(完整版)流体力学重点概念总结

(完整版)流体力学重点概念总结
(完整版)流体力学重点概念总结

第一章绪论

表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。它的大小与作用面积成比例。剪力、拉力、压力

质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。重力、惯性力

流体的平衡或机械运动取决于:

1.流体本身的物理性质(内因)

2.作用在流体上的力(外因)

流体的主要物理性质:

密度:是指单位体积流体的质量。单位:kg/m3 。

重度:指单位体积流体的重量。单位: N/m3 。

流体的密度、重度均随压力和温度而变化。

流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。

流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。任何一种流体都具有粘滞性。

牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。

τ=μ(du/dy)

τ只与流体的性质有关,与接触面上的压力无关。

动力粘度μ:反映流体粘滞性大小的系数,单位:N?s/m2

运动粘度ν:ν=μ/ρ

第二章流体静力学

流体静压强具有特性

1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。

2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。

静力学基本方程: P=Po+pgh

等压面:压强相等的空间点构成的面

绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs

相对压强:以当地大气压为基准起算的压强 P

P=Pabs—Pa(当地大气压)

真空度:绝对压强不足当地大气压的差值,即相对压强的负值 Pv

Pv=Pa-Pabs= -P

测压管水头:是单位重量液体具有的总势能

基本问题:

1、求流体内某点的压强值:p = p0 +γh;

2、求压强差:p – p0 = γh ;

3、求液位高:h = (p - p0)/γ

平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。

注意:只要平面面积与形心深度不变:

1.面积上的总压力就与平面倾角θ无关;

2.压心的位置与受压面倾角θ无直接关系,是通过yc表现的;

3.压心总是在形心之下,在受压面位置为水平放置时,压心与形心重合。

作用在曲面壁上的总压力—水平分力

作用于曲面上的静水总压力P的水平分力Px等于作用于该曲面的在铅直投影面上的的投影(矩形平面)上的静水总压力,方向水平指向受力面,作用线通过面积Az的压强分布图体积的形心。

作用在曲面壁上的总压力—垂直分力

作用于曲面上的静水总压力P的铅垂分力Pz等于该曲面上的压力体所包含的液体重,其作用线通过压力体的重心,方向铅垂指向受力面。

压力体

压力体体积的组成:(1)受压曲面本身;

(2)通过曲面周围边缘所作的铅垂面;

(3)自由液面或自由液面的延伸。

压力体的种类:实压力体和虚压力体。

实压力体Pz方向向下;虚压力体Pz方向向上。

帕斯卡原理:静止不可压缩流体内任意一点的压强变化等值传递到流体内的其他各点;

重力场中静止流体等压面的特点

(1)静止、同一水平面;

(2)质量力仅有重力;

(3)连通;

(4)连通的介质为同一均质流;

第三章流体运动学

拉格朗日方法:是以流场中每一流体质点作为描述对象的方法,它以流体个别质点随时间的运动为基础,通过综合足够多的质点(即质点系)运动来确定整个流体的流动。----质点系法

欧拉法:是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法——流场法。

流体质点的加速度(流速对时间求导)有两部分组成:

1)时变加速度(当地加速度)——流动过程中流场由于速度随时间变化而引起的加速度;2)位变加速度(迁移加速度)——流动过程中流场中速度分布不均,因位置变化而引起的加速度。

流线

流线的定义:是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

流线的性质:a、同一时刻的不同流线,不能相交。

b、流线不能是折线,而是一条光滑的曲线。

c、流线簇的疏密反映了速度的大小

迹线

迹线的定义:是指某一质点在某一时段内的运动轨迹线。

层流与紊流

层流:亦称片流,是指流体质点不互相混杂,流体质点作有条不紊的有序的直线运动。

层流特点(1)有序性。

(2)水头损失与流速的一次方成正比 Hf=kv 。

(3)在流速较小且雷诺数Re较小时发生。

(4)层流遵循牛顿内摩擦定律,粘性抑制或约束质点作横向运动。

紊流:是指随流速增大,流层逐渐不稳定,质点相互混掺,流体质点沿很不规则无序的路径运动。

紊流特点:①无序性、随机性、有旋性、混合性。

②在圆管流中水头损失与流速的1.75~2次方成正比。Hf=kv 1.75~2

③在流速较大(雷诺数较大)时发生。

4 紊流发生是受粘性和紊动共同作用的结果

有压流与无压流

(1)有压流:流体充满整个流动空间,在压力作用下的流动。

(2)无压流:流体具有与大气相接触的自由表面(未充满整个流动空间),在重力作用下的流动。

(3)满流:流体充满整个流动空间。

(4)非满流:流体为充满整个流动空间。

有旋流和无旋流

有旋流:亦称“涡流”。流体质点(微团)在运动中不仅发生平动(或形变),而且绕着自身的瞬时轴线作旋转运动。

无旋流:亦称“势流”、“有势流”。流体在运动中,它的微小单元只有平动或变形,但不发生旋转运动,即流体质点不绕其自身任意轴转动。

恒定流与非恒定流

恒定流:是指流场中的流体流动,空间点上各水力运动要素均不随时间而变化。

严格的恒定流只可能发生在层流,在紊流中,由于流动的无序,其实流速或压强总有脉动,但若取时间平均流速(时均流速)

非恒定流:是指流场中的流体流动,空间点上各水力运动要素均随时间的变化而变化。

在非恒定流情况下,流线的位置随时间而变;流线与迹线不重合。

在恒定流情况下,流线的位置不随时间而变,且与迹线重合。

均匀流与非均匀流

均匀流——迁移加速度为0

均匀流中各过水断面上的流速分布图沿程不变,过水断面是平面,沿程各过水断面的形状和大小都保持一样。

例:等直径直管中的液流或者断面形状和水深不变的长直渠道中的水流都是均匀流。

非均匀流——迁移加速度不等于0的流动

非均匀流中流场中相应点的流速大小或方向或同时二者沿程改变,即沿流程方向速度分布不均。(非均匀流又可分为急变流和渐变流)。

渐变流与急变流

渐变流:沿程逐渐改变的流动。

特征:1)流线之间的夹角很小即流线几乎是平行的),同时流线的曲率半径又很大(即流线几乎是直线),其极限是均匀流;

2)过水断面可看作是平面;

3)渐变流的加速度很小,所以惯性力很小,可以忽略不计,质量力只考虑重力作用。急变流:沿程急剧改变的流动。

特征:1)流线间夹角很大或曲率半径较小或二者兼而有之,流线是曲线。

2)急变流的加速度较大,因而惯性力不可忽略。

第四章流体动力学基础

元流的伯努利方程

元流伯努利方程的物理意义与几何意义

z:是元流过流断面上单位重量流体从某一基准面算起所具有的位能,称单位位能。

p/ρg : 是元流过流断面上单位重量流体所具有的压能,称单位压能。

z+p/ρg: 是元流过流断面上单位重量流体从某一基准面算起所具有势能,称单位势能。u 2/ 2g: 是元流过流断面上单位重量流体所具有的动能(kinetic energy),称单位动能。(1)物理意义:

1)元流各过流断面上单位重量流体所具有的机械能(位能、压能、动能之和)沿流程保持不变;

2)也表示了元流在不同过流断面上单位重量流体所具有的位能、压能、动能之间可以相互转化的关系。

z 是位置水头;

p/ρg 是压强水头;

z+p/ρg 是测压管水头;

u 2/ 2g是速度水头(velocity head)

(2)几何意义:

1)元流各过流断面上总水头H(位置水头、压强水头、速度水头之和)沿流程保持不变。

2)也表示了元流在不同过流断面上位置水头、压强水头、速度水头之间可以相互转化的关系。

皮托管测流速

常见的皮托管是由装有一半圆球探头的双层套管组成,并在两管末端联接上压差计。

探头端点A处开一小孔与内套管相连,直通压差计的一肢;外套管侧表面沿圆周均匀地开一排与外管壁相垂直的小孔(静压孔),直通压差计的另一肢。

测速时,将皮托管放置在欲测速度的恒定流中某点A,探头对着来流,使管轴与流体运动的方向相一致。流体的速度接近探头时逐渐减低,流至探头端点处速度为零。

恒定总流的伯努利方程

(1)物理意义

位(置势)能 Z:表示过流断面上单位重量流体所具有的重力势能;

压(力势)能 p/ρg:表示过流断面上单位重量的流体所具有的压力势能;

动能αv2/2g:表示过流断面上单位重量的流体所具有的平均动能;

(2)几何意义

z:称为断面位置水头;

p/ρg:称为断面压强水头;

αv2/2g:称为断面速度水头;

z+p/ρg:称为断面测压管水头;

z+p/ρg+u2/2g=H :称为断面总水头。

这些量都具有长度的量纲[L],将这些具有水位高度的量称为水头。

总水头线:沿流管各总水头值的连线,是流管坐标的函数。

水头线:沿流管各测压管水头值的连线,是流管坐标的函数。

水力坡度:单位长度上的水头损失。

测压管水头线坡度:单位长度上测压管水头的降低或升高。

对均匀流动,则总水头线与测压管水头线平行,即J = JP

能量方程(伯努力方程)适用条件

1)恒定流动;

2)流体不可压缩;

3)质量力只有重力作用;

4)两过水断面处为均匀流或渐变流;

5)流量沿程不变;

6)两过水断面间无能量输入输出。

第六章流动阻力和水头损失

产生流动阻力和能量损失的根源:流体的粘性和紊动。

hw:单位重量流体的平均能量损失称为水头损失。

沿程阻力和沿程水头损失:

沿程阻力:当限制流动的固体边界使流体作均匀流动时,流动阻力只有沿程不变的切应力形成的阻力。

沿程水头损失:由沿程阻力作功而引起的水头损失。

沿程水头损失hf:主要由于“摩擦阻力”所引起的,随流程的增加而增加。

局部阻力和局部水头损失

局部阻力:液流因固体边界急剧改变而引起速度分布的变化,从而产生的阻力称为局部阻力。局部水头损失:由局部阻力作功而引起的水头损失称为局部水头损失。

局部阻力水头损失hj :主要是因为固体边界形状突然改变,从而引起水流内部结构遭受破坏,产生漩涡,以及在局部阻力之后,水流还要重新调整结构以适应新的均匀流条件所造成

的。

水头线图的绘制方法:

1、绘制总水头线。总水头线总是沿程下降。在有局部水头损失的地段,有较集中的下降;在有沿程水头损失的地段,则逐渐的下降。在有外加能量的地点,则有一个集中的上升。

2、绘制测压管水头线。测压管水头线比总水头线处处低一个流速水头值。测压管水头线可能沿程下降,也可能会升高。

3、利用已知边界条件作为水头线的起点和终点。

注意:

1、理想流动流体的总水头线为水平线;

2、实际流动流体的总水头线恒为下降曲线;

3、测压管水头线可升、可降、可水平。

4、若是均匀流,则总水头线平行于测压管水头线,即J=JP。

3、流态的判别准则——临界雷诺数Rec

雷诺实验揭示了水流的两种流动状态:层流和紊流;并测定了流动损失及水流速度与流态之间的关系。

(1)临界流速判别:因不同的管径大小、流体种类和流体温度,得到的临界流速不同。(2)临界雷诺数判别:

临界流速v与过流断面的特性几何尺寸(管径)d、流体的动力粘度μ和密度ρ有关,这四个量可以组成一个特征数(量纲一的量或无量纲数)称雷诺数Re

雷诺数的物理意义:雷诺数是以宏观特征量表征的流体质点所受惯性力与粘性力之比。

粘性底层:圆管作湍流运动时,靠近管壁处存在着一薄层,该层内流速梯度较大,粘性影响不可忽略,紊流附加切应力可以忽略,速度近似呈线性分布,这一薄层就称为粘性底层。(随雷诺数增大而减小)

紊流核心:粘性底层之外的液流统称为紊流核心。

绝对粗糙度(Δ):粗糙突出管壁的平均高度。

相对粗糙度:管壁的绝对粗糙度Δ与管径d的比值.

尼古拉兹实验

1. 实验目的:研究沿程阻力系数λ与雷诺数Re和管壁相对粗糙度Ks/d之间的关系,揭示λ的变化规律。

第1区——层流区,λ=f(Re) 。λ=64/Re,沿程损失与流速的一次方程正比。

第2区——层流转变为紊流的过渡区。λ=f(Re) ,范围较小,一般按水力光滑区处理。

第3区——水力光滑管区。紊流状态,Re>3000, λ=f(Re) ,水头损失与流速的1.75次方成比例。

第4区——由“光滑管区”转向“粗糙管区”的紊流过渡区,λ=f(Re, ?/d) 。

第5区——水力粗糙管区或阻力平方区。λ=f(?/d),水流处于发展完全的紊流状态,水流阻力与流速的平方成正比,故又称阻力平方区。

当量粗糙度

把直径相同、紊流粗糙区λ值相等的人工粗糙管的粗糙突起高度Ks定义为该管材工业管道的当量粗糙。

附面层(边界层):粘度小的流体(如水和空气)绕过物体运动时,摩擦阻力主要发生在紧靠物体表面的一个流速梯度很大的流体薄层内,粘性影响起主要作用。

形状阻力:指流体绕曲面体或具有锐缘棱角的物体流动时,附面层要发生分离,从而产生旋涡所造成的阻力。这种阻力与物体形状有关,故称为形状阻力。

卡门涡街

当 Re≈40 时

黏性流体绕过圆柱体,发生边界层分离,在圆柱体后面产生一对旋转方向相反的对称旋涡;Re = 40-70

对称旋涡位置已不稳定,尾流有周期性振荡;

Re ≈90 时,

旋涡从柱体后部交替释放出来,形成有规则的交错排列的旋涡组合,这种旋涡具有一定的脱落频率,称为卡门涡街.

绕流阻力

细长流线型物体,以平板为例,绕流阻力主要由摩擦阻力来决定,阻力系数与雷诺数有关; 钝头曲面物体,以圆柱和圆球为例,绕流阻力既与摩擦阻力有关,又与压差(形状)阻力有关。在低雷诺数时,主要为摩擦阻力,阻力系数与雷诺数有关。在高雷诺数时,主要为压差(形状)阻力。

第七章孔口、管嘴出流和有压管流

有压管流:管道中流体在压力差作用下的流动。

有压管道:输送有压液流的管道。

有压恒定管流:当管流的所有运动要素均不随时间变化的管流。

有压非恒定管流:管流的运动要素随时间变化的管流。

孔口出流:在容器壁上开孔,水经孔口流出的水力现象就称为孔口出流。

孔口的分类:根据d/H的比值大小分:大孔口、小孔口

大孔口:当孔口直径d(或高度e)与孔口形心以上的水头高H的比值大于0.1,即d/H>0.1时,需考虑在孔口射流断面上各点的水头、压强、速度沿孔口高度的变化,这时的孔口称为大孔口。

小孔口:当孔口直径d(或高度e)与孔口形心以上的水头高度H的比值小于0.1,即d/H<0.1时,可认为孔口射流断面上的各点流速相等,且各点水头亦相等,这时的孔口称为小孔口。

根据出流条件分:自由出流、淹没出流

自由出流:若经孔口流出的水流直接进入空气中,此时收缩断面的压强可认为是大气压强,即pc = pa,则该孔口出流称为孔口自由出流。

淹没出流:若经孔口流出的水流不是进入空气,而是流入下游水体中,致使孔口淹没在下游水面之下,这种情况称为淹没出流。

根据孔口壁是否对水流运动有影响分为——薄壁孔口与厚壁孔口

薄壁孔口:当孔口具有锐缘时,孔壁与水流仅在一条周线上接触,即孔口的壁厚对出流并不发生影响,这种孔口称为薄壁孔口。

厚壁孔口:当孔口孔壁与水流接触具有一定长度,即孔口的壁厚对出流有一定影响时,称这种孔口为厚壁孔口。

根据孔口水头变化情况分:恒定出流、非恒定出流

恒定出流:当孔口出流时,水箱中水量如能得到源源不断的补充,从而使孔口的水头不变,此时的出流称为恒定出流。

非恒定出流:当孔口出流时,水箱中水量得不到补充,则孔口的水头不断变化,此时的出流称为非恒定出流。

管嘴出流:在孔口上对接长度为3~4倍孔径的短管,经此短管并在出口断面满流流出的水力现象称为管嘴出流。

按管嘴的形状可分为:

1)流线形外管嘴:无收缩扩大,阻力系数最小。

2)圆柱形外管嘴:先收缩后扩大到整满管。

3)圆锥形收缩管嘴:较大出口流速。如:消防用喷嘴。

4)圆锥形扩张管嘴:较大过流能力,较低出口流速。

管嘴出流的正常工作条件:

1.作用水头Ho小于等于9m。 Ho过大,真空高度过大,空气从管嘴吸入,不能正常出流。

2.管嘴长度l=(3-4)d。 l过短,有空气进入,不能形成真空;l过长,沿程水头损失不能忽略。

在相同水头H0的作用下,同样断面面积的管嘴的过流能力是孔口的1.32倍。

结论:圆柱形管嘴收缩断面处真空度可达作用水头的0.75倍。这就相当于把管嘴的作用水头增大了75%,这就是为什么相同直径、相同作用水头下的圆柱向外管嘴的流量比孔口大的原因。

短管的水力计算

有压管流与无压流:

有压管流:管道中流体在压强差作用下的流动称为有压管流。

有压管道:输送有压液流的管道。

有压恒定管流:当管流的所有运动要素均不随时间变化的管流。

有压非恒定管流:管流的运动要素随时间变化的管流。

无压流:流体在重力作用下发生运动,具有自由表面,也称明渠流;

长管:指管道中以沿程水头损失为主,局部水头损失和流速水头所占比重小,可以忽略的管道。

短管:沿程水头损失和局部水头损失比例相当,计算时都不可忽略的管道

有压管中的水击

1、水击现象:在管道系统中,当某种外界因素(闸阀急速开启或关闭,水泵的开停机)使

管道流速发生变化时,从而引起管道中压强交替升降,压力波在管道中的传播,产生水力冲击的现象。

直接水击:当关闭阀门时间小于或等于一个相长时,最早由阀门处产生的向上传播而后又反射回来的减压顺行波,在阀门全部关闭时还未到达阀门断面,在阀门断面处产生的可能最大水击压强将不受其影响,这种水击称直接水击。

间接水击:当关闭阀门时间大于一个相长时,从上游反射回来的减压波会部分抵消水击增压,使阀门断面处不致达到最大的水击压强,这种水击称为间接水击。

正水击:当管道阀门迅速关闭时,管中流速迅速减小,压强显著增大,这种水击称为正水击。负水击:当管道阀门迅速开启时,管中流速迅速增大,压强显著减小,这种水击称为负水击。

2、水击产生的因素:水流惯性,水体压缩性,管壁弹性是引起水击现象的力学因素。

3、水击破坏:水击产生的高压会导致输送管道破裂,闸门等管道装置损坏;水泵与电机的损坏;水击引起的低压,产生真空,使薄壁钢管由失稳而扭曲,管中水体汽化发生断流,引起弥合水击

水击危害的预防

1、设置空气室,或安装具有安全阀性质的水击消除阀;

2、设置调压塔:减小水击压强及缩小水击的影响范围;

3、延长阀门关闭时间;(缓闭止回阀)

4、缩短有压管路的长度;(用明渠代替)

5、减小管内流速(如加大管径)。

第八章明渠恒定流

明渠:是人工渠道、天然河道以及不满流管道统称为明渠。

明渠流:具有露在大气中的自由液面的槽内液体流动称为明渠流(明槽流)或无压流

明渠流动的特点:

1、具有自由液面,p0=0,无压流(满管流则是有压流)。

2、重力是流动的动力,重力流(管流是压力流)

3、渠道的坡度影响水流的流速、水深。

4、边界突然变化时,影响范围大。

明渠的分类

1、按明渠的断面形状和尺寸是否变化分

梯形:常用的断面形状

矩形:用于小型灌溉渠道当中

抛物线形:较少使用

圆形:为水力最优断面,常用于城市的排水系统中

复合式:常用于丰、枯水量悬殊的渠道中

棱柱形渠道:断面形状和尺寸沿程不变的长直明渠称为棱柱形渠道。h=f(i)

非棱柱形渠道:断面形状和尺寸沿程不断变化的明渠称为非棱柱形渠道。 h=f(i,s)

2、按底坡分

底坡i——渠道底部沿程单位长度的降低值。

平坡:i=0,明槽槽底高程沿程不变者称为平坡。

正坡:i>0,明槽槽底沿程降低者称为正坡或顺坡。

逆坡:i<0,明槽槽底沿程增高者称为反坡或逆坡。

明渠均匀流的发生条件

1)底坡和糙率沿程不变的长而直的棱柱形渠道;

2)渠道必须为顺坡(i>0);

3)渠道中没有建筑物的局部干扰;

4)明渠中的水流必须是恒定的,沿程无水流的汇入、汇出,即流量不变。

明渠均匀流的特征

1)过水断面的形状和尺寸、断面平均流速、流量和水深沿程不变。

2)总水头线、测压管水头线(水面坡度)和渠底线互相平行

水力最优断面:是指当渠道底坡、糙率及面积大小一定时,通过最大流量时的断面形式。说明:1、具有水力最优断面的明渠均匀流,当i,n,A给定时,水力半径R最大,即湿周X最小的断面能通过最大的流量。

2、i,n,A给定时,湿周P最小的断面是圆形断面,即圆管为水力最优断面。

渠道允许流速

为了防止渠道中发生冲刷淤积,保证渠道稳定的输水能力,设计时应保证:

Vmax>V>Vmin

工程流体力学(一)试题库

2009 年 秋季学期 工 程 流 体 力 学 题号 一 二 三 四 五 六 总分 分数 班号 学号 姓名 一、解释下列概念:(20分) 1. 连续性介质模型、粘性、表面力、质量力 2. 等压面、压力体、流线、迹线 简述“流体”的定义及特点。 3. 恒定流动、非恒定流动、牛顿流体、正压流体 简述 Euler “连续介质模型”的内容及引入的意义。 4.动能修正因数、动量修正因数、水力半径、当量直径 简述“压力体”的概念及应用意义。 5. 有旋运动、无旋运动、缓变流动、急变流动 .简述研究“理想流体动力学”的意义。

二.简答题(10分) 1.流体粘性产生的原因是什么?影响流体粘性的因素有哪些? 2.粘性的表示方法有几种?影响流体粘性的因素有哪些? 3.举例说明等压面在静力学计算中的应用 4. 举例说明压力体在静力学计算中的应用 说明静止流体对曲面壁总作用力的计算方法 三.推导题(30分) 1试推导:流体在直角坐标系中非恒定可压缩流体连续性微分方程式为: 2.试推导粘性流体应力形式的运动微分方程 2.试从粘性流体应力形式出发推导粘性流体的运动微分方程(N-S 方程) 4. 由恒定流动、不可压缩流体流体微小流束的伯努利方程出发,推求粘性流体总流的伯努利方程,并指出其使用条件。 5.推求粘性不可压缩流体作恒定流动时的动量方程式 试证明在不可压缩流体的缓变过流断面上有: z+p/ρg=c 1.试证明:粘性流体的动压强为 四、已知某流速场速度分布为 ,,x y z v yz t v xz t v xy =+=+= 10 d V dt ρ ρ+?=u v g ()1 3 xx yy zz p σσσ=- ++

流体力学知识点大全-吐血整理讲解学习

流体力学知识点大全- 吐血整理

1. 从力学角度看,流体区别于固体的特点是:易变形性,可压缩性,粘滞性和表面张 力。 2. 牛顿流体: 在受力后极易变形,且切应力与变形速率成正比的流体。即τ=μ*du/dy 。 当n<1时,属假塑性体。当n=1时,流动属于牛顿型。当n>1时,属胀塑性体。 3. 流场: 流体运动所占据的空间。 流动分类 时间变化特性: 稳态与非稳态 空间变化特性: 一维,二维和三维 流体内部流动结构: 层流和湍流 流体的性质: 黏性流体流动和理想流体流动;可压缩和不可压缩 流体运动特征: 有旋和无旋; 引发流动的力学因素: 压差流动,重力流动,剪切流动 4. 描述流动的两种方法:拉格朗日法和欧拉法 拉格朗日法着眼追踪流体质点的流动,欧拉法着眼在确定的空间点上考察流体的流动 5. 迹线:流体质点的运动轨迹曲线 流线:任意时刻流场中存在的一条曲线,该曲线上各流体质点的速度方向与 该曲线的速度方向一致 性质 a.除速度为零或无穷大的点以外,经过空间一点只有一条流线 b.流场中每一点都有流线通过,所有流线形成流线谱 c .流线的形状和位置随时间而变化,稳态流动时不变 迹线和流线的区别:流线是同一时刻不同质点构成的一条流体线; 迹线是同一质点在不同时刻经过的空间点构成的轨迹 线。 稳态流动下,流线与迹线是重合的。 6. 流管:流场中作一条不与流线重合的任意封闭曲线,通过此曲线的所有流线 构成的管状曲面。 性质:①流管表面流体不能穿过。②流管形状和位 置是否变化与流动状态有关。 7.涡量是一个描写旋涡运动常用的物理量。流体速度的旋度▽xV 为流场的涡 量。 有旋流动:流体微团与固定于其上的坐标系有相对旋转运动。无旋运动:流 场中速度旋度或涡量处处为零。 涡线是这样一条曲线,曲线上任意一点的切线方向与在该点的流体的涡量方 向一致。 8. 静止流体:对选定的坐标系无相对运动的流体。 不可压缩静止流体质量力满足 ▽x f=0 9. 匀速旋转容器中的压强分布p=ρ(gz -22r2 ω)+c 10. 系统:就是确定不变的物质集合。特点 质量不变而边界形状不断变化 控制体:是根据需要所选择的具有确定位置和体积形状的流场空间。其表 面称为控制面。特点 边界形状不变而内部质量可变 运输公式:系统的物理量随时间的变化率转换成与控制体相关的表达式。

流体力学的发展现状

流体力学的发展和现状 作为物理的一部分,流体力学在很早以前就得到发展。在19世纪,流体力学沿着两个方面发展,一方面,将流体视为无粘性的,有一大批有名的力学数学家从事理论研究,对数学物理方法和复变函数的发展,起了相当重要的作用; 另一方面,由于灌溉、给排水、造船,及各种工业中管道流体输运的需要,使得工程流体力学,特别是水力学得到高度发展。将二者统一起来的关键是本世纪初边界层理论的提出,其中心思想是在大部分区域,因流体粘性起的作用很小,流体确实可以看成是无粘的。这样,很多理想流体力学理论就有了应用的地方。但在邻近物体表面附近的一薄层中,粘性起着重要的作用而不能忽略。边界层理论则提供了一个将这两个区域结合起来的理论框架。边界层这样一个现在看来是显而易见的现象,是德国的普朗特在水槽中直接观察到的。这虽也是很多人可以观察到的,却未引起重视,普朗特的重大贡献就在于他提出了处理这种把两个物理机制不同的区域结合起来的理论方法。这一理论提出后,在经过约10年的时间,奠定了近代流体力学的基础。 流体力学又是很多工业的基础。最突出的例子是航空航天工业。可以毫不夸大地说,没有流体力学的发展,就没有今天的航空航天技术。当然,航空航天工业的需要,也是流体力学,特别是空气动力学发展的最重要的推动力。就以亚音速的民航机为例,如果坐在一架波音747飞机上,想一下这种有400多人坐在其中,总重量超过300吨,总的长宽有大半个足球场大的飞机,竟是由比鸿毛还轻的空气支托着,这是任何人都不能不惊叹流体力学的成就。更不用说今后会将出现更大、飞行速度更快的飞机。 同样,也不可能想象,没有流体力学的发展,能设计制造排水量超过50万吨的船舶,能建造长江三峡水利工程这种超大规模工程,能设计90万kW汽轮机组,能建造每台价值超过10亿美元的海上采油平台,能进行气候的中长期预报,等等。甚至天文上观测到的一些宇宙现象,如星系螺旋结构形成的机理,也通过流体力学中形成的理论得到了解释。近年来从流体力学的角度对鱼类游动原理的研究,发现了采用只是摆动尾部(指身体大部不动)来产生推进力的鱼类,最好的尾型应该是细长的月牙型。这正是经过几亿年进化而形成的鲨鱼和鲸鱼的尾型,而这些鱼类的游动能力在鱼类中是最好的。这就为生物学进化方面提供了说明,引起了生物学家的很大兴趣。 所以很明显,流体力学研究,既对整个科学的发展起了重要的作用,又对很多与国计民生有关的工业和工程,起着不可缺少的作用。它既有基础学科的性质,又有很强的应用性,是工程科学或技术科学的重要组成部分。今后流体力学的发展仍应二者并重。 本世纪的流体力学取得多方面的重大进展,特别是在本世纪下半叶,由于实验测试技术、数值计算手段和分析方法上的进步,在多种非线性流动以及力学和其他物理、化学效应相耦合的流动等方面呈现了丰富多采的发展态势。 在实验方面,已经建立了适合于研究不同马赫数、雷诺数范围典型流动的风洞、激波管、弹道靶以及水槽、水洞、转盘等实验设备,发展了热线技术、激光技术、超声技术和速度、温度、浓度及涡度的测量技术,流动显示和数字化技术的迅猛发展使得大量数据采集、处理和分析成为可能,为提供新现象和验证新理论创造了条件。 流体力学是在人类同自然界作斗争,在长期的生产实践中,逐步发展起来的。早在几千年前,劳动人民为了生存,修水利,除水害,在治河防洪,农田灌溉,河道航运,水能利用等方面总结了丰富的经验。我国秦代李冰父子根据“深淘滩,低作堰”的工程经验,修建设计的四川都江堰工程具有相当高的科学水平,反映出当时人们对明渠流和堰流的认识已经达

土力学复习重点概念

第一章 1.地下水分类:1.上层滞水:积聚在局部隔水层上的水称 为上层滞水2.潜水:埋藏在地表下第一个连续分布的 稳定隔水层以上,具有自由水面的重力水 3.承压水: 埋藏在两个连续分布的隔水层之间完全充满的有压地 下水 2.动力水:土体中渗流的水对单位体积土体的骨架作用 的力 3.流土:当动水力的数值等于或大于土的浮重度时土体 被水冲起的现象 4.管涌:当土体级配不连续时,水流将土体粗粒空隙中 充填的细粒土带走,破坏土的结构 5.土的结构:单粒结构,蜂窝结构,絮状结构 6.土颗粒的大小:粗土粒的压缩性低,强度高,渗透性 大 7.土的粒径级配:各粒组的相对含量,占总质量的百分 数来表示 8.土中水的形式:结合水(强结合水,弱结合水)自由 水(重力水,毛细水)气态水,固态水 9.无粘性土密实度:1.孔隙比2.相对密度:相对密度越大, 越密实3.标准贯入试验N 10.粘性土的物理状态指标:塑性指数Ip:表示细颗粒土 体在可塑状态下,含水率变化的最大区间,Ip越大说 明吸附结合水越多,粘粒含量高吸水强 液性指数IL:表示粘性土的稠度,IL越大,稠度越大 活动度A:表示粘性土的塑性指数与土中脚力含量百 分数的比值 灵敏度St:粘性土的原状土无侧限抗压强度与原土结 构完全破坏的重塑土的无侧限抗压强度的比值 11.触变性:当粘性土结构受扰动后,土的强度就降低。 但静置一段时间,土的强度有逐渐增长 12.压缩模量Es:土的试样单向受压,应力增量与应变增 量之比 13.压缩系数a:表示在单位压力增量作用下土的孔隙比的 减小值,压缩系数越大,土的压缩性越好 14.正常固结土:指土层历史上经受的最大压力,等于现 有覆盖土的自重压力。 15.超固结土:指该土层历史上曾经受过大于现有覆盖土 重的前期固结压力 16.欠固结土:指土层目前还没有达到完全固结,土层实 际固结压力小于土层自重压力 17.减小沉降量的措施:①外因方面:减小基底的附加应 力,采取:1)上部结构采用轻质材料,减小基底接触 应力。2)当地基中无软弱下卧层时,加大基础埋深② 内因方面:修造建筑物之前,预先对地面进行加固处 理 18.减小沉降差的措施:①设计时尽量使上部荷载中心受 压,均匀分布②遇到高低层相差悬殊或地基软硬突变 等情况,可合理设置沉降缝③增加上部结构对地基不 均匀沉降的调整作用④妥善安排施工顺序⑤人工补救第四章 1 影响抗剪强度指标的因素:1,土的物理性质的影响:1)土的矿物成分:砂土中石英含量高,内摩擦角大;云母矿物含量多,则内摩擦角小。2)土的颗粒形状与级配:土颗粒越粗,表面越粗糙,内摩擦角越大。土的级配良好,内摩擦角越大。土粒均匀,内摩擦角小3)土的原始密度:原始密度越大,内摩擦角越大,同时图的原始密度越大,土的孔隙小,接触紧密,黏聚力也必然大4)土的含水率增加时,内摩擦角减小。对于粘性土,含水率增加,将使抗剪强度降低5)土的结构:粘性土受扰动,则黏聚力降低2,孔隙水压力的影响在外荷载作用下,随时间的增长,孔隙水压力因排水而逐渐消散,同时有效应力相应的增加。有效应力影响图的内摩擦强度1)三轴固结排水剪,测得的抗剪强度值最大2)三轴不固结不排水剪,测得的抗剪强度值最小3)三轴固结不排水剪。固结:孔隙压力水的消散,同时有效应力的增加,土体逐渐被压密的过程。 2 地基的临塑荷载:在外荷载作用下,地基中刚开始产生塑性变形即局部剪切破坏时基础底面单位面积上所受的载荷。地基的临界荷载:地基中的塑性变形区最大深度时相对应的基础底面压力。 3 地基的极限荷载:地基在外荷作用下产生的应力达到极限平衡时的荷载。 4 影响极限载荷的因素: 1,地基的破坏形式1)地基整体滑动破坏:当地基土良好或中等,上部荷载超过地基极限荷载时,地基中的塑性变形区扩展成整体,导致地基发生整体滑动破坏。2)地基局部剪切破坏:当基础埋深大,加荷速度快时,因基础旁侧荷载大,阻止地基整体滑动破坏,使地基发生基础底部局部剪切破坏。3)地基冲切剪切破坏:当地基为松砂或软土,在外荷作用下使地基产生大量沉降,基础竖向切入土中,发生冲切剪切破坏。 2,地基土的指标:强度指标c,φ和重度。它们越大,则极限载荷越大。 3,基础尺寸:基础宽度增大,极限荷载增大。基础埋深加大时,则基础旁侧荷载加大,因而极限荷载加大。 4,荷载作用方向:1)荷载为倾斜方向:倾斜角越大,极限荷载越小。为不利因素。2)荷载为竖直方向:则极限荷载大。 5,荷载作用时间:时间短暂,极限荷载可以提高。长期作用下,极限荷载降低。 第五章 土压力的种类:1.静止土压力:当挡土墙静止不动时,墙后 土体由于墙的侧限作用而处于静止状态。 2.主动土压力:当挡墙在墙后土体的推力作用 下,向前移动,墙后土体随之向前移动。土 体下方阻止移动的强度发挥作用,使作用在 墙背上的土压力减小。当墙后土体达到主动 极限平衡状态时,墙背上的土压力减小至最 小。产生主动土压力条件:密砂:-△=0.5%H (H为挡土墙高度)。密实粘性土:-△ =1%~2%H 3.被动土压力:挡土墙在较大的外力作用下, 向后移动推向填土,则填土受墙的挤压,使 作用在墙背上的土压力增大。当土体达到被 动极限平衡状态,墙背上作用的土压力增至 最大。墙体在外力作用下向后位移+△,密 实土若+△≈5%H产生被动土压力;粉质土 +△=10%H产生被动土压力 影响土压力因素:1.挡土墙位移方向和位移量的大小事影响 土压力大小的最主要因素。 2.挡土墙形状:挡土墙剖面形状包括墙背竖 直或是倾斜,墙背光滑或是粗糙。 3.挡土墙性质:包括填土松密程度即重度、 干湿程度即含水率、土的强度指标内摩擦角 和黏聚力大小c的大小以及填土表面形状 (水平、上斜、下斜) 库伦土压力理论:研究课题——①墙背俯斜②墙背粗糙,墙 与土之间有摩擦角③填土为理想散粒体,粘 聚力为0④填土表面倾斜 基本假定:①挡土墙向前移动②墙后填土沿墙背和填土中某 一平面同时下滑形成滑动楔体③土楔体处 于极限平衡状态不及本身压缩变形④楔形 体对墙背的推力即为主动土压力Pa 第七章 1、地基坚实均匀,可以采用天然地基浅基础。地基上部软弱,下部坚实,可考虑用桩基础。有的地基软弱层很厚,可采用人工加固基础。 2、地基基础方案的类型:①天然地基上的浅基础(基础简单,工程量小,施工方便,造价低廉,优先选用):当建筑场地上土质均匀,坚实,性质良好,地基承载力特征值大于120KPa,对于一般多层建筑可做在千层天然土层上。②不良地基人工处理后的浅基础:遇到地基土层软弱,压缩性高,强度低,无法承受上部结构荷载时,需经过人工加固后作为地基。③桩基础:当建筑地基上部土层软弱,深层土质坚实时,可采用桩基础,上部结构荷载通过桩基础穿过软弱土层传到下部坚实土层。④深基础:若上部结构荷载很大,一般浅基础无法承受,或相邻建筑不允许开挖基槽施工以及有特殊用途时。 3、天然地基上浅基础的设计内容和步骤:①初步设计基础的结构形式,材料与平面布置。②确定基础的埋置深度③计算地基承载力特征值,并经深度和宽度修正,确定修正后的地基承载力特征值④根据作用在基础顶面荷载F和深宽修正后的地基承载力特征值,计算基础的底面积⑤计算基础高度并确定剖面形状⑥若地基持力层下部存在软弱土层时,则需要验算软弱下卧层的承载力⑦地基基础设计等级为甲乙级建筑物和部分丙级建筑物应计算地基的变形⑧验算建筑物或构建物的稳定性⑨基础细部结构和构造设计⑩绘制基础施工图 4、浅基础的结构类型:①独立基础②条形基础(砖混结构的墙基、挡土墙基础)③十字交叉荷载(上部荷载较大时,采用条形基础不能满足承载力要求)④筏板基础(上部荷载较大,地基软弱或地下防渗要求时)⑥箱型基础(高层建筑荷载大,高度大,按照地基稳定性要求,基础埋置深度应加深,采用箱型基础) 5、基础的材料:①无筋扩展基础(刚性基础):材料抗压强度较大,不能承受拉力或弯矩。技术简单,材料充足,造价低廉,施工方便,多层砌体结构采用这种形式。②扩展基础(柔性基础)由钢筋混凝土材料建造的基础,不受刚性角的限制,基础剖面做成扁平状,用较小的基础高度把上部荷载传到较大的基础底面上去以适应承载力要求。设计宽基浅埋已解决存在软弱下卧层强度太低时采用这种基础。 6、箱型基础筏型基础从室外标高算起,而条形基础或独立基础从室内标高算起 7、基础通常放在地下水位以上,若在地下水位以下则要进行基槽排水。当地基为粘性土时候,下层卵石层有承压水时候,在基槽开挖时,保留粘性土槽底安全厚度,防止槽底土层发生流土破坏。 8、防止冻害的措施 在冻胀,强冻胀,特强冻胀地基上,应采用以下措施 1.对在地下水位以上的基础,基础侧面应回填非冻胀性的 中砂或者粗砂,其厚度不应小于10cm。对在地下水位 以下的基础,可采用桩基础,自锚式基础(冻土层下有 扩大板或扩地短柱) 2.宜选择地势高,地下水位低,地表排水良好的建筑场地。 对低洼场地,宜在建筑物四周向外一倍冻深距离范围 内,使室外地坪至少高出自然地面300~500mm

工程流体力学相关概念公式

第二章流体及其物理性质 流体:是一种受任何微小剪切力作用都能连续变形的物质。 流体连续介质假说:可以不去考虑分子间存在的空隙,而把流体视为由无数连续分布的流体微团所组成的连续介质。 作用在流体上的力:表面力和质量力。 流体密度:单位体积内所具有的质量。 压缩性:随着压强的增高,体积便缩小。压缩系数:用单位压强所引起的体积变化率。 膨胀性:随着温度的升高,体积便膨胀。体胀系数:单位温升所引起的体积变化率。 粘性:流体微团间发生相对滑移时产生切向阻力的性质。 牛顿内摩擦定律:作用在流层上的切向应力与速度梯度成正比,其比例系数为流体的动力粘度。 粘性与温度的关系:液体的粘度随温度上升而减小,气体的年度随温度上升而增大。 牛顿流体:凡作用在流体上的切向应力与它所引起的角变形速度(速度梯度)之间的关系符合牛顿内摩擦定律的流体。 第三章流体静力学 流体静压强两个特性:一。流体静压强的方向沿作用面的内法线方向。二。静止流体中任一点流体静压强的大小与其作用面在空间的方位无 关,只是该点坐标的连续函数,即静止流 体中任一点上不论来自何方的静压强均相

等。 等压面:压强相等的各点组成的面。作用于静止流体中任一点的质量 力必垂直于通过该点的 等压面。 帕斯卡原理:施于在重力作用下不可压缩流体表面上的压强,将以同 一数值沿各个方向传递 到流体中的所有流体质点。 水头:单位重量流体所具有的能量用液柱高度表示。 压力体:液体作用在曲面上的总压力的铅直分力的大小恰好等于压力 体的液体重力,但并非 作用在曲面上的一定是它上面压力体的液体重力。(纯数学概念,与 体内有无液体无关) 第四章流体运动学和流体动力学基础 流体运动的描述方法:欧拉方法和拉格朗日方法。 流线:在某一瞬时,一条曲线上的每一点的速度矢量总是在该点与此 曲线相切。 流管:在流场内作一本身不是流线又不相交的封闭曲线,通过这样的 封闭曲线上各点的流线 所构成的管状表面。 有效截面:处处与流线相垂直的流束的截面。 湿周:在总流的有效截面上,流体同固体边界接触部分的周长。 水力半径:总流的有效面积与湿周之比。

流体力学总结

流体力学总结 第一章 流体及其物理性质 1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停止作用为止。流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。 4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。稀薄空气和 激波情况下不适合。 5. 密度0lim V m m V V δδρδ→== 重度0lim V G G g V V δδγρδ→=== 比体积1v ρ= 6. 相对密度:是指某流体的密度与标准大气压下4?C 时纯水的密度(1000)之比 w w S ρρρ=为4?C 时纯水的密度 13.6Hg S = 7. 混合气体密度1n i i i ρρα==∑ 8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。体积压缩系数的倒数为体积模量1 P P K β= 9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。 10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不 可压缩流体。气体流速不高,压强变化小视为不可压缩流体 11. 牛顿内摩擦定律: du dy τμ= 黏度du dy τμ= 流体静止粘性无法表示出来,压强对黏度影响较小,温度升高,液体黏度降低,气体黏度增加 μυρ = 。满足牛顿内摩擦定律的流体为牛顿流体。 12. 理想流体:黏度为0,即0μ=。完全气体:热力学中的理想气体

流体力学发展简史.

流体力学发展简史 流体力学作为经典力学的一个重要分支,其发展与数学、力学的发展密不可分。它同样是人类在长期与自然灾害作斗争的过程中逐步认识和掌握自然规律,逐渐发展形成的,是人类集体智慧的结晶。 人类最早对流体力学的认识是从治水、灌溉、航行等方面开始的。在我国水力事业的历史十分悠久。 4000多年前的大禹治水,说明我国古代已有大规模的治河工程。 秦代,在公元前256-前210年间便修建了都江堰、郑国渠、灵渠三大水利工程,特别是李冰父子领导修建的都江堰,既有利于岷江洪水的疏排,又能常年用于灌溉农田,并总结出“深淘滩,低作堰”、"遇弯截角,逢正抽心"的治水原则。说明当时对明槽水流和堰流流动规律的认识已经达到相当水平。 西汉武帝(公元前156-前87)时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠,创造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防止了黄土的塌方。 在古代,以水为动力的简单机械也有了长足的发展,例如用水轮提水,或通过简单的机械传动去碾米、磨面等。东汉杜诗任南阳太守时(公元37年)曾创造水排(水力鼓风机),利用水力,通过传动机械,使皮制鼓风囊连续开合,将空气送入冶金炉,较西欧约早了一千一百年。 古代的铜壶滴漏(铜壶刻漏)--计时工具,就是利用孔口出流

使铜壶的水位变化来计算时间的。说明当时对孔口出流已有相当的认识。 北宋(960-1126)时期,在运河上修建的真州船闸与十四世纪末荷兰的同类船闸相比,约早三百多年。 明朝的水利家潘季顺(1521-1595)提出了"筑堤防溢,建坝减水,以堤束水,以水攻沙"和"借清刷黄"的治黄原则,并著有《两河管见》、《两河经略》和《河防一揽》。 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等于过水断面面积乘以断面平均流速的计算方法。 欧美诸国历史上有记载的最早从事流体力学现象研究的是古希腊学者 阿基米德(Archimedes,公元前287-212),在公元前250年发表学术论文《论浮体》,第一个阐明了相对密度的概念,发现了物体在流体中所受浮力的基本原理──阿基米德原理。 著名物理学家和艺术家列奥纳德达芬奇(Leonardo.da.Vinci,1452-1519)设计建造了一小型水渠,系统地研究了物体的沉浮、孔口出流、物体的运动阻力以及管道、明渠中水流等问题。 斯蒂文(S.Stevin,1548-1620)将用于研究固体平衡的凝结原理转用到流体上。 伽利略(Galileo,1564-1642)在流体静力学中应用了虚位移原理,并首先提出,运动物体的阻力随着流体介质密度的增大和速度

流体力学概念总结

第一章绪论 1.工程流体力学的研究对象:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观 的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 第二章流体的主要物理性质 1.★流体的概念:凡是没有固定的形状,易于流动的物质就叫流体。 2.★流体质点:包含有大量流体分子,并能保持其宏观力学性能的微小单元体。 3.★连续介质的概念:在流体力学中,把流体质点作为最小的研究对象,从而把流体看成是: 1)由无数连续分布、彼此无间隙地; 2)占有整个流体空间的流体质点所组成的介质。 4.密度:单位体积的流体所具有的质量称为密度,以ρ表示。 5.重度:单位体积的流体所受的重力称为重度,以γ表示。 6.比体积:密度的倒数称为比体积,以υ表示。它表示单位质量流体所占有的体积。 7.流体的相对密度:是指流体的重度与标准大气压下4℃纯水的重度的比值,用d表示。 8.★流体的热膨胀性:在一定压强下,流体体积随温度升高而增大的性质称为流体的热膨胀性。 9.★流体的压缩性:在一定温度下,流体体积随压强升高而减少的性质称为流体的压缩性。 10.可压缩流体:ρ随T 和p变化量很大,不可视为常量。 11.不可压缩流体:ρ随T 和p变化量很小,可视为常量。 12.★流体的粘性:流体流动时,在流体内部产生阻碍运动的摩擦力的性质叫流体的粘性。 13.牛顿内摩擦定律:牛顿经实验研究发现,流体运动产生的内摩擦力与沿接触面法线方向的速度变 化(即速度梯度)成正比,与接触面的面积成正比,与流体的物理性质有关,而与接触面上的压强无关。这个关系式称为牛顿内摩擦定律。 14.非牛顿流体:通常把满足牛顿内摩擦定律的流体称为牛顿流体,此时不随dυ/d n而变化,否则称 为非牛顿流体。 15.动力粘度μ:动力粘度表示单位速度梯度下流体内摩擦应力的大小,它直接反映了流体粘性的 大小。 16.运动粘度ν:在流体力学中,动力粘度与流体密度的比值称为运动粘度,以ν表示。 17.实际流体:具有粘性的流体叫实际流体(也叫粘性流体), 18.理想流体:就是假想的没有粘性(μ= 0)的流体 第三章流体静力学 1.★流体的平衡:(或者说静止)是指流体宏观质点之间没有相对运动,达到了相对的平衡。 2.★绝对静止:流体对地球无相对运动,也称为重力场中的流体平衡。 3.★相对平衡:流体整体对地球有相对运动,但流体对运动容器无相对运动,流体质点之间也无相 对运动,这种静止或叫流体的相对静止★:体积力:作用于流体的每一个流体质点上,其大小与流体所具有的质量成正比的力。在均质流体中,质量力与受作用流体的体积成正比,因此又叫。 4.★表面力:表面力是作用于被研究流体的外表面上,其大小与表面积成正比的力。 5.★压强:在静止或相对静止的流体中,单位面积上的内法向表面力称为压强。 6.等压面:在静止流体中,由压强相等的点所组成的面。 7.★位置水头(位置高度):流体质点距某一水平基准面的高度。 8.压强水头(压强高度):由流体静力学基本方程中的p/(ρg)得到的液柱高度。 9.★静力水头:位置水头z和压强水头p/(ρg)之和。 10.压强势能:流体静力学基本方程中的p/ρ项为单位质量流体的压强势能。

土力学与地基基础知识点整理汇编

地基基础部分 1.土由哪几部分组成? 土是由岩石风化生成的松散沉积物,一般而言,土是由固体颗粒、液态水和空隙中的气体等三部分组成。 2.什么是粒径级配?粒径级配的分析方法主要有哪些? 土中土粒组成,通常以土中各个粒组的相对含量(各粒组占土粒总质量的百分数)来表示,称为土的粒径级配。 对于粒径小于或等于60mm、大于0.075的土可用筛分法,而对于粒径小于0.075的土可用密度计法或移液管法分析。 3.什么是自由水、重力水和毛细水? 自由水是存在于土粒表面电场范围以外的水,它可以分为重力水和毛细水。 重力水存在于地下水位一下的土骨架空隙中,受重力作用而移动,传递水压力并产生浮力。毛细水则存在于地下水位以上的孔隙中,土粒之间形成环状弯液面,弯液面与土粒接触处的表面张力反作用于土粒,成为毛细压力,这种力使土粒挤紧,因而具有微弱的粘聚力或称为毛细粘聚力。 4.什么是土的结构?土的主要结构型式有哪些? 土的结构主要是指土体中土粒的排列和联结形式,它主要分为单粒结构、蜂窝结构和絮状结构三种基本类型。 5.土的物理性质指标有哪些?哪些是基本物理性质指标?哪些是换算指标? P6 6.熟练掌握土的各个物理性质指标的概念,并能够进行相互换算。 P7-8 7.无粘性土和粘性土的物理特征是什么? 无粘性土一般指具有单粒结构的碎石土和砂土。天然状态下无粘性土具有不同的密实度。密实状态时,压缩小,强度高。疏松状态时,透水性高,强度低。 粘性土粒之间存在粘聚力而使土具有粘性。随含水率的变化可分别划分为固态、半固态、可塑及流动状态。 8.什么是相对密度? P9 9.什么是界限含水量?什么是液限、塑限含水量? 界限含水率:粘性土由一种状态转换到另一种状态的分界含水率; 液限:由流动状态转为可塑状态的界限含水率; 塑限:有可塑状态转为半固态的界限含水率; 缩限:由半固态转为固态的界限含水率。 10.什么是塑性指数和液性指数?他们各反映粘性土的什么性质? P10 11.粗粒土和细粒土各采用什么指标进行定名? 粗粒土:粒径级配 细粒土:塑性指数

工程流体力学知识整理

流体:一种受任何微小剪切力作用,都能产生连续变形的物质。 流动性:当某些分子的能量大到一定程度时,将做相对的移动改变它的平衡位置。 流体介质:取宏观上足够小、微观上足够大的流体微团,从而将流体看成是由空间上连续分布的流体质点所组成的连续介质 压缩性:流体的体积随压力变化的特性称为流体的压缩性。 膨胀性:流体的体积随温度变化的特性称为流体的膨胀性。 粘性:流体内部存在内摩擦力的特性,或者说是流体抵抗变形的特性。 牛顿流体:将遵守牛顿内摩擦定律的流体称为牛顿流体,反之称为非牛顿流体。 理想流体:忽略流体的粘性,将流体当成是完全没有粘性的理想流体。 表面张力:液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。 表面力:大小与表面面积有关而且分布作用在流体微团表面上的力称为表面力。 质量力:所有流体质点受某种力场作用而产生,它的大小与流体的质量成正比。 压强:把流体的内法线应力称作流体压强。 流体静压强:当流体处于静止或相对静止时,流体的压强称为流体静压强。 流体静压强的特性:一、作用方向总是沿其作用面的内法线方向。二、任意一点上的压强与作用方位无关,其值均相等(流体静压强是一个标量)。 绝对压强:以完全真空为基准计量的压强。 相对压强:以当地大气压为基准计量的压强。 真空度:当地大气压-绝对压强 液体的相对平衡:指流体质点之间虽然没有相对运动,但盛装液体的容器却对地面上的固定坐标系有相对运动时的平衡。 压力体:曲面上方的液柱体积。 等压面:在平衡流体中,压力相等的各点所组成的面称为等压面。特性一、在平衡的流体中,过任意一点的等压面,必与该点所受的质量力互相垂直。特性二、当两种互不相混的液体处于平衡时,它们的分界面必为等压面。 流场:充满运动流体的空间称为流场。 定常流动:流场中各空间点上的物理量不随时间变化。 缓变流:当流动边界是直的,且大小形状不变时,流线是平行(或近似平行)的直线的流动状态为缓变流。 急变流:当流边界变化比较剧烈,流线不再是平行的直线,呈现出比较紊乱的流动状态

生活中的流体力学知识研究报告

工程流体力学三级项目报告multinuclear program design Experiment Report 项目名称: 班级: 姓名: 指导教师: 日期:

摘要 简要介绍了流体力学在生活中的应用,涉及到体育,工业,生活小窍门等。讨论了一些流体力学原理。许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。 关键字:伯努利定律;层流;湍流;空气阻力;雷诺数;高尔夫球

前言 也许,到现在你都有点不会相信,其实我们生活在一个流体的世界里。观察生活时我们总可以发现。生活离不开流体,尤其是在社会高速发展的今天。鹰击长空,鱼翔浅底;汽车飞奔,乒乓极旋,许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。

一、麻脸的高尔夫球(用雷诺数定量解释) 不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,如图1—1,后来发现表面破损的旧球 图1-1光滑面1-2粗糙面 反而打的更远。原来是临界Re数不同的结果。光滑的球由于这种边界层分离得早,形成的前后压差阻力就很大,所以高尔夫球在由皮革改用塑胶后飞行距离便大大缩短了,因此人们不得不把高尔夫球做成麻脸的,即表面布满了圆形的小坑。麻脸的高尔夫球有小坑,飞行时小坑附近产生了一些小漩涡,由于这些小漩涡的吸力,高尔夫球附近的流体分子被漩涡吸引,

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力: 重力、惯性力、非惯性力、离心力) 单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 ΔF ΔP ΔT A ΔA V τ 法向应力周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA F A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ) ,1pa=1N/㎡,表面力具有传递性。 B F f m =u u v v 2m s 3 /1000m kg =ρ3 /2.1m kg =ρ

牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体 无粘性流体,是指无粘性即μ=0的液体。无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。 (3) 压缩性和膨胀性 压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。 T 一定,dp 增大,dv 减小 膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。 P 一定,dT 增大,dV 增大 A 液体的压缩性和膨胀性 液体的压缩性用压缩系数表示 压缩系数:在一定的温度下,压强增加单位P ,液体体积的相对减小值。 由于液体受压体积减小,dP 与dV 异号,加负号,以使к为正值;其值愈大,愈容易压缩。к的单位是“1/Pa ”。(平方米每牛) 体积弹性模量K 是压缩系数的倒数,用K 表示,单位是“Pa ” 液体的热膨胀系数:它表示在一定的压强下,温度增加1度,体积的相对增加率。 du T A dy μ =? dt dr dy du ? =?=μ μτdu u dy h =ρ μν= dP dV V dP V dV ? -=-=1/κρ ρ κ d dP dV dP V K =-==1

土力学重点概念总结

土力学 1.土的主要矿物成分:原生矿物:石英、长石、云母 次生矿物:主要是粘土矿物,包括三种类型 高岭石、伊里石、蒙脱石 2.粒径:颗粒的大小通常以直径表示。称为粒径(mm)或粒度。 3.粒组:粒径大小在一定范围内、具有相同或相似的成分和性质的土粒集合。 4.粒组的划分:巨粒(>200mm) 粗粒(0.075~200mm) 卵石或碎石颗粒(20~200mm) 圆砾或角砾颗粒(2~20mm) 砂 (0.075~2mm) 细粒(<0.075mm)粉粒(0.005~0.075mm) 粘粒(<0.005mm) 5.土的颗粒级配:土由不同粒组的土颗粒混合在一起所形成,土的性质主要取决于不同粒组的土粒的相对含量。土的颗粒级配就是指大小土粒的搭配情况。 6.级配曲线法:纵坐标:小于某粒径的土粒累积含量 横坐标:使用对数尺度表示土的粒径,可以把粒径相差上千倍的粗粒都表示出来,尤其能 把占总重量少,但对土的性质可能有主要影响的颗粒部分清楚地表达出来. 7.不均匀系数:可以反映大小不同粒组的分布情况,Cu越大表示土粒大小分布范围广,级配良好。 8.曲率系数:描述累积曲线的分布范围,反映曲线的整体形状 9.土中水-土中水是土的液体相组成部分。水对无粘性土的工程地质性质影响较小,但粘性土中水是控制其工程地质性质的重要因素,如粘性土的、及其等,都直接或间接地与其含水量有关。 13.表示土的三相组成部分质量、体积之间的比例关系的指标,称为土的三相比例指标。主要指标有:、、(这三个指标需用实验室实测)和由它们三个计算得出的指标、和。 14.稠度:粘性土因含水量的不同表现出不同的稀稠、软硬状态的性质称为粘性土的稠度。 15.粘性土的界限含水量:同一种粘性土随其含水量的不同,而分别处于固态、半固态、可塑状态及流动状态。由一种状态转变到另一种状态的分界含水量,叫界限含水量

工程流体力学习题集及答案

第1章 绪论 选择题 【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒; (c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元 体。 解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有 诸如速度、密度及压强等物理量的流体微团。 (d ) 【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变 形速度;(c )切应力和剪切变形;(d )切应力和流速。 解:牛顿内摩擦定律是d d v y τμ=,而且速度梯度d d v y 是流体微团的剪切变形速度 d d t γ,故d d t γτμ=。 (b ) 【1.3】 流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N ·s/m 2。 解:流体的运动黏度υ的国际单位是/s m 2。 (a ) 【1.4】 理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p =ρ 。 解:不考虑黏性的流体称为理想流体。 (c ) 【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b ) 1/1 000;(c )1/4 000;(d )1/2 000。 解:当水的压强增加一个大气压时,其密度增大约 95d 1 d 0.51011020 000k p ρ ρ-==???=。 (a ) 【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时 不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力, 平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。 解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切 应力。 (c ) 【1.7】下列流体哪个属牛顿流体:(a )汽油;(b )纸浆;(c )血液;(d )沥青。 解:满足牛顿内摩擦定律的流体称为牛顿流体。 (a ) 【1.8】 15C o 时空气和水的运动黏度6215.210m /s υ-=?空气,621.14610m /s υ-=?水 ,这说明:在运动中(a )空气比水的黏性力大;(b )空气比水的黏性力小;(c )空气 与水的黏性力接近;(d )不能直接比较。

土力学与基础工程知识点考点整理汇总

一、绪论 1.1土力学、地基及基础的概念 1.土:土是连续、坚固的岩石经风化、剥蚀、搬运、沉积而形成的散粒堆 积物。 2.地基:地基是指支撑基础的土体或岩体。(地基由地层构成,但地层不一 定是地基,地基是受土木工程影响的地层) 3.基础:基础是指墙、柱地面下的延伸扩大部分,其作用是将结构承受的 各种作用传递到地基上的结构组成部分。(基础可以分为浅基础和深基 础) 4.持力层:持力层是指埋置基础,直接支撑基础的土层。 5.下卧层:下卧层是指卧在持力层下方的土层。(软弱下卧层的强度远远小 于持力层的强度)。 6.基础工程:地基与基础是建筑物的根本,统称为基础工程。 7.土的工程性质:土的散粒性、渗透性、压缩性、整体强度(连接强度) 弱。 8.地基与基础设计必须满足的条件:①强度条件(按承载力极限状态设计): 即结构传来的荷载不超过结构的承载能力p f ≤;②变形条件:按正常使 s≤ 用极限状态设计,即控制基础沉降的范围使之不超过地基变形的允许值[] 二、土的性质及工程分类 2.1 概述 土的三相组成:土体一般由固相(固体颗粒)、液相(土中水)、气相(气体)三部分组成,简称为三相体系。 2.2 土的三相组成及土的结构 (一)土的固体颗粒物质分为无机矿物颗粒和有机质。矿物颗粒的成分有两大类:(1)原生矿物:即岩浆在冷凝过程中形成的矿物,如石英、长石、云母等。(2)次生矿物:系原生矿物经化学风化作用后而形成的新的矿物(如

粘土矿物)。它们的颗粒细小,呈片状,是粘性土固相的主要成分。次生矿物中粘性矿物对土的工程性质影响最大 —— 亲水性。 粘土矿物主要包括:高岭石、蒙脱石、伊利石。蒙脱石,它的晶胞是由两层硅氧晶片之间的夹一层铝氢氧晶片所组成称为2:1型结构单位层或三层型晶胞。它的亲水性特强工程性质差。伊利石它的工程性质介于蒙脱石与高岭石之间。高岭石,它是由一层硅氧晶片和一层铝氢氧晶片组成的晶胞,属于1:1型结构单位层或者两层。它的亲水性、膨胀性和收缩性均小于伊利石,更小于蒙脱石,遇水稳定,工程性质好。 土粒的大小称为粒度。在工程性质中,粒度不同、矿物成分不同,土的工程性质也就不同。工程上常把大小、性质相近的土粒合并为一组,称为粒组。而划分粒组的分界尺寸称为界限粒径。土粒粒组先粗分为巨粒、粗粒和细粒三个统称,再细分为六个粒组:漂石(块石)、卵石(碎石)、砾粒、砂粒、粉粒和黏粒。 土中所含各粒组的相对含量,以土粒总重的百分数表示,称为土的颗粒级配。土的级配曲线的纵坐标表示小于某土粒的累计质量百分比,横坐标则是用对数值表示土的粒径。由曲线形态可评定土颗粒大小的均匀程度。若曲线平缓则粒径大小相差悬殊,颗粒不均匀,级配良好;反之,则颗粒均匀,级配不良。 工程中常用不均匀系数u C 和曲率系数c C 来反映土颗粒的不均匀程度。 60 30u d C d = ()2301060c d C d d =? 10d —小于某粒径的土粒质量总土质量10%的粒径,称为有效粒径; 30d —小于某粒径的土粒质量总土质量30%的粒径,称为中值粒径; 60d —小于某粒径的土颗粒质量占总质量的60%的粒径,称限定粒径。 工程上对土的级配是否良好可按如下规定判断 ① 对于级配连续的土: Cu 5,级配良好;5Cu ,级配不良。 ② 对于级配不连续的土,级配曲线上呈台阶状,采用单一指标Cu 难以全面有效地判断土的级配好坏,需同时满足Cu 5和13Cu = 两个条件时,才为级配良好,反之级配不良。

相关文档
最新文档