蠕变算例

蠕变算例
蠕变算例

蠕变算例

1. 蠕变模型选取

ANSYS 一共提供了13个蠕变模型,本次计算选用蠕变模型为修正的时间强化模型。

2. 岩石参数选取

(1) 材料参数

通过试验测出弹性模量E 以及泊松比m 。修正的时间强化模型2341/13/(1)C C C T cr C t e C e s +-=+的参数分别为:

10.34799359C =,20.46857235C =,30.6070225C =-,47.0094616C =

3. 求解步骤

步骤一:建立计算所需要的模型

在这一步中,建立计算分析所需要的模型,包括定义单元类型,创建结点和单元。 步骤二:定义材料性质

(1)选“Main Menu>Preprocessor>Material Props>Material Models”。出现“Define Material Model Behavior”对话框,选择Material Model Number 1。

(2)在“Material Models Available”窗口,点击“Structural ->Linear->Elastic-> Isotropic”。出现一个对话框。

(3)对杨氏模量(EX )键入测得的杨氏模量。

(4)对泊松比(NUXY )键入测得的泊松比。

(5)单击OK 。

步骤三:定义creep 数据表并输入相应值

(1)在“Material Models Available ”窗口,点击Structural->Nonlinear->Inelastic->Rate Dependent->Creep->Creep only>Mises Potential>Implicit 选择所需要的蠕变模型。

(2341/13/(1)C C C T cr C t e C e s +-=+为第6个,修正的时间强化模型)

(2)在对话框表格中的相应位置输入1C ,2C ,3C 以及4C 的值。

(2) 单击OK 。

(4)退出对话框。

步骤四:进入求解器

选择菜单路径Main Menu>Solution

步骤五:加载

根据所给条件,施加适当的约束和载荷。

4. 举例说明

假定块体整体尺寸为101010创,底部挖半圆形孔洞,孔洞半径为4,弹性模量取值为42.0210Mpa ′,泊松比为0.16,选用修正的强化模型进行计算。图1为该模型的网格划分图,选用185Solid 进行计算分析,图2为Y 方向位移图,图3和图4分别是第一、第三主应力图。

图1 网格划分图

图2 Y方向位移图

图3 第一主应力

图4 第三主应力命令流

/PREP7

!*

ET,1,SOLID185

!*

BLOCK,0,10,0,10,0,10,

/VIEW,1,1,1,1

/ANG,1

/REP,FAST

CYL4,5,0,0,0,4,180,10

FLST,3,2,6,ORDE,2

FITEM,3,1

FITEM,3,-2

VSBV, 1,P51X

MSHKEY,0

MSHAPE,1,3d

CM,_Y,VOLU

VSEL, , , , 3

CM,_Y1,VOLU

CHKMSH,'VOLU'

CMSEL,S,_Y

!*

VMESH,_Y1

!*

CMDELE,_Y

CMDELE,_Y1

CMDELE,_Y2

!*

!*

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,EX,1,,2.02e4

MPDATA,PRXY,1,,0.16

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,DENS,1,,2.63

TB,CREE,1,1,4,6

TBTEMP,0

TBDATA,,0.34799359,0.46857235,-0.6070225,7.0094616,, FINISH

/SOL

/VIEW,1,,-1

/ANG,1

/REP,FAST

FLST,2,2,5,ORDE,2

FITEM,2,12

FITEM,2,-13

!*

/GO

DA,P51X,ALL,0

/VIEW,1,1,1,1

/ANG,1

/REP,FAST

FLST,2,1,5,ORDE,1

FITEM,2,6

!*

/GO

DA,P51X,UX,0

/USER, 1

/VIEW, 1, -0.985803519064 , 0.163757032504E-01, 0.167102537816 /ANG, 1, -46.8285024191

/REPLO

/VIEW,1,1,1,1

/ANG,1

/REP,FAST

FLST,2,1,5,ORDE,1

FITEM,2,5

!*

/GO

DA,P51X,UX,0

ACEL,0,-9.8,0,

/STATUS,SOLU

SOLVE

FINISH

7050铝合金蠕变时效成形本构模型研究

第22卷一第3期2014年6月一 材一料一科一学一与一工一艺 MATERIALSSCIENCE&TECHNOLOGY 一 Vol 22 No 3 Jun.2014 一一一一一一 7050铝合金蠕变时效成形本构模型研究 吕凤工1,黄一遐1,曾元松1,王永坤2,万一敏2 (1.北京航空制造工程研究所,北京100024;2.北京航空航天大学机械工程及自动化学院,北京100191) 摘一要:为研究7050T451铝合金蠕变时效本构模型,在160?二不同应力条件下进行单轴拉伸蠕变试验,分析了蠕变应变二屈服强度和微观组织随时间的变化规律.基于高强铝合金析出强化理论,建立了能描述蠕变时效成形宏观及微观变化的本构方程,并运用遗传算法对材料常数进行拟合优化.研究表明,该模型在不同应力水平下与试验结果吻合良好,能够用来模拟分析蠕变时效成形过程. 关键词:7050铝合金;蠕变时效成形;本构方程;时效强化;遗传算法中图分类号:TG306 文献标志码:A 文章编号:1005-0299(2014)03-0028-06 Researchonconstitutivemodelof7050aluminumalloyforcreepageforming LüFenggong1,HUANGXia1,ZENGYuansong1,WANGYongkun2,WANMin2 (1.BeijingAeronauticalManufacturingTechnologyResearchInstitute,Beijing100024,China; 2.SchoolofMechanicalEngineeringandAutomation,BeihangUniversity,Beijing100191,China)Abstract:Tostudythecreepageconstitutivemodelof7050T451aluminumalloy,theuniaxialcreeptestswereoperatedunderdifferentstressconditionat160?.Thechangingtendencyofcreepstrain,yieldstrength andmicrostructurewithholdingtimewereanalyzed.Basedontheprecipitatehardeningtheoryofhighstrengthaluminumalloy,theconstitutiveequationwhichcoulddescribetheevolutionofmacroscopicandmicroscopic forcreepageformingwasestablished.Meanwhile,thematerialconstantswerefittedandoptimizedbyusinggeneticalgorithm.Accordingtotheresult,thepresentmodelfitswellwiththeexperimentaldataunderdifferentstresslevels,whichcanbeusedtosimulatetheprocessofcreepageforming. Keywords:7050aluminumalloy;creepageforming;constitutiveequation;agehardening;geneticalgorithm收稿日期:2012-10-17. 基金项目:国家自然科学基金资助项目(50975267).作者简介:吕凤工(1988-),男,硕士研究生; 曾元松(1971-),男,研究员,博士生导师. 通信作者:吕凤工,E?mail:lvfenggong@126.com. 一一蠕变时效成形是在一定温度和外力作用下材 料缓慢变形的过程,其中伴随着弹性变形二应力松弛和时效强化的综合作用[1].与喷丸成形二拉伸成形技术相比,蠕变时效成形技术成形效率高二零件 内部残余应力低,可增强材料的耐应力腐蚀能力,延长零件的使用寿命[2].蠕变时效成形技术受到材料本身时效周期的限制,且弯曲应力低二时效温度低,无法将试件内已有的弹性变形全部转变为塑性变形,成形后均存在一定的回弹[3-4].另外,成 形后零件的力学性能直接影响其在工程上的应用.因此,进行蠕变时效成形回弹及屈服强度预测 以调整工艺流程二优化工艺参数二修整模具型面是成形出合格零件的关键. 针对铝合金蠕变时效成形回弹及时效强化现象,有关学者已做了大量研究[5-6].J.Lin等[7]提出一种可描述析出相半径变化的本构模型,并应用于铝合金厚板时效成形的有限元分析.李超等[8-9]对7B04铝合金时效成形中微观组织和性能变化进行研究,基于统一理论二长大动力学和析出强化理论,提出一个全新概念的等温蠕变-时效本构模型.L.Zhan等[10]通过研究蠕变时效成形过程和强化机制,充分考虑了成形过程中应力二位错强化二固溶强化和时效强化对蠕变速率的影响,提出7055铝合金蠕变时效本构方程. 本文在总结前人经验的基础上,针对国内航空制造企业对高强铝合金整体壁板成形技术方面 的需求,从宏观与微观角度研究7050T451铝合金

岩石材料的蠕变实验及本构模型研究

岩石材料的蠕变实验及本构模型研究 流变学作为力学的一个分支,主要研究材料在应力、应变、温度、辐射等条件下与时间因素有关的变形规律,所涉及的内容包括蠕变、应力松弛和弹性后效等。蠕变是影响岩体稳定性的一个重要因素。 软弱岩石在受到较低水平的应力作用时,就会产生明显的蠕变现象,如软岩巷道中的底鼓,即使是很坚硬的岩体,在高应力作用下同样会产生蠕变,从而影响到工程的功能和使用。因此,需要对岩石材料的蠕变行为进行深入研究,力求从本质上揭示其蠕变行为的特征。 本文通过实验研究和理论分析,得到了盐岩的基本力学参数,并研究了盐岩在不同应力条件下的力学特性和蠕变行为。以经典蠕变模型为基础,结合分数阶微积分理论,构建了一个新的蠕变模型,并利用盐岩、泥岩和煤岩的蠕变实验数据对其进行了验证。 (1)对盐岩材料进行了多组单轴和三轴压缩实验,并在每组实验中选取三个试样重复进行实验,以此来降低实验的随机性和试样个体的差异性。结果三个试样的测试结果比较接近,此批试样的个体差异性较小。 此外,常规压缩实验的结果还表明随着围压的增大,抗压强度和最大应变会随之增大。(2)在单轴蠕变实验中,选取了四个轴压水平来进行实验,分析了不同轴压对蠕变的影响。 当轴压水平越大时,加速蠕变阶段就会越早地出现,并且稳定蠕变应变率也会越大。与单轴蠕变相比,当材料受到一个较小的围压作用时,其蠕变行为也会发生巨大的变化,例如蠕变应变率大幅下降、蠕变时间大幅增长、加速蠕变阶段缺失等。

(3)通过分析不同应力条件下的蠕变应变率可以发现,稳定蠕变应变率与轴压大小呈线性关系,加速蠕变应变率与轴压大小也呈现出正相关性。此外,蠕变等时曲线表明随着时间的延长,轴压大小对蠕变的影响会越来越明显。 相反,围压会明显地降低蠕变应变率并抑制蠕变行为的发展。(4)结合分数阶微积分理论构建了一个新的非线性蠕变模型,并利用广义塑性力学理论和张量分析理论对新模型在三轴应力状态下的蠕变方程进行了推导。 以盐岩实验数据为基础,对蠕变模型的参数进行了辨识,并验证了模型的准确性。此外,利用泥岩和煤岩的蠕变实验数据对模型的适用性进行了验证,结果表明新模型可以应用于模拟多种岩石材料的蠕变全过程,具有较为广泛的适用性。

材料的高温蠕变

材料的高温蠕变相关的理论解释和材料蠕变的因摘要:从蠕变的定义,金属材料在高温下蠕变的形成机理,陶瓷以及镁质耐火材料提高A1素等几个方面阐述了材料的 高温蠕变现象。其中也对多晶O3 2 抗蠕变性能给予介绍,解释。陶瓷;抗蠕变性能A1O关键词:高温蠕变;蠕变机理;多晶 32 1引言 材料具有许多的性能,有的性能在材料的使用时是有利的,但有的性能在材料的使用时是不利的。由于蠕变的产生我们就不能笼统的说材料在高温下的性质是如何的,材料在高温条件下的性能与在常温下的性能不同,在高温下材料发生蠕变,因此,材料的高温蠕变使得材料在高温条件下使用时性能变差,影响了材料在高温条件下的使用。如果能提高材料在高温条件下的抗蠕变性能,能够改善材料在高温条件下使用的品质,使得材料的使用寿命延长,可以节省材料,避免浪费。高温蠕变理论是在对多种金属所做的完整的蠕变实验的基础上建立起来的,因此介绍材料的蠕变机理也是根据金属的蠕变机理来进行解释的。 我们是这样定义材料蠕变这个现象的,材料在高温下长时间承受恒温、恒载荷作用,缓慢产生塑性变形的现象。所以,蠕变是在恒定压力作用下,随着时间的延长而材料持续形变的过程。在高温条件下,材料都有着与常温下不同的蠕变行为。借助于高温作用和外力作用,材料的形变障碍得到克服,内部质点发生迁移,晶界相对移动,于是蠕变现象产生了。 2.1 蠕变阶段 材料的高温蠕变分为几个阶段,几个区域有着不同的变化。 图1 图1表示在三个不同的恒定应力作用下,材料的应变ε随时间t变化的典型蠕变曲线。曲线的终端表示材料发生断裂。t=0时的应变表示加载结束时的即时应变,它包括弹性应变和塑性应变。蠕变曲线可分为三个阶段, 为定常蠕变所示:III为非定常蠕变阶段,应变率随时间的增加而减小;如图2t 阶段,应变率保持常值;在最末阶段Ⅲ,应变率随时间而增大,最后材料在r升高温度或增加应力会使蠕变加快并缩短达到断裂的时间。通常,时刻发生断裂。甚至不出现第三阶段则蠕变的第二阶段(Ⅱ)持续较久,若应力较小或温度较低,对应的蠕变曲线;相反,若应力较大或温度较高,则中1 (Ⅲ),如图 中对应的蠕变曲线。蠕变的第二阶段(Ⅱ)较短,甚至不出现,如图1

蠕变机理

镁质耐火材料高温蠕变特性的研究现状 张国栋1)游杰刚1)刘海啸1)罗旭东1)袁政禾2) 1)辽宁科技大学鞍山114044 2)鞍钢集团耐火材料公司鞍山114001 摘要:本文介绍了镁质材料高温蠕变特性的研究现状,并对镁质耐火材料的高温蠕变特性的理论进行了阐述,同时指出了将镁质蓄热材料用在高炉热风炉上的可行性。 关键词:镁质材料蠕变特性研究现状 1、引言 高炉生产的大型化发展,要求热风炉向着高风温和长寿命的方向发展,为了实现这一目标,除了热风炉本体的大型化与更合理的结构以外,作为热风炉中的关键材料之一——蓄热材料的发展将直接影响到热风炉的使用温度和使用寿命。而高炉热风炉对耐火材料的要求是:蓄热体各层材料的选择必须要在相应的使用温度下有很好的抗压,蠕变性能,抗碱金属蒸气与烟尘侵蚀性能,抗温度急变而不破坏的性能;蓄热体砖要有足够高的换热表面积以及有利于热交换的几何形状;蓄热体材质要尽可能高的导热系数以及材料体积比热容。 目前,我国采用以Al2O3-SiO2系材料的系列低蠕变砖,在热风炉的顶部和隔墙及蓄热室的上部采用优质硅砖,中部应用不同牌号的低蠕变高铝砖,下部采用低蠕变粘土砖。镁质材料与高铝质和硅质材料相比具有良好的蓄热性能和热导率以及很强的抗渣侵蚀性能;这些特点有利于热风炉的高炉的大风量高风温的操作和降低高炉焦比,提高高炉利用系数,增加生铁产量。但是,镁质材料的热震性能差、抗压蠕变性能不好,因此限制了这类材料在热风炉上的使用。所以,提高和改善镁质材料的这两方面性能是将镁质材料应用到热风炉上的关键。因此研究镁质材料的高温蠕变性能对扩大我国镁资源综合利用和炼铁产业有着重大的意义。 2、蠕变理论 高温蠕变理论是在对多种金属所作的完整的蠕变试验的基础上建立起来的。材料的高温蠕变是指材料在恒定的高温和一定的荷重作用下,产生的变形和时间的关系[1]。由于施加的载荷不同,耐火材料的高温蠕变可以分为高温压缩蠕变、高温拉伸蠕变、高温抗折蠕变、高温扭转蠕变等。其中压缩蠕变和抗折蠕变

creep蠕变基础知识

蠕变模型 将flac3d 的蠕变分析option 进行了简单的翻译,目的是为了搞清楚蠕变过程中系统时间是如何跟真实时间对应的。 2.1 简介 Flac3d 可以模拟材料的蠕变特性,即时间依赖性,flac3d2.1提供6种蠕变模型: 1. 经典粘弹型模型 model viscous 2. model burger 3. model power 4. model wipp 5. model cvisc 6. powe 蠕变模型结合M-C 模型产生cpow 蠕变模型(model cpow ) 7. 然后WIPP 蠕变模型结合D-P 模型产生Pwipp 蠕变模型(model pwipp ); 8 model cwipp 以上模型越往下越复杂,第一个模型使用经典的maxwell 蠕变公式,第二个模型使用经典的burger 蠕变公式,第三个模型主要用于采矿及地下工程,第四个模型一般用于核废料地下隔离的热力学分析,第五个模型是第二个模型的M-C 扩展,第六个模型是第三个模型的M-C 扩展,第七个模型是第四个模型的D-P 扩展,第八个模型也是第四个模型的一种变化形式,只是包含了压硬和剪缩行为。 2.2蠕变模型描述 2.2.1只介绍经典粘弹型模型即maxwell 蠕变公式 牛顿粘性的经典概念是应变率正比于应力,对于粘性流变应力应变关系以近似于弹性变形的方式发展。粘弹型材料既有粘性又有弹性,maxwell 材料就是如此,在一维空间它可以表示为一根弹簧(弹性常数κ)连接一个粘壶(粘性常数η),它的力-位移增量关系可以写成: η κ μF F + = ? ? (2.1) 式中? μ是速度,F 是力,设力的初始值为 F ,增量值为F '经过一个t ?时间步,式(2.1)可以写成

ABAQUS蠕变分析流程

蠕变分析流程(针对初学者) 1.1蠕变分析流程 蠕变主要是利用实验配合数值方法获的材料参数后,再将所获的的参数使用于有限元素的分析中,以求获得其应力、应变、蠕应力、蠕应变等等…内部结构经外力、时间或温度所造成的效应。 ABAQUS软件包蠕变分析模式,可以采用三种蠕变定律描述粘塑(visco-plastic)材料行为,ABAQUS软件包蠕变分析模式通常采用三种蠕变定律描述粘塑(visco-plastic)材料行为,幂次法则模式(Power-law model)可应用于仿真等温与固定负载下之蠕变行为,其所采用之定律分别为时间硬化率(time hardening)及应变硬化率(strain hardening)关系式。变动温度状况下则使用Garofalo-Arrhenius双曲正弦法则模式(Hyperbolic-sine law model)仿真温度相依之稳态蠕变行为。以下将就时间硬化率及双曲正弦法则说明蠕变材料参数确认方式。为判断蠕变参数与参考文献实验数据曲线嵌合(这是为取得材料参数所使用的数学分析方法)结果之良好与否,采 用回归分析之决定系数2R(Coefficient of Determination,R Square)为判断依据,2R值介于0-1,当2R越接近1表示嵌合结果之结果越好。 2.1蠕变理论 材料受到低于降服或抗拉应力作用时,造成长时间粘塑性变形之现象称为蠕变(Creep)。金属材料蠕变行为通常发生于高温,在常温时之蠕变效应极小通常视为无蠕变现象发生。然而,高分子材料与金属材料蠕变现象不同,高分子材料在常温时便有明显蠕变现象发生,当应力及温度增加其蠕变现象愈显著。蠕变为材料重要机械特性之一,当材料产生蠕变时,其应变与时间关系可由图2.1说明。图中,P1> P2> P3其负载大小明显对其蠕变行为有明显影响,当负载愈大其蠕变变形愈快。一般蠕变曲线可分成三阶段,第一阶段为应变率随时间减少之瞬时蠕变期(Primary or Transient Creep)、第二阶段为常数应变率之稳态蠕变期(Secondary or Steady-state Creep),以及试件断面颈缩造成应变率随时间快速增加之第三蠕变期(tertiary creep),蠕应变率与时间关系如图2.2所示。

蠕变分析

4.4蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。 上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。

对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。 对蠕变方程积分时,我们使用经过修改的总应变,其表达式为: 经过修改的等效总应变为: 其等效应力由下式算出: 其中:G=剪切模量= 等效蠕应变增量由程序给出的某一种公式进行计算,一般为正值,如果在数据表中,则使用的是衰减的蠕应变率而不是常蠕变率,但这个选项一般不被推荐,因为在初始蠕变所产生的应力为主的情况下,它可能会严重的低估蠕变值。如果,程序使用修正的等效蠕应变增量来代替蠕应变增量。 其中:e=2.718281828(自然对数的底数) 下面是计算积分点的蠕应变率与弹性应变比率的公式: 将本次迭代的所有单元的所有积分点的的最大值记为,并且作为“CREEPRATIO”输出。 计算出等效蠕应变增量后,可将它转换成分量的形式,假设Nc是某个特定单元类型的应变分量的个数。如果则有:

第四章3岩石的蠕变

五、岩石的蠕变 1、 蠕变特征 ① 岩石蠕变的概念 在应力σ不变的情况下,岩石变形随时间t 而增长的现象。 即 dt d ε 随时间而变化。 ②岩石蠕变类型 有两种类型: 稳定型蠕变 非稳定型蠕变

a、稳定型蠕变 应力作用下, 随时间递减, dε 零,即0 = dt 域稳定。 一般在较小应力下或硬岩中。 b、非稳定型蠕变:岩石在恒定应力作用下,岩石变形随时间不断增 长,直至破坏。 一般为软弱岩石或应力较大。

③蠕变曲线变化特征 三个阶段: Ⅰ阶段:初期蠕变。 d 曲,应变速率 dt 小。属弹性变形。 Ⅱ阶段:等速蠕变。 应变-时间曲线近似直线,应变随时间呈近于等速增长。出现塑性。

Ⅲ阶段:加速蠕变。 应变-时间曲线向上弯曲,其应变速率加快直至破坏。 应指出,并非所有的蠕变都能出现等速蠕变阶段,只有蠕变过程中结构的软化和硬化达到动平衡,蠕变速率才能保持不变。 在Ⅰ阶段,如果应力骤降到零,则ε-t曲线具有PQR形式,曲线从P 点骤变到Q点,PQ= ε为瞬时弹性变形,而后随时间慢慢退到应变为 e 零,这时无永久变形,材料仍保持弹性。 在Ⅱ阶段,如果把应力骤降到零,则会出现永久变形,其中TU= ε。 e

有直接关系。 变速度变化缓慢, 稳定。 率增大。 蠕变速率越大,反之愈小。

岩石长期强度:指 岩石由稳定蠕变转为非稳定蠕变时的应力分界值。即,岩石在长期荷载作用下经蠕变破坏的最小应力值(∞σ或∞τ) 岩石极限长期强度:指长期荷载作用下岩石的强度。 2、 蠕变经验公式 由于岩石蠕变包括瞬时弹性变形、初始蠕变、等速蠕变和加速蠕变,则在荷载长期作用下,岩石蠕变的变形ε可用经验公式表示为: ε=e ε+)(t ε+t M +)(t T ε e ε-瞬时变形;)(t ε-初始蠕变;t M -等速蠕变;)(t T ε-加速蠕变。

蠕变分析

蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18 应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。

上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。 对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。对蠕变方程积分时,我们使用经过修改的总应变,其表达式为: 经过修改的等效总应变为: 其等效应力由下式算出: 其中:G=剪切模量= 等效蠕应变增量由程序给出的某一种公式进行计算,一般为正值,如果在数据表中,则使用的是衰减的蠕应变率而不是常蠕变率,但这个选项一般不被推荐,因为在初始蠕变所产生的应力为主的情况下,它可能会严重的低估蠕变值。如果,程序使用修正的等效蠕应变增量来代替蠕应变增量。 其中:e=(自然对数的底数) 下面是计算积分点的蠕应变率与弹性应变比率的公式: 将本次迭代的所有单元的所有积分点的的最大值记为,并且作为“CREEPRATIO”输出。 计算出等效蠕应变增量后,可将它转换成分量的形式,假设 Nc是某个特定单元类型的应变分量的个数。 如果则有:

第23例 材料蠕变分析实例

第23例材料蠕变分析实例—受拉平板本例简单地介绍了蠕变的概念及蠕变材料模型的创建方法,简单地介绍了结构蠕变分析的方法、步骤及要点。 23.1蠕变简介 蠕变是指金属材料在长时间的恒温、恒载作用下,持续发生缓慢塑性变形的行为,大多数金属材料在高温下都会表现出蠕变行为。 如果材料发生了蠕变,在恒载作用下结构会发生持续变形;如果结构承受恒位移,则应力会随时间而减小,即产生应力松弛。 图23-1 蠕变曲线 蠕变一般分为蠕变初始阶段(Primary)、蠕变稳定阶段(Secondary)和蠕变加速阶段(Tertiary)三个阶段,如图23-1所示。蠕变初始阶段时间很短,应变率随时间而减小;在蠕变稳定阶段,应变以常速率发展;在蠕变加速阶段,应变率急剧增大直至材料失效。研究蠕变行为,主要针对蠕变初始阶段和蠕变稳定阶段。 研究问题时一般以蠕变方程(又称本构关系)来表征蠕变行为,蠕变方程以蠕应变率的,形式表示dεcr/dt =AσBεC t P式中,εcr为蠕应变。A、B、C、D是由实验得到的材料特性参数。当D<0时,蠕应变率随时间减小,材料处于蠕变初始阶段;当D=0时,蠕应变率不随时间变化,材料处于蠕变稳定阶段。

在ANSYS中,有一个蠕应变率库供选择。 23.2问题描述 一矩形平板,左端固定,右端作用有恒定压力p=100MPa,矩形平板尺寸如图23-2所示,材料的弹性模量为2xl05MPa,泊松比为0.3,蠕变稳定阶段蠕变方程dεcr/dt =C1σC2。C2,式中,C1=3.125 x10-14,C2=5。试分析平板右端的位移随时间的变化情况。 提示:为避免出现较小值,力单位用N,长度单位用mm,时间单位为h。 图23-2受拉矩形平板 23.3分析步骤 23.3.1改变任务名 拾取菜单Utility Menu→File→Change Jobname,弹出如图23-3所示的对话框,在“[/FJLNAM]”文本框中输入EXAMPLE23,单击“OK”按钮。 图23-3改变任务名对话框 23.3.2选择单元类型 拾取菜单Main Menu→Preprocessor→Element Type→Add/Edit/Delete,弹出如图23-4所示的对话框,单击“Add…”按钮,弹出如图23-5所示的对话框,

蠕变时效成形综述

控制变形理论与应用 姓名:李承波 学号:113111133 指导老师:叶凌英 日期:2011、12

蠕变时效成形技术综述 摘要:蠕变时效成形技术是利用金属的蠕变特性,将成形与时效热处理同步进行的一种成形方法。蠕变时效成形是实现大型蒙皮和壁板件成形的有效方法。文章从蠕变时效成形基本原理以及成形特点出发,重点阐述了基于零件回弹补偿的工装外型面的优化技术、成形工装、蠕变时效成形过程对零件材料微观组织性能的影响和新型可时效成形铝合金的开发及应用等关键技术的研究进展及发展趋势。分析了蠕变时效成形的原理。结合试验分析了蠕变时效成形的实际效果。详细论述了栽荷施加方式和型面确定方法等关键技术。并阐述了蠕变时效成形可能的应用领域和应用前景。并针对我国大飞机的研制需求,结合国内现有研究基础和水平,提出了我国开展蠕变时效成形技术研究的建议。 关键词:蠕变时效成形;整体壁板;铝合金;有限元 ABSTRACT:Creep age forming(CAF)is acombined forming and ageing heat treatment process. Starting from the principle and the characteristics of the creep age formling process, the research situation and the developing tendency on the key technologies, such as tool surface optimisation based on the springback, forming tools, the effect of the creep age forming on mechmcal properties and microstructural evolution, development of novel damage tolerant alloys are detailed introduced in this paper. The principle of the creep age forming and the practical effect of the creep age forming are analyzed by means of tests. Some key technologies, such as the loading method and method of die surface determination are described in detail.The possible application and the prospect of the creep age forming are introduced.Finally,based on the existing research situation and the requirements for developing the large airplane in China,some suggestions and research emphasis on developing creep age forming technologies are pointed out. Key words:Creep Age Forming ; Integral Panel; Aluminum ; FE 前言 在航空工业中,对飞机钣金件成形后的性能要求在不断提高,包括提高强度和刚度、减轻重量、提高抗疲劳断裂的能力等。蠕变时效成形由于能满足这些要求而得到发展,该方法将人工时效与成形制造相结合,利用铝合金在弹性应力作用下在一定温度发生蠕变变形,从而得到具有一定形状的结构件。同时,利用时效处理得到铝合金所需的性能。与常规的塑性成形方法相比,成形应力低于屈服应力,降低了材料发生破裂的几率。同时,时效成形过程中由于蠕变而导致应力松弛以及后续回弹,时效成形铝合金结构件残余应力水平低,耐疲劳与应力腐蚀性能有所提高,长期服役能力更好。同时工件的回弹量较小、残余应力小、产品精度高、成形后材料机械性能好、适用大型蒙皮类钣金件的成形等特点,其应用越来越广。除了用于小曲率大型复杂蒙皮类钣金件外,还可用于小批量的小型钣金件成形。蠕变时效成形还可以用于钣金件的校形。 因此在“湾流”的机翼上蒙皮、GIV、B-IB和空客A330/340/380上都采用了蠕变时效成形方法。在民用飞机的应用方面,空客、波音和麦道的早期机型已经部分采用该项技术,如MD82、A330/340和A380等大型民用飞机的整体壁板制造中,其中采用蠕变时效成形技术制造的A380飞机机翼上壁板材料为7055,零

金属材料蠕变

金属材料蠕变 早期,人们对金属材料强度的认识不足,设计金属构件时仅以短时强度作为设计依据。不少构件,即使使用应力低于弹性极限,使用一段时间后仍然会发生因塑性受形而失效或因破断而失效的现象。随着科学技术的发展,金属材料的使用温度逐步提高,这种矛盾越来越突出。这就使人们进一步认识到材料强度与使用期限之问尚有密切的联系,从而相继开拓了蠕变、蠕变断裂、松弛、疲劳、断裂力学等长时强度研究领域。蠕变则是其中研究最早、内容较丰富而成果较显着的一个领域,成为其他几个研究领域的基础。 金属在持续应力作用下(即使在远低于弹性极限的情况下)会发生缓慢的塑性变形。熔点较低的金属容易产生这种现象;金属所处的温度越高,这种现象越明显。在一定温度下,金属受持续应力的作用而产生缓慢的塑性变形的现象称为金属的蠕变。引起蠕变的这一应力称蠕变应力。在这种持续应力作用下,蠕变变形逐渐增加,最终可以导致断裂,这种断裂称蠕变断裂。导致断裂的这一初始应力称蜕变断裂应力。在有些情况下(特别是在工程上),把蠕变应力及蠕变断裂应力作为材料在特定条件下的一种强度指标来讨论时,往往又把它们称为蠕变强度及蠕变断裂强度,后者又称为持久强度。蠕变现象的发生是温度和应力共同作用的结果。温度和应力的作用方式可以是恒定的,也可以是变动的。常规的蠕变试验则是专门研究在恒定载荷及恒定温度下的蠕变规律。为了与变动情况相区别,把这种试验称为静态蠕变试验。 蠕变现象很早就被人们发现,远在1905年F. Philips等就开始进行专门研究。最初研究的是铅、锌等低熔点纯金属,因为这些金属在室温下就已表现出明显的蠕变现象。以后逐步研究了较高熔点的铝、镁等纯金属的蠕变现象,进而又研究了铁、镍以至难熔金属钨、铂等的蠕变规律。对纯金属的研究后来又发展到对铁、钴、镍基合金及其他各种高温合金的研究。对这些合金,要求它们在几百度的高温下才能表现出明显的蠕变现象(例如碳钢>0.35Tm,不锈钢>0.4Tm)。 蠕变现象的研究是与工业技术的发展密切相关的。随着工作温度的提高,材料蠕变现象越来越明显,对材料蠕变强度的要求越来越高。不同的工作温度需选用具有不同蠕变性能的材料,因此蠕变强度就成为决定高温金属材料使用价值的重要因素。 蠕变曲线 在恒定温度下,一个受单向恒定载荷(拉或压)作用的试样,其变形e与时间t的关系可用如图9.76所示的典型的蠕变曲线表示。曲线可分下列几个阶段: 图9.76 典型的蠕变曲线 第I阶段:减速蠕变阶段(图中AB段),在加载的瞬间产生了的弹性变形e0,以后随加载时间的延续变形连续进行,但变形速率不断降低; 第II阶段:恒定蠕变阶段,如图中曲线BC段,此阶段蠕变变形速率随加载时间的延续而保持恒定,且为最小蠕变速率; 第III阶段:曲线上从C点到D点断裂为止,也称加速蠕变阶段,随蠕变过程的进行,蠕变速率显着增加,直至最终产生蠕变断裂。D点对应的tr就是蠕变断裂时间,er是总的蠕变应变量。 温度和应力也影响蠕变曲线的形状。在低温(<0.3Tm)、低应力下(曲线1)实际上不存在蠕变第III阶段,而且第II阶段的蠕变速率接近于零;在高温(>0.8Tm)、高应力下(曲线3)主要是蠕变第III阶段,而第II阶段几乎不存在。

蠕变分析

4.4 蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18 应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。 上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。 对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。 对蠕变方程积分时,我们使用经过修改的总应变,其表达式为:

岩石力学(沈明荣)考试重点

一章: 1.叙述岩体力学的定义.:岩体力学主要是研究岩石和岩体力学性能的一门学科,是探讨岩石和岩体在其周围物理环境(力场、温度场、地下水等)发生变化后,做出响应的一门力学分支。 2.何谓岩石?何谓岩体?岩石与岩体有何不同之处?(1)岩石:由矿物或岩屑在地质作用下按一定规律聚集而形成的自然物体。(2)岩体:一定工程范围内的自然地质体。(3)不同之处:岩体是由岩石块和各种各样的结构面的综合体。 3.何谓岩体结构?岩体结构的两大要素是什么? (1)岩体结构是指结构面的发育程度及其组合关系;或者是指结构体的规模、形态及其排列形式所表现的空间形态。(2)结构体和结构面。 4. 岩体结构的六大类型? 块状、镶嵌、层状、碎裂、层状碎裂、松散结构。 5.岩体有哪些特征?(1)不连续;受结构面控制,岩块可看作连续。(2)各向异性;结构面有一定的排列趋势,不同方向力学性质不同。(3)不均匀性;岩体中的结构面方向、分布、密度及被结构面切割成的岩块的大小、形状和镶嵌情况等在各部位不同,各部位的力学性质不同。(4)赋存地质因子特性(水、气、热、初应力)都会对岩体有一定作用。 二章:岩石物理力学性质有哪些? 岩石的质量指标,水理性质指标,描述岩石风化能力指标,完整岩石的单轴抗压强度,抗拉强度,剪切强度,三向压缩强度和各种受力状态相对应的变形特性。影响岩石强度特性的主要因素有哪些?对单轴抗压强度的影响因素有承压板、岩石试件尺寸及形状(形状、尺寸、高径比),加载速率、环境(含水率、温度)。对三相压缩强度的影响因素:侧向压力、试件尺寸与加载速率、加载路径、空隙压力。 什么是岩石的应力应变全过程曲线?所谓应力应变全过程曲线是指在刚性实验机上进行实验所获得的包括岩石达到峰值应力之后的应力应变曲线。 2.4简述岩石刚性实验机的工作原理?:压力机加压(贮存弹性应能)岩石试件达峰点强度(释放应变能)导致试件崩溃。AA′O2O1面积—峰点后,岩块产生微小位移所需的能。ACO2O1面积——峰点后,刚体机释放的能量(贮存的能量)。ABO2O1——峰点后,普通机释放的能量(贮存的能量)。当实验机的刚度大于岩石的刚度,才有可能记录下岩石峰值应力后的应力应变曲线。 莫尔强度理论,格尔菲斯强度理论和E.hoek和E.T.brown提出的经验理论的优缺点?:莫尔强度理论优点是使用方便,物理意义明确;缺点是1不能从岩石破坏机理上解释其破坏特征2忽略了中间主应力对岩石强度的影响;格尔菲斯强度理论优点是明确阐明了脆性材料破裂的原因、破裂所需能量及破裂扩展方向;缺点是仅考虑岩石开裂并非宏观上破坏的缘故。E.hoek和E.T.brown提出的经验理论与莫尔强度理论很相似其优点是能够用曲线来表示岩石的强度,但是缺点是表达式稍显复杂。 典型的岩石蠕变曲线有哪些特征?典型的岩石蠕变曲线分三个阶段第Ⅰ阶段:称为初始蠕变段或者叫瞬态蠕变阶段。在此阶段的应变一时间曲线向下弯曲;应变与时间大致呈对数关系,即ε∝㏒t。第Ⅱ阶段:称为等速蠕变段或稳定蠕变段。在此阶段内变形缓慢,应变与时间近于线性关系。第Ⅲ阶段:称为加速蠕变段非

蠕变

1 蠕变的概念 岩石的变形不仅表现出弹性和塑性,而且也具有流变性质,岩石的流变包括蠕变、松弛和弹性后效。 岩石的流变性是指岩石应力应变关系随时间而变化的性质。蠕变是当应力不变时,变形随时间增加而增长的现象。 2 岩石的蠕变曲线 通常用蠕变曲线(ε-t 曲线)表示岩石的蠕变特性。 。 图中三条蠕变曲线是在不同应力下得到的,其中C B A σσσ>>。蠕变实验表明,当岩石在较小的恒定力作用下,变形随时间增加到一定程度后就趋于稳定,不再随时间增加而变化,应变保持为一个常数,这种蠕变称为稳定蠕变;当岩石承受的恒定荷载较大,当岩石应力超过某一临界值时,变形随时间增加而增大,其变形速率逐渐增大,最终导致岩体整体失稳破坏,这种蠕变称为不稳定蠕变。 不稳定蠕变(典型蠕变)可分为三个阶段: 第一蠕变阶段:如曲线AB 所示,应变率随时间增加而减小,故又称为减速蠕变或初始蠕变阶段。 第二蠕变阶段:如曲线中的BC 段所示,应变速率保持不变,故又称为等速蠕变阶段。

第三蠕变阶段:如曲线中的CD段所示,应变速率迅速增加直到岩石破坏,故又称为加速蠕变阶段。 一种岩石既可以发生稳定蠕变也可发生不稳定蠕变,这取决于岩石应力的大小。超过某一临界应力时,蠕变向不稳定蠕变发展;小于此临界应力时,蠕变按稳定蠕变发展。通常称此临界应力为岩石的长期强度。 3实例 3.1 层状岩坡蠕变破坏 综合工程地质条件、力的作用方式及边坡具体破坏形式,在考虑时间效应的基础上,杨晓华,陈沅江[1] 对层状岩质边坡的蠕变破坏类型及其所致因素进行了分析探讨,将层状岩质边坡的蠕变破坏分为如下五种主要类型。 3.1.1 水平层状边坡座落式剪切蠕变破坏 该类蠕变破坏发生在构造活动区水平或近水平岩层边坡中。当边坡最终形成后,由于其高度很大,上部破碎岩体的自重应力亦很大,边坡在该自重应力的作用下时常会发生沿边坡下部的水平或近水平软弱夹层蠕动滑移的座落式滑坡。故这种边坡的蠕变破坏一般首先表现为边坡上部岩体的较大水平剪切位移,当边坡开挖到一定深度时又将表现为垂直剪切位移,

第四章 3 岩石的蠕变

. . . .. .. 五、岩石的蠕变 1、 蠕变特征 ① 岩石蠕变的概念 在应力σ不变的情况下,岩石变形随时间t 而增长的现象。 即 dt d ε 随时间而变化。 ②岩石蠕变类型 有两种类型: 稳定型蠕变 非稳定型蠕变

. . . .. .. a 、 稳定型蠕变 应力作用下,随时间递减,零,即 0=dt d ε 域稳定。 一般在较小应力下或硬岩中。 b 、 非稳定型蠕变:岩石在恒定应力作用下,岩石变形随时间不断增长,直至破坏。 一般为软弱岩石或应力较大。

dt 小。属弹性变形。 Ⅱ阶段:等速蠕变。 应变-时间曲线近似直线,应变随时间呈近于等速增长。出现塑性。.. ..

. . . .. .. Ⅲ阶段:加速蠕变。 应变-时间曲线向上弯曲,其应变速率加快直至破坏。 应指出,并非所有的蠕变都能出现等速蠕变阶段,只有蠕变过程中结构的软化和硬化达到动平衡,蠕变速率才能保持不变。 在Ⅰ阶段,如果应力骤降到零,则ε-t 曲线具有PQR 形式,曲线从P 点骤变到Q 点,PQ =e ε为瞬时弹性变形,而后随时间慢慢退到应变为零,这时无永久变形,材料仍保持弹性。 在Ⅱ阶段,如果把应力骤降到零,则会出现永久变形,其中TU =e ε。

. . . .. .. 有直接关系。变速度变化缓慢,稳定。率增大。蠕变速率越大,反之愈小。

. . . .. .. 岩石长期强度:指 岩石由稳定蠕变转为非稳定蠕变时的应力分界值。即,岩石在长期荷载作用下经蠕变破坏的最小应力值(∞σ或∞τ) 岩石极限长期强度:指长期荷载作用下岩石的强度。 2、 蠕变经验公式 由于岩石蠕变包括瞬时弹性变形、初始蠕变、等速蠕变和加速蠕变,则在荷载长期作用下,岩石蠕变的变形ε可用经验公式表示为: ε=e ε+)(t ε+t M +)(t T ε e ε-瞬时变形;)(t ε-初始蠕变;t M -等速蠕变;)(t T ε-加速蠕变。

蠕变分析实例

4.4.3蠕变分析实例 4.4.3.1问题描述 一块矩形板,其左端固定,而右端被拉伸至某一固定位置,然后保持在此位置不动。试分析板中应力随时间的变化。 4.4.3.2问题详细说明 材料特性: Ex=2e5 (泊松比)=0.3 C6=0的显式初始蠕变方程: C1=4.8e-23;C2=7 几何特性: L=100;H=10 图4-22问题描述图 4.4.3.3求解步骤(GUI方法) 步骤一:建立计算所需要的模型 在这一步中,建立计算分析所需要的模型,包括定义单元类型,创建结点和单元,并将数据库保存为“creep.db”,在此对这一过程不再详细。 步骤二:恢复数据库文件“creep.db” utility menu>file>Resume from 步骤三:定义材料性质 1、选“Main Menu>Preprocessor>Material Props>Material Models”。出现“Define Material Model Behavior”对话框,选择Material Model Number1。

2、在“Material Models Available”窗口,双击“Structural->Linear->Elastic->Isotropic”。出现一个对话框。 3、对杨氏模量(EX)键入2e5。 4、对泊松比(NUXY)键入0.3。 5、单击OK。 步骤四:定义creep数据表并输入相应值 1、在“Material Models Available”窗口,双击Structural->Nonlinear->Inelastic->Rate Dependent->Creep->Creep Only->Mises Potential->Explicit,出现一个对话框。 2、在对话框表格中的C1,C2位置输入相应值(C1=4.8e-23,C2=7)。 3、单击OK 4、退出“Define Material Model Behavior”对话框。 步骤五:进入求解器 选择菜单路径Main Menu>Solution 步骤六:加载 根据所给条件,施加适当的约束和载荷。在此不作详述,参考命令流文件。 步骤七:定义分析类型: 1、选择菜单路径Main Menu>Solution>-Analysis Type-New Analysis. 2、单击“Static”来选中它然后单击OK。 步骤八:设置输出控制选项 1、选择菜单路径:Main Menu>Solution>Unabridged Menu>Load step opts-Output ctrls>Solu printout。对话框出现 2、在“Item”中,选择“all items” 3、对“FREQ”,选择“Every Substep” 4、单击OK 5、选择菜单路径:Main Menu>Solution>Unabridged Menu>Load step opts-Output ctrls>DB/Results File。对话框出现。 6、在“Item”中,选择“all items” 7、对“FREQ”,选择“Every Substep” 8、单击OK 步骤九:设置载荷步选项 1、选择菜单路径Main Menu>Solution>Unabridged Menu>Load step opts-Time/Frequenc>Time and substps。对话框出现。 6、对“Time”(载荷步终止时间)键入10000 7、对“NSUBST”(子步数)输入100

相关文档
最新文档