计算机图形学课程教学设计报告简单图形的绘制

计算机图形学课程教学设计报告简单图形的绘制
计算机图形学课程教学设计报告简单图形的绘制

《计算机图形学》课程设计

报告

学生姓名:学号:

学院:

班级:

题目: 简单图形的绘制

职称2015年7月1日

目录

目录............................................................................................... I

一、选题背景 (1)

二、算法设计 (2)

2.1 绘制直线、圆、椭圆、抛物线 (2)

2.1.1 绘制直线 (2)

2.1.2 绘制圆 (2)

2.1.3 绘制椭圆 (2)

2.1.4 绘制抛物线 (2)

2.2 三维几何变换 (2)

三、程序及功能说明 (5)

3.1 绘制直线、圆、椭圆、抛物线...... (5)

3.1.1 绘制直线 (5)

3.1.2 绘制圆 (5)

3.1.3 绘制椭圆 (5)

3.1.4 绘制抛物线 (6)

3.2 图形的平移 (6)

3.3 图形的旋转 (6)

3.4 图形的缩放 (7)

四、结果分析 (7)

4.1 绘制直线、圆、椭圆、抛物线 (7)

4.1.1 直线 (7)

4.1.2 圆 (8)

4.1.3 椭圆 (8)

4.1.4 抛物线 (8)

4.2 图形的平移 (9)

4.3 图形的旋转 (10)

4.4 图形的缩放 (11)

五、总结 (10)

六、课程设计心得体会 (14)

参考文献 (15)

源程序 (16)

一、选题背景

二、算法设计

2.1 绘制直线、圆、椭圆、抛物线

2.1.1 绘制直线

通过两个点的坐标来绘制直线。计算机图形学中二维图形在显示输出之前需要扫描转换,生成直线的算法一般有DDA 算法和中点算法。

2.1.2 绘制圆

通过运用圆的参数方程cos ;sin x a r y b r θθ=+=+来绘制圆的图形,其中[0,2]θπ∈,

(a,b )为圆心,r 为半径,运用参数方程,只需要确定半径的长度和圆心的位置,即可绘制出圆。

2.1.3 绘制椭圆

通过运用椭圆的参数方程cos ;sin x a y b θθ==来绘制椭圆的图形,其中

[0,2]θπ∈,是已知的变量,a ,b 分别为长半轴,短半轴,当确定a 和b 后,

通过参数方程即可得到这个椭圆的方程。

2.1.4 绘制抛物线

根据点绘制抛物线图像是通过拟合完成,根据三个点的坐标,通过数据拟合,得到经过这三个点的函数关系式,从而再根据这个函数关系式绘制出抛物线上其他的点,形成一条连续的抛物线;或直接根据已知函数绘制图像是通过已知函数画出图像。

2.2 三维几何变换

三维几何变换是二维几何变换的推广。二维几何变换在齐次坐标空间中

可用3?3的变换矩阵表示,类似的,三维几何变换在齐次坐标空间中可用4?4的变换矩阵表示。三维空间中的点(),,x y z 的齐次坐标定义为(),,h h h x y z ,其中,h 为不等与零的任意常数,h x hx =,h y hy =,h z hz =。亦即点(),,x y z 对应4维齐次坐标空间的一条直线:

h h

h h x hx y hy z hz w hy

=??=??=??=? (2.2.1)

通常为了简单起见,取(),,,1x y z 为(),,x y z 的齐次坐标。 (1)平移变换

平移变换将点(),,P x y z 在三个坐标轴方向上分别移动距离,,x y z t t t ,得到新的一点(),,P x y z '''',它们之间的关系表示为:P P T '=+,其中

,,T

x y z T t t t ??=??。

三维平移变换在其次坐标下的矩阵表示为:

(),,1000100010

001x y z x y t t t z t t T t ??????=??

??

??

(2.2.2) (2)放缩变换

三维放缩变换在齐次坐标下的矩阵表示:

(),,0000

000000

1x y z x y s s s z s s S s ??

???

?=??????

(2.2.3) 此变换的参照点为坐标原点,我们可以按下面步骤建立关于空间任一参

照点(),,r r r r P x y z 的缩放变换:

(1)平移使r P 落于原点,变换为(),,r r r T x y z --; (2)进行放缩变换()

,,x y z S s s s ;

(3)平移r P 回到原先的位置,变换为(),,r r r T x y z 。 从而关于参照点r P 的缩放变换();,,r r r r S P x y z 为

()()()();,,,,,,,,r r r r r r r x y z r r r S P x y z T x y z S s s s T x y z =--g g (2.2.4) (3)旋转变换

给定一点(),,P x y z ,首先将P 点y 和z 坐标表示成极坐标,即

()(),,,cos ,sin x y z x r r ??=

,其中r =

。将P 点绕x 轴旋转θ角后,得到

(),,P x y z ''''。易知:

()()cos sin x x y r z r ?θ?θ?'=?

'=+??'

=+? (2.2.5)

上式矩阵形式为:

1

000cos sin 0sin cos x x y y z z θθθθ'????????????

'=-??????'???????????? (2.2.6)

从而绕x 轴旋转θ角的变换在齐次坐标下的矩阵表示为:

()1

0000cos sin 00cos sin 00

00

1x R θ

θθθθ??

??-?

?=???

???

(2.2.7) 类似的,绕y 轴和z 轴的旋转θ的变换矩阵分别为:

()cos 0sin 00

100sin 0cos 00

1y R θθθθθ-?????

?=??????

(2.2.8) ()cos sin 00sin cos 0000100

01z R θθθθθ-??????=??

????

(2.2.9) 如果要绕空间任意轴01P P →

旋转θ角,可按如下步骤实现:

(1)以0P 为原点O ,01P P →

为Oz 轴建立新的坐标系Ox yz ;

(2)求出从坐标系Oxyz 到坐标系Ox yz 的变换M ;

(3)将图形对象变换到坐标系Ox yz 中;

(4)在新坐标系Ox yz 中绕Oz 轴旋转θ角,变换为()z R θ; (5)将图形对象变换为原坐标系Oxyz 中,变换为1M -。

这样绕01P P →

旋转θ角的变换为:

()1z M R M θ- (2.2.10)

三、程序及功能说明

3.1 绘制直线、圆、椭圆、抛物线……

3.1.1 绘制直线

plot(A,B)

通过运用matlab 中的plot 函数画出两点之间的直线图像。其中A,B 为直线上的两个点的坐标,通过两点绘制直线。

3.1.2 绘制圆

function circle(A,R) alpha=0:pi/50:2*pi;

%角度[0,2*pi] %R=2;%半径 x=R*cos(alpha)+A(1); y=R*sin(alpha)+A(2); plot(x,y,'-') axis equal

首先先对角度alpha 分割成小区间,且求出相应的cos 和sin 值,再根据输入的半径和圆心坐标A ,带入公式求得圆上的点的坐标,再绘制出图像。

3.1.3 绘制椭圆

function tuocircle(a,b)

t=0:pi/20:2*pi; x=a*cos(t); y=b*sin(t); plot(x,y)

首先先对角度t 分割成小区间得出相应的cos 和sin 值,根据再根据输入的长半轴a 与短半轴b 完善参数方程求得椭圆上的点的坐标,再绘制出图像。

3.1.4 绘制抛物线

function parabola(A,B,C)

x=[A(1) B(1) C(1)]; y=[A(2) B(2) C(2)];

%y=ax^2+b

p=polyfit(x,y,2);

t=-10:.1:10;%指定绘图区间

s=polyval(p,t);

plot(t,s,x,y,'or')

通过三个点绘制抛物线是通过三点的拟合绘制出图像;通过函数是在一个区间上画出函数图像。

3.2 图形的平移

function change(T1,V1)中:

T=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1;]

T(1,4)=T1(1); T(2,4)=T1(2); T(3,4)=T1(3);

ALL=T

%最后的变换矩阵

V2=ALL*V1';

V=V2;

先设T为平移变换矩阵,然后通过带入平移的长度,形成最终的平移矩阵,成为最重的变换举证ALL,将ALL左乘须变换矩阵V1,最终得到变换后的图形矩阵V。

3.3图形的旋转

function change2(R1,V1)

R=[0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];

sina=sin(R1); cosa=cos(R1);

R(1,1)=cosa; R(1,2)=-sina; R(2,1)=sina; R(2,2)=cosa;

ALL=R

%最后的变换矩阵

V2=ALL*V1';

V=V2;

先设R为旋转变换矩阵,首先就将带入的角度求出sina和cosa值,然后对应公式将值带入矩阵的对应位置形成最终的旋转矩阵,成为最终的变换矩阵ALL,将ALL左乘须变换矩阵V1,最终得到变换后的图形矩阵V。3.4图形的缩放

function change3(S1,V1)

S=[0 0 0 0;0 0 0 0;0 0 0 0;0 0 0 1];

S(1,1)=S1(1); S(2,2)=S1(2); S(3,3)=S1(3);

ALL=S

V2=ALL*V1';

V=V2;

将S设为缩放变换矩阵,然后对应公式将缩放的值带入矩阵的对应位置形成最终的平移矩阵,成为最终的变换矩阵ALL,将ALL左乘须变换矩阵V1,最终得到变换后的图形矩阵V。

四、结果分析

4.1绘制直线、圆、椭圆、抛物线

4.1.1 直线

>> line([1 2],[2 1])

4.1.2 圆

>> circle([2 3],2)

4.1.3 椭圆

>> tuocircle(30,0.7)

4.1.4 抛物线

根据三个点画出抛物线:

>> parabola([1 2],[5 6],[3 9])

根据函数画抛物线:

4.2 图形的平移

>> showCubic([0,0,1,1;1,0,1,1;1,1,1,1;0,1,1,1;0,0,0,1;1,0,0,1;1,1,0,1;0,1,0,1]) >> change([4,5,6],[0,0,1,1;1,0,1,1;1,1,1,1;0,1,1,1;0,0,0,1;1,0,0,1;1,1,0,1;0,1,0,1])

平移矩阵:

1004010500160

001T ?????

?=??

??

??

最终总变换矩阵:

1004010500160001ALL ?????

?=??

??

??

变换后的矩阵:

45715571567146714561556156614

661V ????????

??

?

?

=??

??

????

??

????

4.3 图形的旋转

>> showCubic([0,0,1,1;1,0,1,1;1,1,1,1;0,1,1,1;0,0,0,1;1,0,0,1;1,1,0,1;0,1,0,1]) >> change2(pi/3,[0,0,1,1;1,0,1,1;1,1,1,1;0,1,1,1;0,0,0,1;1,0,0,1;1,1,0,1;0,1,0,1])

旋转矩阵:

0.50000.8660

000.86600.50000000 1.000000

00 1.0000R -??????=????

?? 最终变换矩阵:

0.50000.8660

000.86600.50000000 1.000000

00 1.0000ALL -??????=????

?? 变换后的矩阵:

0 1.0000 1.00000.50000.8660 1.0000 1.00000.3660 1.3660 1.0000 1.00000.86600.5000 1.0000 1.0000000.0000 1.00000.50000.86600.0000 1.00000.3660 1.36600.0000 1.00000.8660

0.5000

0.0000 1.0000V ??

???

???

-?

?

-?

?

=???

?

??-?-???

??

?

?

4.4

>> showCubic([0,0,1,1;1,0,1,1;1,1,1,1;0,1,1,1;0,0,0,1;1,0,0,1;1,1,0,1;0,1,0,1]) >>

change3([0.8,0.5,0.3],[0,0,1,1;1,0,1,1;1,1,1,1;0,1,1,1;0,0,0,1;1,0,0,1;1,1,0,1;0,1,0,1])

缩放矩阵:

0.8000

00000.500000000.300000

00 1.0000S ??????=????

?? 最终变换矩阵:

0.8000

00000.500000000.30000000 1.0000ALL ??????=????

??

变换后矩阵:

000.3000 1.00000.800000.3000 1.00000.80000.50000.3000 1.00000

0.50000.3000 1.0000000.0000 1.00000.800000.0000 1.00000.80000.50000.0000 1.00000

0.5000

0.0000 1.0000V ??

???

???

?

?

?

?

=??

?

?

????

??

????

缩放前图形:

缩放后图形:

五、总结

这次的课程设计主要是运用软件matlb来实现的。这次对简单图形的绘制,如:直线、抛物线、圆、椭圆等,还有对图形进行平移、旋转、缩放操作。简单图形的绘制,主要是通过编写matlab命令来实现,对于平移、旋转、缩放主要是对应的矩阵要是四维的,然后对应矩阵的分量调整好,再按照倒序相乘,得出变换矩阵,最后与原来的图形矩阵相乘后得出新的矩阵。所以这次的课程设计是按照书上的算法步骤先求出矩阵,然后求出变换后的图像的矩阵,因为需要变成其次坐标,所以需要添加一个最后的分量1,这样各种矩阵的运算才可以实现。刚开始对这个地方不懂,编程出现了很多错误。对于题目要求:在图形显示中,使用鼠标、键盘或下拉菜单等方式进行交互控制。这个地方,我们通过在matlab调用命令来实现对图形的平移、旋转、缩放等操作。

六、课程设计心得体会

这个学期学了计算机图形学后,对我们有了很多帮助。老师讲解的非常详细,也举了很多生动的例子。所以对图形学的研究内容、应用、发展简历等。平时也通过课内实验对所学的内容通过编程实现各个功能,这让我们积累了一定的编程能力,同时对matlab也能更好的运用。

本课程主要内容包括直线、圆、椭圆、抛物线等简单图形的绘制;交互的对简单图形进行平行;能够交互式的对简单图形进行旋转。这次对图形进行平移、旋转、缩放的操作,主要是对应的矩阵要是四维的,然后对应矩阵的分量调整好,再按照倒序相乘,得出变换矩阵,最后与原来的图形矩阵相乘后得出新的矩阵。通过这次的课程设计,使我们的自学能力与动手实践能力得到相当大的提高,编程并不是靠看书本就能学会的,而是要靠一步步的调试一条条指令的修改试运行中学习进步的,盲目的看书并不能提高自己水平。这次的课程设计就是按照书上的步骤求矩阵,然后求出变换后的图像的矩阵,因为需要变成其次坐标,所以需要添加一个最后的分量1,这样各种矩阵的运算才可以实现。

在本次的课设中让我们对计算机图形学有了一个更加深我们对计算机图形学课程理论知识的认识和理解,使我找到了理论与实践的最佳结合点。以前可能只是简单的了解记住课本一些原理,通过自己编写程序将理论付诸实践后。那些知识更加使我真正明白并深记着,尤其能找到一些以前会忽略的细节。在运用matlab编写程序的时候,首先对图形的旋转、平移、缩放的原理有了深入的学习和认识,然后,在编写程序的时候从分考虑算法,用最简单的方法实现题目要求。题目中要求交互式的实现功能,但是我们直接运用matlab用命令实现了题目要求。

通过这次课程设计,我们学会了团队合作,也更加明白了团队合作的效率和意义,让我们认识到一起学习并完成一项任务的意义。从这次的课程设计我们知道了自己的不足,学习的知识不够充分,对于现有资源材料的利用学习率太低等方面的缺点,对今后的学习和工作进步都有非常大的帮助。

参考文献

[1]倪明田,吴良芝.计算机图形学[M].北京:北京大学出版社,1999.

[2]孔令德. 计算机图形学课程设计教程[M].北京:北京大学出版社,2010.

[3]白建军.OpenGL三维图形设计与制作[M].北京:人民邮电出版社,1998.

源程序1.绘制直线

function line(A,B)

plot(A,B)

2.绘制圆

function circle(R)

alpha=0:pi/50:2*pi;%角度[0,2*pi]

%R=2;%半径

x=R*cos(alpha);

y=R*sin(alpha);

plot(x,y,'-')

axis equal

3.绘制椭圆

function tuocircle(a,b)

t=0:pi/20:2*pi;

x=a*cos(t);

y=b*sin(t);

plot(x,y)

4.根据三点绘制抛物线

function parabola(A,B,C)

%A=[1 2];

%B=[5 6];

%C=[3 9];

x=[A(1) B(1) C(1)];

y=[A(2) B(2) C(2)];

%y=ax^2+b

p=polyfit(x,y,2);

t=-10:.1:10;%指定绘图区间

s=polyval(p,t);

plot(t,s,x,y,'or')

5.根据函数绘制抛物线

x=0:0.1:10;

y=3*x.^2

plot(x,y)

6.图形的平移变换

function change(T1,V1)

T=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1;]

T(1,4)=T1(1);

T(2,4)=T1(2);

T(3,4)=T1(3);

T

%平移

ALL=T

%最后的变换矩阵

V2=ALL*V1';

V=V2';

V

%变换后的图形矩阵,下面画图

face = V(1:4,:); %1,2,3,4

fill3(face(:,1),face(:,2),face(:,3),'r');

hold on;

face = V(5:8,:); %5,6,7,8

fill3(face(:,1),face(:,2),face(:,3),'b');

hold on;

face = [V(2:3,:); V(7,:);V(6,:)] %2,3,7,6

fill3(face(:,1),face(:,2),face(:,3),'g');

hold on;

face =[ V(1,:);V(4,:);V(8,:);V(5,:);] %1,4,8,5 fill3(face(:,1),face(:,2),face(:,3),'y');

hold on;

face = [V(7:8,:); V(4,:);V(3,:)] %4,3,7,8

fill3(face(:,1),face(:,2),face(:,3),'b');

hold on;

face =[ V(1,:);V(2,:);V(6,:);V(5,:);] %1,2,6,5 fill3(face(:,1),face(:,2),face(:,3),'r');

axis equal

7.图形的旋转变换

function change2(R1,V1)

R=[0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];

sina=sin(R1);

cosa=cos(R1);

R(1,1)=cosa;

R(1,2)=-sina;

R(2,1)=sina;

R(2,2)=cosa;

R

%旋转

ALL=R

%最后的变换矩阵

V2=ALL*V1';

V=V2';

V

%变换后的图形矩阵,下面画图

face = V(1:4,:); %1,2,3,4

fill3(face(:,1),face(:,2),face(:,3),'r');

hold on;

face = V(5:8,:); %5,6,7,8

fill3(face(:,1),face(:,2),face(:,3),'b');

hold on;

face = [V(2:3,:); V(7,:);V(6,:)] %2,3,7,6

fill3(face(:,1),face(:,2),face(:,3),'g');

hold on;

face =[ V(1,:);V(4,:);V(8,:);V(5,:);] %1,4,8,5 fill3(face(:,1),face(:,2),face(:,3),'y');

hold on;

face = [V(7:8,:); V(4,:);V(3,:)] %4,3,7,8

fill3(face(:,1),face(:,2),face(:,3),'b');

hold on;

face =[ V(1,:);V(2,:);V(6,:);V(5,:);] %1,2,6,5 fill3(face(:,1),face(:,2),face(:,3),'r');

axis equal

8.图形的缩放变换

function change3(S1,V1)

S=[0 0 0 0;0 0 0 0;0 0 0 0;0 0 0 1];

S(1,1)=S1(1);

S(2,2)=S1(2);

计算机图形学实验报告

《计算机图形学》实验报告姓名:郭子玉 学号:2012211632 班级:计算机12-2班 实验地点:逸夫楼507 实验时间:15.04.10 15.04.17

实验一 1 实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力; 编程实现DDA 算法、Bresenham 中点算法;对于给定起点和终点的直线,分别调用DDA 算法和Bresenham 中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。 2 实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One (自制平台) 3 实验结果 3.1 程序流程图 (1)DDA 算法 是 否 否 是 是 开始 计算k ,b K<=1 x=x+1;y=y+k; 绘点 x<=X1 y<=Y1 绘点 y=y+1;x=x+1/k; 结束

(2)Mid_Bresenham 算法 是 否 否 是 是 是 否 是 否 开始 计算dx,dy dx>dy D=dx-2*dy 绘点 D<0 y=y+1;D = D + 2*dx - 2*dy; x=x+1; D = D - 2*dy; x=x+1; x

3.2程序代码 //-------------------------算法实现------------------------------// //绘制像素的函数DrawPixel(x, y); (1)DDA算法 void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) { //----------请实现DDA算法------------// float k, b; float d; k = float(Y1 - Y0)/float(X1 - X0); b = float(X1*Y0 - X0*Y1)/float(X1 - X0); if(fabs(k)<= 1) { if(X0 > X1) { int temp = X0; X0 = X1; X1 = temp; }

研究生计算机图形学课程室内场景OpenGL--实验报告Word版

《高级计算机图形学》实验报告 姓名:学号:班级: 【实验报告要求】 实验名称:高级计算机图形学室内场景 实验目的:掌握使用OpenGL生成真实感复杂对象的方法,进一步熟练掌握构造实体几何表示法、扫描表示法、八叉树法、BSP树法等建模方法。 实验要求:要求利用OpenGL生成一个真实感的复杂对象及其周围场景,并显示观测点变化时的几何变换,要具备在一个纹理复杂的场景中漫游功能。要求使用到光线跟踪算法、 纹理映射技术以及实时绘制技术。 一、实验效果图 图1:正面效果图

图2:背面效果图 图4:背面效果图

图4:室内场景细节效果图 图5:场景角度转换效果图

二、源文件数据代码: 共6个文件,其实现代码如下: 1、DlgAbout.cpp #include "StdAfx.h" #include "DlgAbout.h" CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) { } void CAboutDlg::DoDataExchange(CDataExchange* pDX) { CDialog::DoDataExchange(pDX); } BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) END_MESSAGE_MAP() 2、FormCommandView.cpp #include "stdafx.h" #include "Tool.h" #include "MainFrm.h" #include "FormCommandView.h" #include "ToolDoc.h" #include "RenderView.h" // Download by https://www.360docs.net/doc/5c10515437.html, #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif // CFormCommandView IMPLEMENT_DYNCREATE(CFormCommandView, CFormView) CFormCommandView::CFormCommandView() : CFormView(CFormCommandView::IDD) { //{{AFX_DATA_INIT(CFormCommandView)

计算机图形学真实图形

#include #include /* Initialize material property, light source, lighting model, * and depth buffer. */ void init(void) { GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat mat_shininess[] = { 50.0 }; GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; GLfloat lightPos[]={0.0f,0.0f,75.0f,1.0f}; GLfloat ambientLight[]={0.0f,0.0f,75.0f,1.0f}; GLfloat specular[]={0.0f,0.0f,75.0f,1.0f}; GLfloat specref[]={0.0f,0.0f,75.0f,1.0f}; GLfloat spotDir[]={0.0f,0.0f,75.0f,1.0f}; glClearColor (0.0, 0.0, 0.0, 0.0); glShadeModel (GL_SMOOTH);//设置阴影模型 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);//镜面光分量强度glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);//镜面光反射指数glLightfv(GL_LIGHT0, GL_POSITION, light_position);//设置光源的位置 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight); glLightfv(GL_LIGHT1,GL_DIFFUSE,ambientLight); glLightfv(GL_LIGHT1,GL_SPECULAR,specular); glLightfv(GL_LIGHT1,GL_POSITION,lightPos); glLightf(GL_LIGHT1,GL_SPOT_CUTOFF,50.0f); glEnable(GL_LIGHT1); glEnable(GL_COLOR_MATERIAL); glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE); glMaterialfv(GL_FRONT,GL_SPECULAR,specref); glMateriali(GL_FRONT,GL_SHININESS,128); glEnable(GL_LIGHTING);//启动光照 glEnable(GL_LIGHT0);//激活光源 glEnable(GL_LIGHT1);//激活光源 glEnable(GL_DEPTH_TEST); } /* 调用glut函数绘制一个球*/ void display(void) { glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

计算机图形学实验

实验1 直线的绘制 实验目的 1、通过实验,进一步理解和掌握DDA和Bresenham算法; 2、掌握以上算法生成直线段的基本过程; 3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。实验环境 计算机、Turbo C或其他C语言程序设计环境 实验学时 2学时,必做实验。 实验内容 用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。 实验步骤 1、算法、原理清晰,有详细的设计步骤; 2、依据算法、步骤或程序流程图,用C语言编写源程序; 3、编辑源程序并进行调试; 4、进行运行测试,并结合情况进行调整; 5、对运行结果进行保存与分析; 6、把源程序以文件的形式提交; 7、按格式书写实验报告。 实验代码:DDA: # include # include

void DDALine(int x0,int y0,int x1,int y1,int color) { int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { putpixel((int)(x+0.5),(int)(y+0.5),4); x+=xIncre; y+=yIncre; } } main(){ int gdriver ,gmode ;

计算机图形学实验报告 (2)

中南大学信息科学与工程学院 实验报告实验名称 实验地点科技楼四楼 实验日期2014年6月 指导教师 学生班级 学生姓名 学生学号 提交日期2014年6月

实验一Window图形编程基础 一、实验类型:验证型实验 二、实验目的 1、熟练使用实验主要开发平台VC6.0; 2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序; 3、掌握Window图形编程的基本方法; 4、学会使用基本绘图函数和Window GDI对象; 三、实验内容 创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求: 1、用户可以通过菜单选择绘图颜色; 2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形; 四、实验要求与指导 1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。 2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形 其中“曲线”项有级联菜单,包括:圆、椭圆。 3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果: 六、实验主要代码 1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this); 在OnDraw函数中添加: m_pDC=new CClientDC(this); m_pDC->MoveTo(10,10); m_pDC->LineTo(100,100); m_pDC->SetPixel(100,200,RGB(0,0,0)); m_pDC->TextOut(100,100); 2、画圆: void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC) { int dx = xb - xa; int dy = yb - ya; int Steps, k; float xIncrement,yIncrement; float x = xa,y= ya; if(abs(dx)>abs(dy))

计算机图形学课程设计报告

一、设计内容与要求 1.1、设计题目 算法实现时钟运动 1.2、总体目标和要求 (1)目标:以图形学算法为目标,深入研究。继而策划、设计并实现一个能够表现计算机图形学算法原理的或完整过程的演示系统,并能从某些方面作出评价和改进意见。通过完成一个完整程序,经历策划、设计、开发、测试、总结和验收各阶段,达到巩固和实践计算机图形学课程中的理论和算法;学习表现计算机图形学算法的技巧;培养认真学习、积极探索的精神。 (2)总体要求:策划、设计并实现一个能够充分表现图形学算法的演示系统,界面要求美观大方,能清楚地演示算法执行的每一个步骤。(3)开发环境:Viusal C++ 6.0 1.3、设计要求 内容: (1)掌握动画基本原理; (2)实现平面几何变换; 功能要求: (1)显示时钟三个时针,实现三根时针间的相互关系;

(2)通过右键菜单切换时钟背景与时针颜色; 1.4设计方案 通过使用OpenGL提供的标准库函数,综合图形学Bresenham画线和画圆的算法,OpenGL颜色模型中颜色表示模式等实现指针式时钟运动,并通过点击右键菜单实习时钟背景与时针颜色的转换。根据Bresenham画线和画圆的算法,画出时钟的指针和表盘。再根据OpenGL颜色模型定义当前颜色。设置当时钟运行时交换的菜单,运行程序时可变换时钟背景与时针的颜色。最后再设置一个恢复菜单恢复开始时表盘与指针的颜色。

二、总体设计 2.1、过程流程图

2.2、椭圆的中点生成算法 1、椭圆对称性质原理: (1)圆是满足x轴对称的,这样只需要计算原来的1/2点的位置;(2)圆是满足y轴对称的,这样只需要计算原来的1/2点的位置; 通过上面分析可以得到实际上我们计算椭圆生成时候,只需要计算1/4个椭圆就可以实现对于所有点的生成了。 2、中点椭圆算法内容: (1)输入椭圆的两个半径r1和r2,并且输入椭圆的圆心。设置初始点(x0,y0)的位置为(0,r2); (2)计算区域1中央决策参数的初始值 p = ry*ry - rx*rx*ry + 1/4*(rx*rx); (3)在区域1中的每个Xn为止,从n = 0 开始,直到|K|(斜率)小于-1时后结束; <1>如果p < 0 ,绘制下一个点(x+1,y),并且计算 p = p + r2*r2*(3+2*x); <2>如果P >=0 ,绘制下一个点(x+1,y-1),并且计算 p = p + r2*r2*(3+2*point.x) - 2*r1*r1*(y-1) (4)设置新的参数初始值; p = ry*ry(X0+1/2)*(X0+1/2) + rx*rx*(Y0-1) - rx*rx*ry*ry; (5)在区域2中的每个Yn为止,从n = 0开始,直到y = 0时结束。 <1>如果P>0的情况下,下一个目标点为(x,y-1),并且计算 p = p - 2rx*rx*(Yn+1) + rx*rx;

计算机图形学上机实验4_实现Bezier曲线和Bezier曲面的绘制

昆明理工大学理学院 信息与计算科学专业操作性实验报告 年级: 10级姓名:刘陈学号: 201011101128 指导教师: 胡杰 实验课程名称:计算机图形学程序设计开课实验室:理学院机房216 实验内容: 1.实验/作业题目:用计算机高级语言VC++6.0实现计算机的基本图元绘制2.实验/作业课时:2学时 3.实验过程(包括实验环境、实验内容的描述、完成实验要求的知识或技能):实验环境:(1)硬件:每人一台PC机 (2)软件:windows OS,VC++6.0或以上版本。 试验内容及步骤: (1)在VC++环境下创建MFC应用程序工程(单文档) (2)编辑菜单资源 (3)添加菜单命令消息处理函数 (4)添加成员函数 (5)编写函数内容 试验要求: (1)掌握Bezier曲线、Bezier曲面、及另一个曲面的算法。 (2)实现对Bezier曲线、Bezier曲面、及另一个曲面。 (3)试验中调试、完善所编程序,能正确运行出设计要求结果。 (4)书写试验报告上交。 4.程序结构(程序中的函数调用关系图)

5.算法描述、流程图或操作步骤: 在lab4iew.cpp文件中添加如下头文件及变量 int flag_2=0; int n_change; #define M 30 #define PI 3.14159 //圆周率 #include "math.h" //数学头文件 在lab4iew.h文件中的public内添加变量: int move; int graflag; void Tiso(float p0[3],float x0, float y0, float p[3]); void OnBezierface(); 在lab4iew.h文件中的protected内添加变量: int n;//控制点数 const int N;//控制点数的上限 CPoint* a;//控制点存放的数组 double result[4][2]; 在lab4iew.cpp文件中的函数Clab4iew::OnDraw(CDC* pDC)下添加如下代码: int i,j; for(i=0;iFillSolidRect(a[i].x-2,a[i].y-2,4,4,RGB(255,55,255)); } pDC->MoveTo(a[0]);

计算机图形学课程设计书

计算机图形学课程设计 书 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

课程设计(论文)任务书 理学院信息与计算科学专业2015-1班 一、课程设计(论文)题目:图像融合的程序设计 二、课程设计(论文)工作: 自2018 年1 月10 日起至2018 年1 月12日止 三、课程设计(论文) 地点: 2-201 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)熟悉Delphi7的使用,理论与实际应用相结合,养成良好的程序设计技能;(2)了解并掌握图像融合的各种实现方法,具备初步的独立分析和设计能力;(3)初步掌握开发过程中的问题分析,程序设计,代码编写、测试等基本方法;(4)提高综合运用所学的理论知识和方法独立分析和解决问题的能力; (5)在实践中认识、学习计算机图形学相关知识。 2.课程设计的任务及要求 1)基本要求: (1)研究课程设计任务,并进行程序需求分析; (2)对程序进行总体设计,分解系统功能模块,进行任务分配,以实现分工合作;(3)实现各功能模块代码; (4)程序组装,测试、完善系统。 2)创新要求: 在基本要求达到后,可进行创新设计,如改进界面、增加功能或进行代码优化。

3)课程设计论文编写要求 (1)要按照书稿的规格打印誊写课程设计论文 (2)论文包括封面、设计任务书(含评语)、摘要、目录、设计内容、设计小结(3)论文装订按学校的统一要求完成 4)参考文献: (1)David ,《计算机图形学的算法基础》,机械工业出版社 (2)Steve Cunningham,《计算机图形学》,机械工业出版社 (3) 5)课程设计进度安排 内容天数地点 程序总体设计 1 实验室 软件设计及调试 1 实验室 答辩及撰写报告 1 实验室、图书馆 学生签名: 2018年1月12日 摘要 图像融合是图像处理中重要部分,能够协同利用同一场景的多种传感器图像信息,输出一幅更适合于人类视觉感知或计算机进一步处理与分析的融合图像。它可明显的改善单一传感器的不足,提高结果图像的清晰度及信息包含量,有利于更为准确、更为可靠、更为全面地获取目标或场景的信息。图像融合主要应用于军事国防上、遥感方面、医学图像处理、机器人、安全和监控、生物监测等领域。用于较多也较成熟的是红外和可见光的融合,在一副图像上显示多种信息,突出目标。一般情况下,图像融合由

计算机图形学实验报告

目录

实验一直线的DDA算法 一、【实验目的】 1.掌握DDA算法的基本原理。 2.掌握DDA直线扫描转换算法。 3.深入了解直线扫描转换的编程思想。 二、【实验内容】 1.利用DDA的算法原理,编程实现对直线的扫描转换。 2.加强对DDA算法的理解和掌握。 三、【测试数据及其结果】 四、【实验源代码】 #include

#include #include #include GLsizei winWidth=500; GLsizei winHeight=500; void Initial(void) { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } void DDALine(int x0,int y0,int x1,int y1) { glColor3f(1.0,0.0,0.0); int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { glPointSize(3); glBegin(GL_POINTS); glV ertex2i(int(x+0.5),(int)(y+0.5)); glEnd(); x+=xIncre; y+=yIncre; } } void Display(void) { glClear(GL_COLOR_BUFFER_BIT); DDALine(100,100,200,180); glFlush(); }

计算机图形学实验报告记录

计算机图形学实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

计算机图形学实验报告 姓名:___ __________ 学号:_____ ________ 班级:______ _______ 时间:_____2016年12月_________

实验一OpenGL编程与图形绘制 1.实验目的 了解OpenGL编程,并熟悉OpenGL的主要功能、绘制流程和基本语法。学会配置OpenGL环境,并在该环境中编程绘图。 2.实验内容 OpenGL的主要功能:模型绘制、模型观察、颜色模式、光照应用、图像效果增强、位图和图像处理、纹理映射、实时动画和交互技术。 OpenGL的绘制流程分为两个方面:一个完整的窗口系统的OpenGL图形处理系统的结构为:最底层为图形硬件,第二层为操作系统,第三层为窗口系统,第四层为OpenGL,最上面的层为应用软件;OpenGL命令将被放在一个命令缓冲区中,这样命令缓冲区中包含了大量的命令、顶点数据和纹理数据。当缓冲区被清空时,缓冲区中的命令和数据都将传递给流水线的下一个阶段。 OpenGL的基本语法中相关库有:OpenGL核心库:gl、OpenGL实用程序库:glu、OpenG 编程辅助库:aux、OpenGL实用程序工具包(OpenGL utility toolkit,GLUT):glut、Windows 专用库:wgl。 OpenGL的基本语法中命名规则为:OpenGL函数都遵循一个命名约定,即采用以下格式:<库前缀><根命令><可选的参数个数><可选的参数类型>。 了解了上述基础知识后,配置好OpenGL环境,然后在该环境中编程练习图形的绘制,本次实验主要是对点的绘制、直线的绘制和多边形面的绘制。 3.实验代码及结果 3.1点的绘制: #include void Initial(void) { glClearColor(1.0f,1.0f,1.0f,1.0f); //设置窗口背景颜色为白色 glMatrixMode(GL_PROJECTION); //指定设置投影参数 gluOrtho2D(0.0,200.0,0.0,150.0); //设置投影参数 } void Display(void) {

计算机图形学——绘制Bezier曲线

计算机图形学 实验报告 专业:信息与计算科学 班级: 1002班 学号: 1008060*** 姓名: ****

实验目的: (1)掌握直线的参数表示法。 (2)掌握德卡斯特里奥算法的几何意义。 (3)掌握绘制二维Bezier曲线的方法。 实验要求: (1)使用鼠标左键绘制个数为10以内的任意控制点,使用直线连接构成控制多边形。 (2)使用鼠标右键绘制Bezier曲线。 (3)在状态栏显示鼠标的位置坐标。 (4)B ezier曲线使用德卡斯特里奥算法绘制。 实验算法: Bezier曲线的分割递推德卡斯特里奥算法 给定空间n+1个点P i(i=0,1,2,…,n)及参数t,有 P r i(t)=(1-t)P1-r i(t)+t P1-r1i+(t) 式中,r=1,2,…,n;i=0,1,…,n-r;t∈[0,1]。 且规定当r=0时,P0i(t)=P i, P n0(t)是在曲线上具有参数t的点。 德卡斯特里奥算法的基础就是在矢量? ?→ ? P P10 上选择一个点P,使 得P点划分矢量? ?→ ? P P10为|P P0|:|P P1|=t:1-t,给定点P0、P1 的坐标以及t的值,点P的坐标为P=P0+t(P1-P0)=(1-t)P0+tP1。式中,t∈[0,1]。 定义贝塞尔曲线的控制点编号为P r i,其中,r表示迭代次数。德卡斯特里奥证明了,当r=n时,P n0表示Bezier曲线上的点。

函数功能介绍 1.德卡斯特里奥函数: long CMy12View::DeCasteliau(double t,long *p) { double P[N_MAX_POINT][N_MAX_POINT]; int n=CtrlPNum-1; for(int k=0;k<=n;k++) { P[0][k]=p[k]; } for(int r=1;r<=n;r++) { for(int i=0;i<=n-r;i++) { P[r][i]=(1-t)*P[r-1][i]+t*P[r-1][i+1]; } } return(long(P[n][0])); } 函数功能介绍:此函数为德卡斯特里奥算法函数。在绘制Bezier 曲线时,需调用两次此函数,分别关于x方向和y方向上的调用。由DrawBezier()函数调用。 2. void CMy12View::DrawBezier() 函数功能介绍:此函数为绘制Bezier曲线。绘制二维Bezier曲线,需要对x方向和y方向进行计算。这个函数就是解决这个问题,然后通过OnRButtonDown(UINT nFlags,CPoint point)调用进行绘制。 3 .void CMy12View::DrawCtrPolygon() 函数功能介绍:此函数为绘制控制多边形。定义一个CPen型NewPen,和CPen*型PoldPen,进行绘制多边形,为了突出控制点,使用黑色填充边长为4个像素的正方形块代表控制点。 4. void CMy12View::OnLButtonDown(UINT nFlags,CPoint point) 函数功能介绍:此函数为鼠标左键按下函数。按下鼠标左键,将鼠

计算机图形学课程教学大纲

《计算机图形学》课程教学大纲一、课程基本信息 课程代码:110053 课程名称:计算机图形学 英文名称:Computer Graphics 课程类别:专业课 学时:72 学分: 适用对象:信息与计算科学专业本科生 考核方式:考试(平时成绩占总成绩的30%) 先修课程:高级语言程序设计、数据结构、高等代数 二、课程简介 中文简介: 计算机图形学是研究计算机生成、处理和显示图形的学科。它的重要性体现在人们越来越强烈地需要和谐的人机交互环境:图形用户界面已经成为一个软件的重要组成部分,以图形的方式来表示抽象的概念或数据已经成为信息领域的一个重要发展趋势。通过本课程的学习,使学生掌握计算机图形学的基本原理和基本方法,理解图形绘制的基本算法,学会初步图形程序设计。 英文简介: Computer Graphics is the subject which concerned with how computer builds, processes and shows graphics. Its importance has been shown in people’s more and more intensively need for harmony human-machine interface. Graphics user interface has become an important part of software. It is a significant trend to show abstract conception or data in graphics way. Through the learning of this course, students could master Computer Graphics’basic theories and methods,understand graphics basic algorithms and learn how to design basic graphics program. 三、课程性质与教学目的 《计算机图形学》是信息与计算科学专业的一门主要专业课。通过本课程的学习,使学生掌握基本的二、三维的图形的计算机绘制方法,理解光栅图形生成基本算法、几何造型技术、真实感图形生成、图形标准与图形变换等概念和知识。学会图形程序设计的基本方法,为图形算法的设计、图形软件的开发打下基础。 四、教学内容及要求 第一章绪论 (一)目的与要求 1.掌握计算机图形学的基本概念; 2.了解计算机图形学的发展、应用; 3.掌握图形系统的组成。

计算机图形学

a.扫描线算法:目标:利用相邻像素之间的连贯性,提高算法效率。处理对象:简单多边形,非自交多边形(边与边之间除了顶点外无其它交点)。扫描线:平行于坐标轴的直线,一般取平行于X轴。区间:扫描线与边的交点间的线段。基本原理:将整个绘图窗口内扫描多边形的问题分解到一条条扫描线,只要完成每条扫描线的绘制就实现了多边形的扫描转换;一条扫描线与多边形的边有偶数个交点,每2个点形成一区间。步骤:(对于每一条扫描线)(1)计算扫描线与边的交点(2)交点按x坐标从小到大排序(3)交点两两配对,填充区间。算法:1、建立ET;2、将扫描线纵坐标y的初值置为ET中非空元素的最小序号,如图中,y=1;3、置AEL为空;4、执行下列步骤直至ET和AEL都为空.4.1、如ET中的第y类非空,则将其中的所有边取出并插入AEL 中;4.2、如果有新边插入AEL,则对AEL中各边排序;4.3、对AEL中的边两两配对,(1和2为一对,3和4为一对,…),将每对边中x坐标按规则取整,获得有效的填充区段,再填充.4.4、将当前扫描线纵坐标 y 值递值1;4.5、将AEL中满足y = ymax边删去(因为每条边被看作下闭上开的);4.6、对AEL中剩下的每一条边的x 递增deltax,即x = x+deltax. b.走样与反走样:走样:用离散量(像素)表示连续的量(图形)而引起的失真,称为走样,或称为混淆。光栅图形的走样现象:阶梯(锯齿)状边界、图形细节失真、狭小图形遗失:动画序列中时隐时现,产生闪烁。反走样:在图形显示过程中,用于减少或消除走样(混淆)现象的方法。方法:提高分辨率方法{方法简单,但代价非常大,显示器的水平、竖直分辩率各提高一倍,则显示器的点距减少一倍,帧缓存容量则增加到原来的4倍,而扫描转换同样大小的图元却要花4倍时间}、非加权区域采样{扫描转换线段的两点假设:像素是数学上抽象的点,它的面积为0,它的亮度由覆盖该点的图形的亮度所决定;直线段是数学上抽象直线段,它的宽度为0。而现实:像素的面积不为0;直线段的宽度至少为1个像素;假设与现实的矛盾是导致走样出现的原因之一。解决方法:改变直线段模型,线上像素灰度不等。方法步骤:1、将直线段看作具有一定宽度的狭长矩形;2、当直线段与某像素有交时,求出两者相交区域的面积;3、根据相交区域的面积,确定该像素的亮度值}、加权区域采样{权函数w(x, y),以像素A的中心为原点建立二维坐标系,w(x, y)反应了微面积元dA对整个像素亮度的贡献大小,与 dA 到像素中心距离d 成反比。实现步骤:1.求直线段与像素的相交区域2.计算的值3.上面所得到的值介于0、1之间,用它乘像素的最大灰度值,即设该像素的显示灰度。问题:计算量大。 c.为什么需要齐次坐标? 1、对多个点计算多次不同的变换时,分别利用矩阵计算各变换导致计算量大2、运算表示形式不统一:平移为“+”、旋转和放缩为“·”3、统一运算形式后,可以先合成变换运算的矩阵,再作用于图形对象。 d.Sutherland-Hodgman算法:S-H算法基本思想(亦称逐边裁剪算法):将多边形关于矩形窗口的裁剪分解为多边形关于窗口四边所在直线的裁剪。步骤:1、多边形由一系列顶点表示:V1V2…Vn2、按一定(左上右下)的次序依次裁剪; 与左边所在直线裁剪

计算机图形学 课程设计作品

《计算机图形学Visual c++版》考试作业报告 题目:计算机图形学图形画板 专业:推荐IT学长淘宝日用品店530213 班级:推荐IT学长淘宝日用品店530213 学号:推荐IT学长淘宝日用品店530213 姓名:推荐IT学长淘宝日用品店530213 指导教师:推荐IT学长淘宝日用品店530213 完成日期: 2015年12月2日

一、课程设计目的 本课程设计的目标就是要达到理论与实际应用相结合,提高学生设计图形及编写大型程序的能力,并培养基本的、良好的计算机图形学的技能。 设计中要求综合运用所学知识,上机解决一些与实际应用结合紧密的、规模较大的问题,通过分析、设计、编码、调试等各环节的训练,使学生深刻理解、牢固掌握计算机图形学基本知识和算法设计的基本技能术,掌握分析、解决实际问题的能力。 通过这次设计,要求在加深对课程基本内容的理解。同时,在程序设计方法以及上机操作等基本技能和科学作风方面受到比较系统和严格的训练。 二、设计内容推荐IT学长淘宝日用品店530213 设计一个图形画板,在这个图形画板中要实现: 1,画线功能,而且画的线要具备反走样功能。 2, 利用上面的画线功能实现画矩形,椭圆,多边形,并且可以对这些图形进行填充。 3,可以对选中区域的图形放大,缩小,平移,旋转等功能。 三、设计过程 程序预处理:包括头文件的加载,常量的定义以及全局变量的定义 #include "stdafx.h" #include "GraDesign.h" #include "GraDesignDoc.h" #include "GraDesignView.h" #include "math.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif //******自定义全局变量 int type = -1; CPoint point1; CPoint point2; CPoint temp[2];

计算机图形学实验报告

计算机图形学 实验报告 姓名:谢云飞 学号:20112497 班级:计算机科学与技术11-2班实验地点:逸夫楼507 实验时间:2014.03

实验1直线的生成 1实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析 实验数据的能力; 编程实现DDA算法、Bresenham中点算法;对于给定起点和终点的 直线,分别调用DDA算法和Bresenham中点算法进行批量绘制,并记 录两种算法的绘制时间;利用excel等数据分析软件,将试验结果编 制成表格,并绘制折线图比较两种算法的性能。 2实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One(自制平台)。 本实验提供名为 Experiment_Frame_One的平台,该平台提供基本 绘制、设置、输入功能,学生在此基础上实现DDA算法和Mid_Bresenham 算法,并进行分析。 ?平台界面:如错误!未找到引用源。所示 ?设置:通过view->setting菜单进入,如错误!未找到引 用源。所示 ?输入:通过view->input…菜单进入.如错误!未找到引用 源。所示 ?实现算法: ◆DDA算法:void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) Mid_Bresenham法:void CExperiment_Frame_OneView::Mid_Bresenham(int X0, int Y0, int X1, int Y1)

3实验结果 3.1程序流程图 1)DDA算法流程图:开始 定义两点坐标差dx,dy,以及epsl,计数k=0,描绘点坐标x,y,x增 量xIncre,y增量yIncre ↓ 输入两点坐标x1,y1,x0,y0 ↓ dx=x1-x0,dy=y1-y0; _________↓_________ ↓↓ 若|dx|>|dy| 反之 epsl=|dx| epsl=|dy| ↓________...________↓ ↓ xIncre=dx/epsl; yIncre=dy/epsl ↓ 填充(强制整形)(x+0.5,y+0.5); ↓←←←← 横坐标x+xIncre; 纵坐标y+yIncre; ↓↑ 若k<=epsl →→→k++ ↓ 结束 2)Mid_Bresenham算法流程图开始 ↓ 定义整形dx,dy,判断值d,以及UpIncre,DownIncre,填充点x,y ↓ 输入x0,y0,x1,y1 ______↓______ ↓↓ 若x0>x1 反之 x=x1;x1=x0;x0=x; x=x0;

计算机图形学课程设计报告简单图形的绘制-

《计算机图形学》课程设计 报告 学生姓名:学号: 学院: 班级: 题目: 简单图形的绘制 职称2015年7月1日

目录 目录............................................................................................... I 一、选题背景 (1) 二、算法设计 (2) 2.1 绘制直线、圆、椭圆、抛物线 (2) 2.1.1 绘制直线 (2) 2.1.2 绘制圆 (2) 2.1.3 绘制椭圆 (2) 2.1.4 绘制抛物线 (2) 2.2 三维几何变换 (2) 三、程序及功能说明 (5) 3.1 绘制直线、圆、椭圆、抛物线...... (5) 3.1.1 绘制直线 (5) 3.1.2 绘制圆 (5) 3.1.3 绘制椭圆 (5) 3.1.4 绘制抛物线 (6) 3.2 图形的平移 (6) 3.3 图形的旋转 (6) 3.4 图形的缩放 (7) 四、结果分析 (7) 4.1 绘制直线、圆、椭圆、抛物线 (7) 4.1.1 直线 (7) 4.1.2 圆 (8)

4.1.3 椭圆 (8) 4.1.4 抛物线 (8) 4.2 图形的平移 (9) 4.3 图形的旋转 (10) 4.4 图形的缩放 (11) 五、总结 (10) 六、课程设计心得体会 (14) 参考文献 (15) 源程序 (16)

一、选题背景

二、算法设计 2.1 绘制直线、圆、椭圆、抛物线 2.1.1 绘制直线 通过两个点的坐标来绘制直线。计算机图形学中二维图形在显示输出之前需要扫描转换,生成直线的算法一般有DDA 算法和中点算法。 2.1.2 绘制圆 通过运用圆的参数方程cos ;sin x a r y b r θθ=+=+来绘制圆的图形,其中[0,2]θπ∈, (a,b )为圆心,r 为半径,运用参数方程,只需要确定半径的长度和圆心的位置,即可绘制出圆。 2.1.3 绘制椭圆 通过运用椭圆的参数方程cos ;sin x a y b θθ==来绘制椭圆的图形,其中 [0,2]θπ∈,是已知的变量,a ,b 分别为长半轴,短半轴,当确定a 和b 后,通过参数方程即可得到这个椭圆的方程。 2.1.4 绘制抛物线 根据点绘制抛物线图像是通过拟合完成,根据三个点的坐标,通过数据拟合,得到经过这三个点的函数关系式,从而再根据这个函数关系式绘制出抛物线上其他的点,形成一条连续的抛物线;或直接根据已知函数绘制图像是通过已知函数画出图像。 2.2 三维几何变换 三维几何变换是二维几何变换的推广。二维几何变换在齐次坐标空间中 可用3?3的变换矩阵表示,类似的,三维几何变换在齐次坐标空间中可用4?4的变换矩阵表示。三维空间中的点(),,x y z 的齐次坐标定义为(),,h h h x y z ,其中,h 为不等与零的任意常数,h x hx =,h y hy =,h z hz =。亦即点(),,x y z 对应4维齐次坐标空间的一条直线:

计算机图形学课程总结教材

计算机图形学报告 前言 计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。 其从狭义上是来说是一种研究基于物理定律、经验方法以及认知原理,使用各种数学算法处理二维或三维图形数据,生成可视数据表现的科学。广义上来看,计算机图形学不仅包含了从三维图形建模、绘制到动画的过程,同时也包括了对二维矢量图形以及图像视频融合处理的研究。由于计算机图形学在许多领域的成功运用,特别是在迅猛发展的动漫产业中,带来了可观的经济效益。另一方面,由于这些领域应用的推动,也给计算机图形学的发展提供了新的发展机遇与挑战。 计算机图形学的发展趋势包括以下几个方面: 1、与图形硬件的发展紧密结合,突破实时高真实感、高分辨率渲染的技术难点; 2、研究和谐自然的三维模型建模方法; 3、利用日益增长的计算性能,实现具有高度物理真实的动态仿真; 4、研究多种高精度数据获取与处理技术,增强图形技术的表现; 5、计算机图形学与图像视频处理技术的结合; 6、从追求绝对的真实感向追求与强调图形的表意性转变。 1、三维物体的表示 计算机图形学的核心技术之一就是三维造型三维物体种类繁多、千变万化,如树、花、云、石、水、砖、木板、橡胶、纸、大理石、钢、玻璃、塑料和布等等。因此,不存在描述具有上述各种不同物质所有特征的统一方法。为了用计算机生成景物的真实感图形,就需要研究能精确描述物体特征的表示方法。根据三维物体的特征,可将三维物体分为规则物体和非规则物体两类。 三维实体表示方法通常分为两大类:边界表示和空间分割表示,尽管并非所有的表示都能完全属于这两类范畴中的某一类。边界表示(B-reps)用一组曲面来描述三维物体,这些曲面将物体分为内部和外部。边界表示的典型例子是多边形平面片和样条曲面。空间分割表示(Space-Partitioning)用来描述物体内部性质,将包含一物体的空间区域分割为一组小的、非重叠的、连续实体(通常是立方体)。三维物体的一般空间分割描述是八叉树表示。本章主要介绍三维物体的各种表示方法及其特点。

相关文档
最新文档