部分数学建模习题解答[1]

部分数学建模习题解答[1]
部分数学建模习题解答[1]

第一章第5题

一个男孩和一个女孩分别在离家2km和1km且方向相反的两所学校里上学,每天同时放学后分别以2km/h和1km/h的速度步行回家。一只小狗以6km/h的速度由男孩奔向女孩,又从女孩处跑向跑回男孩处,如此往返的奔跑,直至回到家中。问小狗总共奔波了多少路程?

解:由于男孩、女孩与小狗跑的时间一样,所以把时间设为t,则有2t+1t=3,得到t=1h。

所以小狗跑了6km/h*1h=6km。

第一章10题

一位探险家必须穿过一片宽度为800 km的沙漠,他仅有的交通工具是一辆每升汽油可行驶10km的吉普车.吉普车的油箱可装10升汽油。另外吉普车上可携带8个可装5升汽油的油桶,也就是说,吉普车最多可带50升汽油(最多能在沙漠中连续行驶500 km)。现假定在探险家出发地的汽油是无限充足的.问这位保险家应怎样设计他的旅行才能通过此沙漠?他要通过沙漠所需的汽油最少是多少升?为了穿越这片800km宽的沙漠,他总共需要行驶多少公里路程。总共要花费多少升的汽油?

思路:

1、若沙漠只有500公里或者更短,这时很简单,一次搞定。

2、若沙漠有550km,怎么办?需要保证的是:车到了离沙漠终点还有500km的地方,能恰恰加满油且不会有多余。方案可为:600-550=50,从起点处加5*3(升)=15升油,开出50km,设一加油站,存下5升,剩下5升刚好使得汽车返回起点。再在起点处加满50升油,到加油站时,只乘45升了,把存放在那儿的5升油加上。则可跑出沙漠。(这样共加油15+50=65,总路程为150+500=650km)

3、再看2的情况,符合这种情况的沙漠的最大距离是多少呢:答案是500*(1+1/3)公里。即在起点准备100升油,第一次装50升,跑了500/3公里后存放50*1/3升油,然后返回起点,这时车里的油也正好用完,然后再在起点处装50升,跑了550/3公里后,车内剩下(50*2/3)升油,再加上存放的50*1/3升油,恰好为50升油,则可跑出沙漠。

4。当沙漠的距离超过了500*(1+1/3)km(但又超过得不多)又当如何?这时我们可以把前面的500*(1+1/3)km看成一段整体,需要保证的是:在距离沙漠终点500*(1+1/3)km 处恰恰有100升油(由3的分析可知)。怎么来保证呢,我们假设沙漠的距离只比500*(1+1/3)多了1公里,因为汽车的容量是50升,所以100升油最少从起点运3次油才能满足。除了3次装油,还有两次折回,所以往返正好有5次,这5次能保证的距离是500/5,所以这时我们又把沙漠的距离延伸到了:500*(1+1/3+1/5),起点应该储备150升油。

5。当沙漠的距离超过了500*(1+1/3+1/5)km,要保证在距离沙漠终点500*(1+1/3+1/5)km的地方有150升油。

综上所述:总有某一个值k,使得

fdis=500*(1+1/3+1/5+…+1/(2k-1))<800,但500*(1+1/3+1/5+…+1/(2k-1)+1/(2k+1))>800,应该在起点准备多少油呢?这时多了一小段出来,按情形2的分析,在起点准备的油应当是:((800 - fdis)/油耗)*往返次数+ k*50。

经计算:fdis=766.66,k=3,故应准备的油应为:

((800 – 766.66)/10)*7 + 3*50=173.338。

第一章11题

如果你有一个3L的桶和5L的桶,问如何才能准确地称出4L的水?如果你要的不是4L而是别的数量,你又该怎么办?

解:准确称出4L水的方法:先把3L的桶装满水,倒入5L的桶中,再把3L的桶装满,又倒入5L的桶中直到倒满,此时3L的桶中还剩下1L;再将5L桶中的水倒掉,将3L桶中

剩下的1L倒入5L桶中,再用3L桶装满水倒入5L桶中即可得到4L水。

y∈)表示要的任意L的水,a表示得到y L水所要用到3L桶的次数,b 设y([0,8]

表示得到y L水所要用到5L桶的次数。则可以得到如下模型:

=+,a,b为整数。

35

y a b

例如1、y=1L时,a=2,b= -1,表示3L的桶用了两次装满,5L的桶用3L桶中的水装满一次并且倒掉。

2、y=2L时,a= -1,b=1。

3、y=3L时,a=1,b=0。

4、y=4L时,a=3,b= -1,表示3L的桶用了三次装满,5L的桶用3L桶中的水装满一次并且倒掉。

5、y=5L时,a=0,b=1。

6、y=6L时,a=2,b=0。(注,此时5L的桶有用来中间存贮)

7、y=7L时,a= -1,b=2。

8、y=8L时,a=1,b=1。

第一章第13题

第二章1题

第i 个前初的兔子对数为i f

011,1f f ==,2012f f f =+=,3213f f f =+=,4235f f f =+= 5438f f f =+=,64513f f f =+=,76521f f f =+=,86734f f f =+=

98755f f f =+=,108989f f f =+=,11109144f f f =+=(对)

(理解:第i 个月的兔子=第i-1个月的兔子+第i-2个月的兔子,12i i i f f f --=+) 第二章2题

这相当于一根棒的两端甲A ,乙B ,设初始位置甲A(0,0),棒长为R,乙的初始坐标为(D,0),顺时针运动,设甲的切向速度为v1,乙的径向速度为v2,则有转速w=v1/R,设x 轴正方向单位向量为i,y 正方向为j,则有乙的合速度为

v1*(i*cos(wt)+j*sin(wt))+V2*(j*cos (wt )-isin(wt)),即有乙坐标的参数方程为

x=D+[V1*cos(wt)-v2*sin (wt )]*t y=[V1*sin(wt)+v2*cos (wt )]*t, 这就是乙的运动路线了

第二章3题 最小二乘法

设y ax b =+,让总偏差最小,总偏差记为ε,()2

16

1

i

i

i y ax b ε==

-+????

∑,要求ε达到最小

()()()16

16

11

220i i i i i i i i y ax b x y ax b x a ε==?=-+?-=--+?=?????????∑∑ ()16

1

20i i i y ax b b ε=?=-+=?????∑

()161616

11116

16

16

2

1

1

1

1616i i i i i i i i i i

i i i y x y x a x y x ======-=

-∑∑∑∑∑∑,()

()16161616

2

1

1

1

1

2

16

16

2

1116i i i i i i i i i i i i i x y x y x b x x ======-=

??- ?

??

∑∑∑∑∑∑

16

1

12584123251284813377137081395014229146301488015288152991516815582158401620016728232566

i i

i y x

==++++++++++

+++++=∑

()

2

16

1

204492102521316216092220122500234092371624025243362464925281256002624426896378220

i

i x ==+++++++++

++++=∑()

2

16232566245815110.7194163782202458a ?-?=

=?-

()

2

24582325663782201511

16.073245816378220

b ?-?=

=--?

0.719416.073y x =-

数学建模2.10

将一张四条腿的方桌放在不平的地面上,桌子四条腿的连线呈长方形,不允许将

桌子移到别处,但允许其绕中心旋转,是否总能设法使其四条腿同时落地? 若桌子四条腿共圆,结果又如何? 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。 因此对于问题一和问题三我们都这样假设 (1)地面为连续曲面

(2)方桌的四条腿长度相同

(3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。 问题一

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,

腿到地

面的距离是不确定的。为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,

()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。由假设(1),()f θ,()g θ均

为θ的连续函数。又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:

已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有

00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。作()

()()h f g θθθ=-,

显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。

问题二

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。以圆桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、C 的初始位置在y 轴上,而B 、D 则在y 轴上。当方桌绕中心0旋转时,B 、D 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,我们令0'()f θ为A 、C 离地距离之

和,'()g θ为B 、D 离地距离之和,它们的值由θ唯一确定。由假设(1),0'()f θ,'()

g θ均为θ的连续函数。又由假设(3),三条腿总能同时着地, 故0'()f θ()g θ=0必成立(?θ)。不妨设'(0)0f =,'(0)0g >g (若'(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:

已知0'()f θ,'()g θ均为θ的连续函数,'(0)0f =,'(0)0g >且对任意θ有

00'()'()0f g θθ=,求证存在某一0θ,使00'()'()0f g θθ=。 证明:当θ=

2

ππ时,AC 与BD 互换位置,故'()02f π>,'()02g π

=。作

'()'()'()h f g θθθ=-,显然,'()h θ也是θ的连续函数,'(0)'(0)'(0)0h f g =-<而'()'()'()0222h f g πππ=->,由连续函数的取零值定理,存在0θ,002

π

θ<<,使得

0'()0h θ=,即00'()'()f g θθ=。又由于00'()'()0f g θθ=,故必有00'()'()0f g θθ==,证毕。

第二章第11题

一辆汽车停于 A 处并垂直于AB 方向,此汽车可转的最小圆半径为 R ,求不倒车而A 到B 的最短路径.(1)|AB|>2R,要求汽车到达B 点时停车方向与在A 点时的方向相同。(2)|AB|>=2R,汽车到达B 点时停车方向与A 点时的方向相反。 解:

(1) 若|AB|>2R ,且汽车要求到达B 点时方向与在A 点时方向相同

(2) 若|AB|>=2R 且要求汽车到达B 点时方向与A 点时方向相反

分别以半径R 作过A 点的圆O ,作过B 点的圆O ,再作两圆公切线CD 则

当CD 为0,即AB=2R 时,距离最短

第三章第二题

大气压强P 可用对海拔高度H 的变化率dp/dh 与p 成正比来建模,且位于海平面的压强为1013mbar ,位于海拔高度20km 的压强为90mbar 。

1.解初值问题

微分方程dp/dh=kp

初值条件p=p0,h=0

得到通过h表示p的表达式,根据海拔-压强的给定数据确定p0和k的值。

2.在海拔高度h=50km处大气压强是多少?

3.在海拔高度是多少公里处大气压强等于900mbar?

解:1 dp/dh=kp

dp/p=kdh

lnp=kh+c

根据题意解得:

C=6.9206,k=-0.1215

Lnp=-0.1215*h+6.9206

(2) 当h=50时,

解得p=2.329。

(3)当p=900时,

h=0.97KM。

第三章第3题

3..在某化学反应中,物质的数量随着时间的改变率与其当前的数量成正比。例如,δ-糖蛋白内酯变成葡萄糖酸,当时间t以小时为单位时,化学反应方程式是

.6y 0dt

dy

-=

如果当t=0时,有δ-糖蛋白内酯100g ,那么一小时后还剩下多少?

解:假设δ-糖蛋白内酯可以全部转变成葡萄糖酸,y 为当前 δ-糖蛋白内酯的量(y ≥0), t 为时间,由题意:

.6dt 0y

dy

.6y 0dt

dy

-=-=

两边积分,得c .6t 0y ln +-=

c .6t 0y +-=e

因此,c

t e +-=6.0y

由t=0时,y=100得出c=ln100

则100ln 6.0y +-=t e ,

所以,当t=1时,则

.

0100ln .60100y -+-==e e

即一小时后还剩下 δ-糖蛋白内酯g 100.6

0-e 。

第三章13题

为了鼓励采购100(单位)某货物的买主,商家销售部门用连续打折的办法促销,以购货数量x (单位)决定所售货物的单价()p x (即单价()p x 是购货数量的函数)。假定折扣降价速率为每单位降价0.01美元,又假设购买100(单位)该货物的单价是(100)20.09p =美元。

(1) 通过解如下问题求()p x :

微分方程:

1

100

dp p dx =- 初值条件:(100)20.09p =

(2) 求10(单位)该货物的单价(10)p 和90(单位)的单价(90)p 。

(3) 商家的收入是用()()r x xp x =来计算的。如果销售部门问你:这样打折扣是否

会出现如下情况,即售出100(单位)的货物的收入比售出90(单位)货物的收入还要少,你会怎么回答他们。

(4) 试证明:当100x =时商家的收入r 达到最大。

解答:(1)由微分方程可得方程为100

()x p x ce -=,再由初值条件,可得54.61c ≈。

所以求得方程为100

p(x)=54.61e

x

-。

(2)当为10单位时,即x=10,所以p(10)=

110

54.61e

;当为90单位时,p(90)=

910

54.61e

(3)当售出90(单位)时r(90)=90p(90)=90

910

54.61e

;

当售出100(单位)时p(100)=100p(100)= 100

110

54.61e

由计算可知,(90)(100)r r <。所以不会出现售出100(单位)的货物的收入比

售出90(单位)货物的收入还要少的情况。

我的回答:不会出现售出100(单位)的货物的收入比售出90(单位)货物的收入还要少的情况,但是即使会有这样的情况,这样虽然从某种意义上来看,我们公司在当售出100(单位)的货物相对于售出90(单位)货物要赚的少,有损于我公司,但是我们的促销方法便是如此,商家以诚信为本,我们不会因为有这样的情况来改变我们的促销方式,来欺骗各位商家销售部门。

(4)令100

10054.61'()54.610100

x x

r x e

xe --=-=,解得x=100; 再将x=100代入''()r x 得1

10010054.6154.6154.61''()05010000100

x x

r x e xe e ---=-+=-<,故当x=100时()r x 取到最大值,即r(100) = 100

1

10

54.61e

= 4941.3171399778。

第五章1题

模型假设:某工厂每天生产A 产品x 个,B 产品y 个,获利为z 元。 模型建立:

y 0.15x 0.3 z max *+*=

??

?

??≤+≤≤≤≤1000120006000y x y x 模型求解:得到结果?

?

?==400600

y x ,24040015.06003.0=*+*=z 结论:该厂应该生产A 产品600件,每天生产B 产品400个才能得到最大的利润,最大的利润为240元。

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学模型第三版课后习题答案.doc

《数学模型》作业解答 第七章( 2008 年 12 月 4 日) 1.对于节蛛网模型讨论下列问题: ( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取

决于 y k ,给出稳定平衡的条件,并与节的结果进行比较 . ( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格 析稳定平衡的条件是否还会放宽 . 解:( 1)由题设条件可得需求函数、供应函数分别为: y k 1 f x k 1 x k ) ( 2 x k 1 h( y k ) 在 P 0 (x 0 , y 0 ) 点附近用直线来近似曲线 f , h ,得到 y k 1 y 0 ( x k 1 x k x 0 ), 2 x k 1 x 0 ( y k y 0 ) , 由( 2)得 x k 2 x 0 ( y k 1 y 0 ) ( 1)代入( 3)得 x k 2 x 0 ( x k 1x k x 0 ) 2 2x k 2 x k 1 x k 2x 0 2 x 0 对应齐次方程的特征方程为 2 2 ( ) 2 8 特征根为 1, 2 4 y k 和 y k 1 确定 . 试分 (1) ( 2) (3) 当 8 时,则有特征根在单位圆外,设 8 ,则

1,2 ( ) 2 ( ) 2 8 42 2 4 1,2 1 2 即平衡稳定的条件为 2与 P 207 的结果一致 . ( 2)此时需求函数、供应函数在 P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为: y k 1 y 0 ( x k 1 x k x 0 ), ( 4) 2 x k 1 x 0 ( y k y k 1 y 0 ) , ( 5) 2 由( 5)得, (x x 0 ) β(y y y k 1 y 0 ) ( 6 ) 2 k 3 k 2 将( 4)代入( 6),得 2( x k 3 x 0 ) ( x k 2 x k 1 x 0 ) ( x k 1 x k x 0 ) 2 2 4 x k 3x k 2 2 x k 1 x k 4 x 0 4 x 0 对应齐次方程的特征方程为 4 3 2 2 0 (7) 代数方程( 7 )无正实根,且 αβ , , 2 4 不是( 7)的根 . 设( 7)的三个非零根分 别为 1, 2, 3,则 1 2 3 4 1 2 2 3 3 1 2 1 2 3 4 对( 7)作变换: , 则 12 3 q 0, p 其中 p 1 (2 2 2 ), q 1(833 2 2 ) 4 12 4 123 6

数学建模试题(带答案)四

数学建模部分课后习题解答 1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况), 即从数学角度来看,地面是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间 距和椅腿的长度而言,地面是相对平坦的。因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。 其次,把椅脚是否着地用数学形式表示出来。当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD 是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 和B,D 对换了。因此,记A ,B 两脚与地面竖直距离之和为)(θf ,C,D 两脚之和为)(θg ,其中[] πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。 如果)0(与) 0(g f 不同时为零,不妨设.0)0(,0)0(=>g f 这时,将长方形ABCD 绕点

数学建模期末考试A试的题目与答案

华南农业大学期末考试试卷(A 卷) 2012-2013学年第 二 学期 考试科目:数学建模 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一篮白菜从河岸一边带到河岸对面,由于船的限制,一次只能带 一样东西过河,绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起,怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1,2,3,4,当i 在此岸时记x i = 1,否则为0;此岸的状态下用s =(x 1,x 2,x 3,x 4)表示。该问题中决策为乘船方案,记为d = (u 1, u 2, u 3, u 4),当i 在船上时记u i = 1,否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊,然后回来,带狼过河,然后把羊带回来,放下羊,带白菜过去,然后再回来把羊带过去。 ?或: 人先带羊过河,然后自己回来,带白菜过去,放下白菜,带着羊回来,然后放下羊,把狼带过去,最后再回转来,带羊过去。 (12分) 1、 二、(满分12分) 在举重比赛中,运动员在高度和体重方面差别很大,请就下面两种假设,建立一个举重能力和体重之间关系的模型: (1) 假设肌肉的强度和其横截面的面积成比例。6分 (2) 假定体重中有一部分是与成年人的尺寸无关,请给出一个改进模型。6分 解:设体重w (千克)与举重成绩y (千克) (1) 由于肌肉强度(I)与其横截面积(S)成比例,所以 y ?I ?S 设h 为个人身高,又横截面积正比于身高的平方,则S ? h 2 再体重正比于身高的三次方,则w ? h 3 (6分) ( 12分) 14分) 某学校规定,运筹学专业的学生毕业时必须至少学

数学建模习题

4 美术馆悬挂着一副高h 的画,画的下边比一个观众的眼睛高d ,这个观众站在距离墙多 远的距离才是最佳视角? 假设:人与墙的距离为x x d = αtan x h d += +)tan(βα ))tan((tan αβαβ-+= α βαα βαt a n )t a n (1t a n )t a n (?++-+= x h d x d x h +?+= 1 x h d d x h )(+?+ = ∵ab b a 2≥+ 当b a =时 ab b a 2=+ ∴) (2tan h d d h +?= β

8. 细菌生长繁殖速度之快、以及数量之大是难以琢磨的.而有些细菌是有益的、更多 的是疾病之源.下面记录了某种细菌的繁殖数据,研究: (1)开始时细菌的个数是多少? (2)如果细菌以过去的速度继续增长,一个月后细菌的个数是多少? 细菌繁殖过程记录数据表1-2 假设:(1),一个月是30天,天数为x,开始时细菌的个数为k。 (2),细菌的生长环境(包括温度,湿度,空气含量等)保持不变;细菌在生长过程中没有大量死亡的特殊情况; x (1) y* e k 由上表公式得出开始时细菌的个数约是401个 带入公式(1)算出一个月后细菌的个数:

30 0.1969456 * y 401.573190 * 82 e 得出一个月后细菌的个数约是65266个。

2. 在超市购物时你注意到大包装商品比小包装商品便宜这种想象了吗.比如洁银牙膏50克装的每支1.50元,120克装的每支3.00元,二者单位的重量的价格比是1.2:1,试用比例方法构造模型解释这个现象. (1)分析商品的价格C 与商品重量W 的关系.价格由生产成本、包装成本和其它成本等决定,这些成本中有的与重量W 成正比,有的与表面积成正比,还有与W 无关的因素。 (2)给出单位重量价格C 与W 的关系。画出它的简图,说明W 越大C 越小,但是随着W 的增加C 减小的程度变小。解释实际意义是什么。 (1) 假设:商品几何相似相对长度为L ,质量为W ,体积为V ,表面积为S 。 因为:生产成本与重量W 成正比,与体积V 成正比,与长度3 L 成正比。 包装成本与表面积S 成正比,与长度2 L 成正比,与体积32V 成正比,与重量3 2W 成正比。 所以:33 221k w k w k C ++= 又∵w C c = ∴133 121--++=w k w k k c ( 321,,k k k 为大于零的常数) (2) 单位重量价格: w c C = ∵ 2 334 23 1----='w k w k c >0 3337 229 4 --+=''w k w k c >0 ∴图像为单调递减且上凹。

最新数学建模习题答案资料

数学建模部分课后习题解答 中国地质大学 能源学院 华文静 1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况), 即从数学角度来看,地面是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间 距和椅腿的长度而言,地面是相对平坦的。因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。 其次,把椅脚是否着地用数学形式表示出来。当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD 是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 和B,D 对换了。因此,记A ,B 两脚与地面竖直距离之和为)(θf ,C,D 两脚之和为 )(θg ,其中[]πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。

数学建模试题

2012-2013第一学期 《数学建模》试题卷 班级:2010级 统计 姓名:石光顺 学号:20101004025 成绩: 一、用Matlab 求解以下优化问题(10分) 用Matlab 求解下列线性规划问题: 解:首先化Matlab 标准型,即 123121114123x x x ?? -??????≤??????---???? ???? , 然后编写Matlab 程序如下: f=[-3,1,1]; a=[1,-2,1;4,-1,-2]; b=[11,-3]; aeq=[-2,0,3]; beq=1; [x,y]=linprog(f,a,b,aeq,beq,zeros(3,1)); x,y=-y 运行结果: x = 0.0000 2.3333 0.3333 y = -2.6667 即当1230, 2.3333,0.3333x x x ===时,max 2.6667z =-。 二、求解以下问题,列出模型并使用Matlab 求解(20分) 某厂生产三种产品I ,II ,III 。每种产品要经过A , B 两道工序加工。设该厂有两种规格的设备能完成A 工序,它们以A 1, A 2表示;有三种规格的设备能完

成B工序,它们以B1, B2, B3表示。产品I可在A, B任何一种规格设备上加工。产品II可在任何规格的A设备上加工,但完成B工序时,只能在B1设备上加工;产品III 只能在A2与B2设备上加工。已知在各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床设备的费用如表1,求安排最优的生产计划,使该厂利润最大。 表1 解:(1)根据题意列出所有可能生产产品I、II、III的工序组合形式,并作如下假设: 按(A1,B1)组合生产产品I,设其产量为 x ; 1 按(A1,B2)组合生产产品I,设其产量为 x; 2 按(A1,B3)组合生产产品I,设其产量为 x; 3 按(A2,B1)组合生产产品I,设其产量为 x; 4 按(A2,B2)组合生产产品I,设其产量为 x; 5 按(A2,B3)组合生产产品I,设其产量为 x; 6 按(A1,B1)组合生产产品II,设其产量为 x; 7 按(A2,B1)组合生产产品II,设其产量为 x; 8 按(A2,B2)组合生产产品III,设其产量为 x; 9 则目标函数为: 约束条件为: 目标函数整理得: (2)用Matlb程序求解目标函数,编写程序如下: f=[-0.37;-0.31;-0.40;-0.34;-0.34;-0.43;-0.65;-0.86;-0.68]; a=[5,5,5,0,0,0,10,0,0 0,0,0,7,7,7,0,9,12 6,0,0,6,0,0,8,8,0 0,4,0,0,4,0,0,0,11 0,0,7,0,0,7,0,0,0]; b=[6000;10000;4000;7000;4000]; [x,y]=linprog(f,a,b,[],[],zeros(9,1)); x,y=-y 输出结果为:

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

数学建模习题及答案课后习题

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学建模例题及解析

。 例1差分方程—-资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a。明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为.所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2)这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A.即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难.然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银(3)表示N=60,x=1200给定时0 A。例如,若R=0.01,则由(3)可算得行的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。 例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

D数学建模试题

D数学建模试题 Hessen was revised in January 2021

2004高教社杯全国大学生数学建模竞赛题目 (请先阅读“对论文格式的统一要求”) D题公务员招聘 我国公务员制度已实施多年,1993年10月1日颁布施行的《国家公务员暂行条例》规定:“国家行政机关录用担任主任科员以下的非领导职务的国家公务员,采用公开考试、严格考核的办法,按照德才兼备的标准择优录用”。目前, 我国招聘公务员的程序一般分三步进行:公开考试(笔试)、面试考核、择优录取。 现有某市直属单位因工作需要,拟向社会公开招聘8名公务员,具体的招聘办法和程序如下: (一)公开考试:凡是年龄不超过30周岁,大学专科以上学历,身体健康者均可报名参加考试,考试科目有:综合基础知识、专业知识和“行政职业能力测验”三个部分,每科满分为100分。根据考试总分的高低排序按1:2的比例(共16人)选择进入第二阶段的面试考核。 (二)面试考核:面试考核主要考核应聘人员的知识面、对问题的理解能力、应变能力、表达能力等综合素质。按照一定的标准,面试专家组对每个应聘人员的各个方面都给出一个等级评分,从高到低分成A/B/C/D四个等级,具体结果见表1所示。 (三)由招聘领导小组综合专家组的意见、笔初试成绩以及各用人部门需求确定录用名单,并分配到各用人部门。 该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。这7个部门按工作性质可分为四类:(1)行政管理、 (2)技术管理、(3)行政执法、(4)公共事业。见表2所示。 招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布(见表2)。每一位参加面试人员都可以申报两个自己的工作类别志愿(见表1)。请研究下列问题: (1)如果不考虑应聘人员的意愿,择优按需录用,试帮助招聘领导小组设计一种录用分配方案; (2)在考虑应聘人员意愿和用人部门的希望要求的情况下,请你帮助招聘领导小组设计一种分配方案; (3)你的方法对于一般情况,即N个应聘人员M个用人单位时,是否可行 (4) 你对上述招聘公务员过程认为还有哪些地方值得改进,给出你的建议。 表1:招聘公务员笔试成绩,专家面试评分及个人志愿

数学建模典型例题

一、人体重变化 某人得食量就是10467焦/天,最基本新陈代谢要自动消耗其中得5038焦/天。每天得体育运动消耗热量大约就是69焦/(千克?天)乘以她得体重(千克)。假设以脂肪形式贮存得热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化得规律. 一、问题分析 人体重W(t)随时间t变化就是由于消耗量与吸收量得差值所引起得,假设人体重随时间得变化就是连续变化过程,因此可以通过研究在△t时间内体重W得变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存得热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重得变化就是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重得变化量为W(t+△t)—W(t); 身体一天内得热量得剩余为(10467—5038-69*W(t)) 将其乘以△t即为一小段时间内剩下得热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467—5038-69*W(t))dt; 四、模型求解 d(5429—69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即:

W(t)=5429/69—(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间得最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i得开始买进汽车并在年j得开始卖出汽车,将有净成本aij(购入价减去折旧加上运营与维修成本).以千元计数aij得由下面得表给出: 请寻找什么时间买进与卖出汽车得最便宜得策略。 二、问题分析 本问题就是寻找成本最低得投资策略,可视为寻找最短路径问题.因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本得投资策略。 三、条件假设 除购入价折旧以及运营与维护成本外无其她费用; 四、模型建立 二 5 11 7 三6 4

数学建模知识竞赛题库

数学建模知识竞赛题库 1.请问计算机中的二进制源于我国古代的哪部经典? D A.《墨经》 B.《诗经》 C.《周书》 D.《周易》 2.世界上面积最大的高原是?D A.青藏高原 B.帕米尔高原 C.黄土高原 D.巴西高原 3.我国海洋国土面积约有多少万平方公里? B A.200 B.300 C.280 D.340 4.世界上面值最高的邮票是匈牙利五百亿彭哥,它的图案是B A.猫 B.飞鸽 C.海鸥 D.鹰 5. 龙虾是我们的一种美食、你知道它体内的血是什么颜色的吗?B A.红色 B.蓝色 C.灰色 D.绿色 6.MATLAB使用三维向量[R G B]来表示一种颜色,则黑色为(D ) A. [1 0 1] B. [1 1 1] C. [0 0 1] D. [0 0 0] 7.秦始皇之后,有几个朝代对长城进行了修葺? A A.7个 B.8个 C.9个 D.10个 8.中国历史上历时最长的朝代是?A A.周朝 B.汉朝 C.唐朝 D.宋朝 9我国第一个获得世界冠军的是谁?C A 吴传玉 B 郑凤荣 C 荣国团 D 陈镜开 10.我国最早在奥运会上获得金牌的是哪位运动员?B A.李宁 B.许海峰 C.高凤莲 D.吴佳怩

11.围棋共有多少个棋子?B A.360 B.361 C.362 D.365 12下列属于物理模型的是:A A水箱中的舰艇 B分子结构图 C火箭模型 D电路图 13名言:生命在于运动是谁说的?C A.车尔尼夫斯基 B.普希金 C.伏尔泰 D.契诃夫 14.饱食后不宜剧烈运动是因为B A.会得阑尾炎 B.有障消化 C.导致神经衰弱 D.呕吐 15、MATLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。 A.行 B.列 C.对角线 D.左上角16红军长征中,哪次战役最突出反应毛泽东的军事思想和指挥才?A A.四渡赤水B.抢渡大渡河C.飞夺泸定桥D.直罗镇战役 17色盲患者最普遍的不易分辨的颜色是什么?A A.红绿 B.蓝绿 C.红蓝 D.绿蓝 18下列哪种症状是没有理由遗传的? A.精神分裂症 B.近视 C.糖尿病 D.口吃 19下面哪个变量是正无穷大变量?(A )

数学建模模拟试题及答案.pdf

数学建模模拟试题及答案 一、填空题(每题5分,共20分) 1. 若,, x z z y ∝∝则y 与x 的函数关系是. 2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 . 3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型. 二、分析判断题(每小题15分,满分30分) 1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种. 2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是 ),m l /m g (100/56 又过两个小时,含量降为),m l /m g (100/40试判断,当事故发生时,司 机是否违反了酒精含量的规定(不超过80/100)m l /m g (. (提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ?+内酒精浓度的改变量为 t t kC t C t t C ??=??+)()()( 其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分) 1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答: (1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.

数学建模小题库

数学模型选修课考查题 1、某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿。次日早8:00沿同一路径下山,下午5:00回到旅店。某乙说,甲必在两天中的同一时刻经过路径中的同一地点。为什么? 2、如图,用宽ω的布条缠绕直径d 的圆柱形管 道,要求布条不重叠,问布条与管道轴线的夹 角α应多大?若知道管道长度l ,需用多长布 条(可考虑两端的影响)?如果管道是其它形 状(如截面是6边形,椭圆等等)呢? 3、建立不允许缺货的生产销售存贮模型。设生产速率为常数k ,销售速率为常数r ,k r <。在每个生产周期T 内,开始的一段时间(00t T <<)一边生产一边销售,后 来的一段时间(0T t T <<)只销售不生产,画出贮存量()q t 的图形。设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期。 讨论k r 和k r ≈的情况。 4、某公司将4种不同含硫量的液体原料(分别记为甲、乙、丙、丁)混合生产两种产品(分别记为A ,B )。按照生产工艺的要求,原料甲、乙、丁必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A ,B 。已知原料甲、乙、丙、丁的含硫量分别是3,1,2,1(%),进货价格分别为6,16,10,15(千元/吨);产品A ,B 的含硫量分别不能超过2.5,1.5(%),售价分别为9,15(千元/吨)。根据市场信息,原料甲、乙、丙的供应没有限制,原料丁的供应量最多为50吨;产品A ,B 的市场需求量分别为100吨、200吨。问应如何安排生产? 5、用层次分析法解决一个实际问题,可参考下列问题: (1) 学校评选优秀学生或优秀班级,试给出若干准则,构造层次结构模型。可分 为相对评价和绝对评价两种情况讨论。 (2) 你要购置一台个人电脑,考虑功能、价格等的因素,如何做出决策。 (3) 为大学毕业的青年建立一个选择志愿的层次结构模型。 (4) 你的家乡准备集资兴办一座小型饲养场,是养猪,还是养鸡、养鸭、养兔……

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

数学建模课后习题答案

第一章 课后习题6. 利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ(1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ(2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---= 1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dt dz t 解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。 第二章 1.用 2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种

数学建模习题答案

数学建模习题答案

数学建模部分课后习题解答 中国地质大学能源学院华文静 1.在稳定的椅子问题中,如设椅子的四脚连 线呈长方形,结论如何? 解: 模型假设 (1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3)椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选

择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角) 0(πθθ≤≤表示出椅子绕点O 旋转θ后的位

相关文档
最新文档