将原点移至中心位置 是合适的。于是有 ()0=+q f q +++=+=22100x x q x q q εε0q q =

图像分割技术的原理及方法

浅析图像分割的原理及方法 一.研究背景及意义 研究背景: 随着人工智能的发展,机器人技术不断地应用到各个领域。信息技术的加入是智能机器人出现的必要前提。信息技术泛指包括通信技术、电子技术、信号处理技术等相关信息化技术的一大类技术。它的应用使得人们今天的生活发生了巨大变化。从手机到高清电视等家用电器设备出现使我们的生活越来越丰富多彩。在一些军用及民用领域近几年出现了一些诸如:图像制导、无人飞机、无人巡逻车、人脸识别、指纹识别、语音识别、车辆牌照识别、汉字识别、医学图像识别等高新技术。实现它们的核心就是图像处理、机器视觉、模式识别、智能控制、及机器人学等相关知识。其中图像处理具有重要地位。而图像分割技术是图像分析环节的关键技术。 研究图像分割技术的意义: 人类感知外部世界的两大途径是听觉和视觉,尤其是视觉,同时视觉信息是人类从自然界中获得信息的主要来源,约占人类获得外部世界信息量的80%以上。图像以视觉为基础通过观测系统直接获得客观世界的状态,它直接或间接地作用于人眼,反映的信息与人眼获得的信息一致,这决定了它和客观外界都是人类最主要的信息来源,图像处理也因此成为了人们研究的热点之一。人眼获得的信息是连续的图像,在实际应用中,为便于计算机等对图像进行处理,人们对连续图像进行采样和量化等处理,得到了计算机能够识别的数字图像。数字图像具有信息量大、精度高、内容丰富、可进行复杂的非线性处理等优点,成为计算机视觉和图像处理的重要研究对象。在一幅图像中,人们往往只对其中的某些区域感兴趣,称之为前景,这些区域内的某些空间信息特性(如灰度、颜色、轮廓、纹理等)通常与周围背景之间存在差别。图像分割就是根据这些差异把图像分成若干个特定的、具有独特性质的区域并提取感兴趣目标的技术和过程。在数字图像处理中,图像分割作为早期处理是一个非常重要的步骤。为便于研究图像分割,使其在实

小波和多尺度简介

在众多的信号处理应用中,人们希望找到一种稀疏的数据表示,用稀疏逼近取代原始数据表示可从实质上降低信号处理的成本,提高压缩效率。传统的信号表示理论基于正交线性变换,但许多信号是各种自然现象的混合体,这些混合信号在单一的正交基变换中不能非常有效地表现出来。例如,一个含有脉冲和正弦波形的混合信号,既不能用单一的脉冲基函数,也不能用单一的正弦基函数有效地表示。在这个例子中,有两种结构类型同时出现在信号里,但它们却完全不同,其中哪一个都不能有效地模拟另一个。所以,人们希望寻找一种能够同时建立在两种基函数之上的信号表示,其结果应该比采用其中任一种基函数有效得多。 在图像和视频处理方面,常用的信号分解方式通常是非冗余的正交变换,例如离散余弦变换、小波变换等。离散余弦变换其基函数缺乏时间/空间分辨率,因而不能有效地提取具有时频局部化特性的信号特征。小波分析在处理一维和二维的具有点状奇异性的对象时,表现出良好的性能,但图像边缘的不连续性是按空间分布的,小波分析在处理这种线状奇异性时效果并不是很好。因而说,小波分析对于多维信号来说并不是最优的,不能稀疏地捕捉到图像结构的轮廓特征,因此在图像和多维编码方面的新突破,必定取决于信号表好似的深刻变革。 最近几年,研究人员在改变传统信号表示方面取得了很大的进展。新的信号表示理论的基本思想就是:基函数用称之为字典的超完备的冗余函数系统取代,字典的选择尽可能好地符合被逼近信号的结构,其构成可以没有任何限制,字典中的元素被称为原子。从字典中找到具有最佳线性组合的m项原子来表示一个信号,称作信号的稀疏逼近或高度非线性逼近。 从非线性逼近的角度来讲,高度非线性逼近包含两个层面:一是根据目标函数从一个给定的基库中挑选好的或最好的基;二是从这个好的基中拣选最好的m项组合。利用贪婪算法和自适应追踪,从一个冗余函数系统中进行m项逼近方法的理解只是些零星的片段,用高度非线性方法以指定的逼近速率来描述函数仍然是一个富有挑战的问题。 从基函数的形成来讲,在图像表示方面体现为多尺度几何分析,无论是曲波(curvelets)、带波(bandlets),还是仿形波(coutourlets),都要求基函数应具备下述特点:(i)多分辨率分析,(ii)时频定位能力,(iii)全角度分析(方向性),(iv)各向异性的尺度变换。这些新的冗余函数系统的不断涌现,使信号稀疏表示的方法更加成为研究的热点。 超完备信号稀疏表示方法肇始于20世纪90年代。1993年Mallat和Zhang首次提出了应用超完备冗余字典对信号进行稀疏分解的思想,并引入了匹配追踪(marching pursuit, MP)算法。在这篇文献中,作者用自然语言表述浅显的类比,说明超完备冗余字典对信号表示的必要性,同时强调字典的构成应较好地复合信号本身所固有的特性,以实现MP算法的自适应分解。 新思想的提出引起人们极大的关注,但由于算法所涉及的计算量十分繁重,因而早期研究的焦点集中在如何实现算法的快速计算,降低算法的复杂度,以及选择何种类型原子构造合适的字典两方面。这期间,许多音视频信号处理方面的实验都对MP算法作出了有利的支持,尤其在甚低码率视频编码方面,MP算法更显示出极大的优越性. 1999年Donoho等人又另辟蹊径,提出了基追踪(basis pursuit, BP)算法,并从实验的角度举证了MP,MOF,和BOB算法各自的优劣。稍后,又在2001年发表的另一篇重要文章中,给出了基于BP算法的稀疏表示具有唯一解的边界条件,并提出了字典的互不相干性的概念。 注:摘自《基于冗余字典的信号超完备表示与稀疏分解》

halcon图像分割要点

沈阳航空航天大学 综合课程设计基于Halcon的图像分割方法的研究 班级 24020104 学号 2012040201174 学生姓名王旭 指导教师赵晨光

课程设计任务书 课程设计的内容及要求: 一、设计说明 图像分割是图像处理的关键技术之一,将感兴趣目标的区域加以提取的技术和过程,图像分割方法包括:基于阈值、基于区域、基于边缘的分割 方法等。 要求学生深入研究图像分割的主要方法,掌握直方图、灰度阈值、区域生长、边缘检测等分割算法,了解相关理论。并在充分调研 图像分割的原理、算法的基础上,针对Halcon这一开发工具,深入学习各 种算子及库函数的使用方法,并能够基于不同应用目标,尝试不同分割算 法,比较实验结果并进行详尽分析。 二、设计要求 1.制定合理有效的设计方案; 2.熟悉Halcon的开发环境,深入学习图像分割理论,并进行分析。 三、推荐参考资料 [1] 周斌. 一种基于P系统的图像阈值分割方法[J]. 西华大学学报(自然科学版). 2012(06) [2] 王浩军,郑崇勋,闫相国. 基于自适应多尺度的血液细胞图像阈值分割方法研究[J]. 西安交通大学学报. 2001(04) [3] 肖华. 生物细胞图像阈值分割方法研究[J]. 株洲工学院学报. 2006(02) [4] 蒋剑,吴建华. 在小波域进行图像的最大熵分割的一种方法[J]. 南昌大学学报(工科版). 2003(02)

四、按照要求撰写课程设计报告 成绩评定表 评语、建议或需要说明的问题: 成绩指导教师签字:日期:

一、概述 HALCON是世界范围内广泛使用的机器视觉软件,用户可以利用其开放式结构凯苏开发图像处理和机器视觉软件。 在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准。 从图像分割研究的历史来看,可以看到对图像分割的研究有几个明显的趋势:一是对原有算法的不断改进!二是新方法、新概念的引入和多种方法的有效综合运用!人们逐渐认识到现有的任何一种单独的图像分割算法都难以对一般图像取得令人满意的分割效果,因而很多人在把新方法和新概念不断的引入图像分割领域的同时,也更加重视把各种方法综合起来运用!在新出现的分割方法中,基于小波变换的图像分割方法就是一种很好的方法!三是交互式分割研究的深入!由于很多场合需要对目标图像进行边缘分割分析:例如对医学图像的分析,因此需要进行交互式分割研究!事实证明,交互式分割技术有着广泛的应用!四是对特殊图像分割的研究越来越得到重视!目前有很多针对立体图像、彩色图像、多光谱图像以及多视场图像分割的研究,也有对运动图像及视频图像中目标分割的研究,还有对深度图像、纹理图像、计算机断层扫描";<-、磁共振图像、共聚焦激光扫描显微镜图像、合成孔雷达图像等特殊图像的分割技术的研究!相信随着研究的不断深入,存在的问题会很快得到圆满的解决。

解决分水岭算法的过分割问题

解决分水岭算法的过分割问题 班级:020751 学号:02075087 姓名:刘恺

摘要针对基于分水岭变换的分割算法通常存在过分割现象,提出了一种新的分割算法,采用形态学的运算去除噪声及背景像素的影响,搜索区域极大值点,将分割定位于目标图像,从而达到很好的分割效果,方法从消除过分割及区域轮廓定位等方面均具有很好的分割效果。 关检词图像分割,分水岭变换,数学形态学 Abstract The article is based on watershed algorithm, proposed a method of image segmentation, adopted the morphology arithmetic to eliminate the effect of noise and background pixel, search for the max point in each area, let segmentation orientate as target image, could reach very good segment effect. The method can efficiently eliminate over-segmentation, and hold the position of region contours without evident bias. Key words image segmentation, watershed transform ,mathematical morphology 1.1图像分割综述 把图像分解为一些特定的性质相似的部分(区域或对象),并用这些部分对图像进行分析和描述。一幅图像往往包含许多不同类型的区域,如物体、环境和背景等。图像分析的一个重要方法就是用它们作为基本组成成分对图像进行描述。例如为了在气泡室图片中检出质点碰撞形式并判定其发生位置,就要在图像中分割出气泡的轨迹及其端点。为了从输入的文本中识别出一串字符,首先就要把各个字符从背景和其他字符中分离出来。因此把图像分割为若干子图像,并利用各子图像的特性和它们之间的关系描述图像,对于图像识别和解释、物景分析以及图像的分块处理和存储都有很大的意义。 图像分割基本上是对像素进行分类的过程。例如用某个灰度阈值把图像像素分成“黑”和“白”两类,就可以把黑的对象同白的背景区分开。常用的分割方法有灰度等级阈值法、谱和空间分类法、区域生长法和边缘检测法。 灰度等级阈值法在图像只有两种组成部分的情况下,图像灰度的直方图常常呈现两个峰值。用两个峰值之间的谷值所对应的灰度作为阈值,把所有像素灰度大于或等于阈值的作为一类,小于阈值的作为另一类是一种最基本的两类分割方法。实际应用时为了改善分类的可靠性,可以利用某些附加的信息(例如已知两类区域的面积之比)使阈值的选择更加合理。在类别更多的情况下,可以采用多级阈值把各类分割开来(例如确定两个阈值,就可以把细胞图像分割为胞核、胞浆和背景三部分)。类别越多,图像直方图的峰值就越不明显,分割就更为困难。 谱和空间分类法对于彩色和多光谱图像,可以用像素的几种性质(颜色和谱信号)对像素作比较精细的分类。对于黑白图像,用包括像素本身灰度在内的一组局部性质(例如该像素邻域灰级的均值)在多维空间中进行分类。对于一些复杂图像,这种方法比单独的灰度阈值法效果更好。

转载 图像处理中不适定问题

转载图像处理中不适定问题 原文地址:图像处理中不适定问题作者:天天向上图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)的研究从20世纪末成为国际上的热点问题,成为现代数学家、计算机视觉和图像处理学者广为关注的 研究领域。数学和物理上的反问题的研究由来已久,法国数学家阿达马早在19 世纪就提出了不适定问题的概念:称一个数学物理定解问题的解存在、唯一并 且稳定的则称该问题是适定的(Well Posed).如果不满足适定性概念中的上述判据中的一条或几条,称该问题是不适定的。典型的图像处理不适定问题包括: 图像去噪(Image De-nosing),图像恢复(Image Restorsion),图像放大(Image Zooming),图像修补(Image Inpainting),图像去马赛克(image Demosaicing),图像超分辨(Image super-resolution)等。迄今为止,人们已经提出许多方法 来解决图像处理中的不适定性。但是如何进一步刻画图像的边缘、纹理和角形 等图像中重要视觉几何结构,提高该类方法在噪声抑制基础上有效保持结构和 纹理能力是有待深入研究的问题。1不适定图像处理问题的国内外研究现状评 述由于图像处理中的反问题往往是不适定的。解决不适定性的有效途径是在图 像处理中引入关于图像的先验信息。因此图像的先验模型对于图像反问题和其 它计算机视觉还是图像处理问题至关重要。对于图像的先验模型的研究,研究 者们从多个角度进行研究,其代表主要有"统计方法"和"正则化几何建模方法","稀疏表示方法"三种主流方法,而最近兴起的图像形态分量分析(MCA)方法吸引了大批国内外研究者的广泛关注。1.1正则化几何模型日新月异关于自然图像 建模的"正则化几何方法"是最近几年热点讨论的主题。其中一类方法是利用偏 微分方程理论建立图像处理模型,目前的发展趋势是从有选择性非线性扩散的 角度设计各类低阶、高阶或者低阶与高阶综合的偏微分方程,或者从实扩散向复扩散推广,从空域向空频域相结合以及不同奇异性结构的综合处理[1]。另一类 方法是基于能量泛函最优的变分方法。1992年,Rudin-Osher-Fatemi提出图像能被分解为一个属于有界变差空间的分量和一个属于的分量的全变差模型[2]。根据国际上及本人的研究表明:ROF模型模型较好地刻画了图像中视觉重要边 缘结构,但不能描述纹理信息。2001年Meyer提出了振荡模式分解理论[2]: 他认为振荡分量可以表示为某个向量函数的散度形式,而振荡分量可以属于3 个可能的函数空间。首先引入有界变差(bounded variational,BV)空间的一个

多尺度几何分析概论

多尺度几何分析概论 摘要:以函数的稀疏表示为主线,详细介绍了各种多尺度几何分析产生的背景、发展历程和逼近性能,并分析了它们各自存在的优缺点,最后指出了其发展方向。 关键词:多尺度几何分析;奇异性;正则性;非线性逼近;有界变差函数 0引言 自1807年Fourier 提出任意一个周期为2π的函数都可以表示成一系列三角函数的代数和,到今天蓬勃发展的小波分析,科学家们的研究目的是对不同的函数空间提供一种直接、简便的分析方式,即寻求函数在某一特定空间下,在某种基下的最优逼近。逼近的误差体现了用此基表示函数的稀疏程度或是分解系数的能量集中程度。 Fourier分析的思想是将函数表示为具有不同频率的谐波函数的线性叠加,即将函数用一簇三角基展开,将原函数在时域中的讨论转换为对这个叠加权系数的讨论,即Fourier 变换在频域中的研究。这种三角体系展开方式的局限性促使人们去寻找其他的正交体系——小波分析。小波分析的地位在数学界是独一无二的,它较精确的时频定位特性,成为处理非平稳信号的有利工具;也证明了小波分析比Fourier 分析更能稀疏地表示一段分段光滑或有界变差函数。这是小波分析成功的一个关键原因。但是,由于张量积小波只具有有限方向数,它主要适合表示一维奇异性的对象,当它在处理二维或更高维奇异性时,就显得无能为力。小波在表示这些函数时并不是最优的或者最稀疏的表示方法。为了更好地处理高维奇异性,一类带有方向性的稀疏表示方法——多尺度几何分析应运而生。它的产生符合人类视觉皮层对图像有效表示的要求,即局部性、方向性和多尺度性。它的目的就是为具有面奇异或线奇异的高维函数找到最优或最稀疏的表示方法。目前,已有的多尺度几何分析方法有Emmanuel J Candès等人提出的脊波变换(ridgelet transform)、单尺度脊波变换(monoscale ridgelet transform)、curvelet变换(curvelet transform),E. Le Pennec等人提出的bandelet 变换,以及M.N.Do 等人提出的contourlet变换。另外,还有一些多尺度分析方法,如David Donoho 提出的wedgelet、beamlet等。本文根据以上方法出现的时间顺序来讨论其逼近性能的异同。 在图像处理方面,图像的稀疏表示在对图像数据的存储、传输中得到了广泛的应用。由于余弦基和小波基能够用较少的系数达到图像较精确的非线性逼近,成为图像稀疏表示的重要方法。如今,多尺度几何分析的出现,又为图像的稀疏表示提供了一个全新而又有效的方法。 1奇异性分析 本文称无限次可导的函数是光滑的或没有奇异性的。若函数在某处有间断或某阶导数不连续,则称该函数在此处有奇异性。图像的奇异性或非正则结构通常包含了图像的本质信息。例如图像亮度的不连续性表示景物中的边缘部分,这是认识图中最重要的部分。图像的奇异性是常见的,也是重要的。在自然界中光滑物体的边界往往体现为沿光滑曲线的奇异性,并不仅是点的奇异性。在数学上,通常用Lipschitz指数刻画信号的奇异性大小。 3多尺度几何分析 3.1脊波变换 脊波理论的基本框架是由E.J Candès 建立,并与D.L.Donoho等人在其后续工作中逐步拓展和完善。脊波变换是一种非自适应的高维函数表示方法,对含直线奇异的多变量函数能够达到最优的逼近阶。脊波理论的提出在多尺度几何分析史上产生了深远的影响,具有不可估量的价值。脊波变换的核心主要是经过radon变换把线状奇异性变换成点状奇异性。小波变换能有效地处理在radon域的点状奇异性。其本质就是通过对小波基函数添加一个表征方向的参数得到的,所以它不但与小波一样有局部时频分析的能力,还具有很强的方向选择和辨识能力,可以非常有效地表示信号中具有方向性的奇异特征。这是小波方法所不能得到的。 3.1.2数字脊波的实现 在实际应用中,脊波变换的离散化及其算法实现是一个具有挑战性的问题。由于脊波的径向性质,对连续公式直接离散实现时要在极坐标中进行插值。这样的变换结果或者是冗余的,或者不能完全重构。脊波变换数字实现的优劣很大程度上取决于其中radon变换数字实现的重构精度。为此,人们提出了各种各样的方法,大体上可分为在Fourier域利用投影切片定理的方法、多尺度方法和代数方法三类。

相关文档
最新文档