[农学]第三章 常用概率分布

概率论中几种具有可加性的分布及其关系

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1几种常见的具有可加性的分布 (1) 二项分布 (2) 泊松分布(Possion分布) (3) 正态分布 (4) 伽玛分布 (6) 柯西分布 (7) 卡方分布 (7) 2具有可加性的概率分布间的关系 (8) 二项分布的泊松近似 (8) 二项分布的正态近似 (9) 正态分布与泊松分布间的关系 (10) 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3小结 (12) 参考文献 (12) 致谢 (13)

概率论中几种具有可加性的分布及其关系 摘要概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词概率分布可加性相互独立特征函数 SeveralKindsofProbabilityDstributionanditsRelationshipwithAdd itive 'scentrallimittheorem,andsoon,hascarriedonthedifferentlevelsofdiscussion. KeyWords probabilitydistributionadditivitypropertymutualindependencecharacteristicfunction 引言概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式设离散型随机变量ξζ,彼此独立,且它们的分布列分别是 n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示为 ②连续场合的卷积公式设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是 )(),(y f x f ξζ,则它们的和ξζ?+=的密度函数如下 其证明如下: ξζ?+=的分布函数是dxdy y f x f z f z F z y x )()()()(ξζ?ξζ??≤+= ≤+= 其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζ?+=的密度函数:

大学概率论与数理统计复习资料

第一章 随机事件及其概率 知识点:概率的性质 事件运算 古典概率 事件的独立性 条件概率 全概率与贝叶斯公式 常用公式 ) ()()()()()2(加法定理AB P B P A P B A P -+= ) ,,() ()(211 1 有限可加性两两互斥设n n i i n i i A A A A P A P ∑===) ,(0 )()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==) ()()()()5(AB P A P B A P B A P -==-) () ()()()(时当A B B P A P B A P B A P ?-==-))0(,,()()/()()()6(211 >Ω=∑=i n n i i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ) ,,()] (1[1)(211 1 相互独立时n n i i n i i A A A A P A P ∏==--=) /()()/()()()4(B A P B P A B P A P AB P ==) (/)()/()3(A P AB P A B P =) () /()() /()()/()7(1 逆概率公式∑== n i i i i i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P n r A P ==

应用举例 1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。 2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。 3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。 4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P ( )。 5、,,A B C 是三个随机事件,C B ?,事件()A C B - 与A 的关系是( )。 6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。 某日他抛一枚硬币决定乘地铁还是乘汽车。 (1)试求他在5:40~5:50到家的概率; (2)结果他是5:47到家的。试求他是乘地铁回家的概率。 解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的}, i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有 )|()()|()()(2221212A B P A P A B P A P B P += 由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P 35.05.03.04.05.0)(2=?+?=B P (2)由贝叶斯公式 7 4 35.04.05.0)()()|(22121=?== B P B A P B A P 8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛 后仍放回盒中,求:第三次比赛时取到3个新球的概率。 看作业习题1: 4, 9, 11, 15, 16

常用的概率分布类型其特征

常用的概率分布类型及其特征 3.1 二点分布和均匀分布 1、两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取0和1。它服从的分布称两点分布。 其概率分布为: 其中 Pk=P(X=Xk),表示X取Xk值的概率: 0≤P≤1。 X的期望 E(X)=P X的方差 D(X)=P(1—P) 2、均匀分布 如果连续随机变量X的概率密度函数f(x)在有限的区间[a,b]上等于一

个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E(X)=(a+b)/2 X的方差 D(X)=(b-a)2/12 3.2 抽样检验中应用的分布 3.2.1 超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0,1,…… X的期望 E(X)=nd/N

X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2)3.2.2 二项分布 超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: 0

【免费下载】概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X 、Y 分别表示甲乙命中的次数,求(X,Y )联合分布律。2.袋中有两只白球,两只红球,从中任取两只以X 、Y 表示其中黑球、白球的数目,求(X,Y )联合分布律。3.设,且P{}=1,求()的X 1=(?1011/41/21/4) X 2=(011/21/2)X 1X 2=0X 1,X 2联合分布律,并指出是否独立。 X 1,X 24.设随机变量X 的分布律为Y=,求(X,Y )联合分布律。X 2X Y 01

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 5.设(X,Y )的概率分布为 且事件{X=0}与{X+Y=1}独立求a ,b 。6. 设某班车起点上车人数X 服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 (1)C 的值 (2), (3)P{X+Y ≤1}并判别X 与Y 是否独立。f z (x)f Y (y)9.设f(x,y)= 为(X,Y )的密度函数,求{10 |y |1/2|Y>0}(2) f Y|X (y|x ), f X|Y (x|y )10. 设f(x,y)= 为(X,Y )的密度函数,求 {12x 2y 0 1x ≤y ≤x,x ≥1 其它 f X|Y (x|y )11. 设f(x,y)= 为(X,Y )的密度函数,求的联合分布 {4xy 0 0≤x ≤1,0≤y ≤1 其它 (X,Y )

几种常见的概率分布复习过程

几种常见的概率分布 一、 离散型概率分布 1. 二项分布 n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数: (Y)np X E μ== 方差与标准差:2(1)X np P σ=- ;X σ=特例:(0-1)分布 若随机变量X 的分布律为 1(x k)p (1p)k k p -==- k=0,1;0

复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票 二、 连续型概率分布 1. 均匀分布 若随机变量X 具有概率密度函数 (x)f = 则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b) 在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为 0F(x),1 x a x a a x b b a b x ? 是常数, 则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为 1,0(x)0,0 x e x F x λ-?-≥=?

第三章 概率与概率分布习题及答案

第三章概率、概率分布与抽样分布 计算题: 1.某种零件加工必须依次经过三道工序,从已往大量的生产记录得知,第一、二、三道工序的次品率分别为0.2,0.1,0.1,并且每道工序是否产生次品与其它工序无关。试求这种零件的次品率。 2. 某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。求该选手两发都脱靶的概率。 3. 某企业决策人考虑是否采用一种新的生产管理流程。据对同行的调查得知,采用新生产管理流程后产品优质率达95%的占四成,优质率维持在原来水平(即80%)的占六成。该企业利用新的生产管理流程进行一次试验,所生产5件产品全部达到优质。问该企业决策者会倾向于如何决策? 4. 一家人寿保险公司某险种的投保人数有20000人,据测算被保险人一年中的死亡率为万分之5。保险费每人50元。若一年中死亡,则保险公司赔付保险金额50000元。试求未来一年该保险公司将在该项保险中(这里不考虑保险公司的其它费用):(1)至少获利50万元的概率;(2)亏本的概率;(3)支付保险金额的均值和标准差。

5. 某企业生产的某种电池寿命近似服从正态分布,且均值为200小时,标准差为30小时。若规定寿命低于150小时为不合格品。试求该企业生产的电池的:(1)合格率是多少?(2)电池寿命在200左右多大的范围内的概率不小于0.9。 6. 某商场某销售区域有6种商品。假如每1小时内每种商品需要12分钟时间的咨询服务,而且每种商品是否需要咨询服务是相互独立的。求:(1)在同一时刻需用咨询的商品种数的最可能值是多少?(2)若该销售区域仅配有2名服务员,则因服务员不足而不能提供咨询服务的概率是多少? 7. 美国汽车联合会(AAA)是一个拥有90个俱乐部的非营利联盟,它对其成员提供旅行、金融、保险以及与汽车相关的各项服务。1999年5月,AAA通过对会员调查得知一个4口之家出游中平均每日餐饮和住宿费用大约是213美元(《旅行新闻》Travel News,1999年5月11日)。假设这个花费的标准差是15美元,并且AAA所报道的平均每日消费是总体均值。又假设选取49个4口之家,并对其在1999年6月期间的旅行费用进行记录。⑴ 描述x(样本家庭平均每日餐饮和住宿的消费)的抽样分布。特别说明x服从怎样 的分布以及x的均值和方差是什么?证明你的回答;⑵对于样本家庭来说平均每日消费大于213美元的概率是什么?大于217美元的概率呢?在209美元和217美元之间的概率呢? 解:a. 正态分布, 213, 4.5918 b. 0.5, 0.031, 0.938

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

第三章 概率与概率分布习题及答案教学提纲

第三章概率与概率分布习题及答案

第三章概率、概率分布与抽样分布 计算题: 1.某种零件加工必须依次经过三道工序,从已往大量的生产记录得知,第一、 二、三道工序的次品率分别为0.2,0.1,0.1,并且每道工序是否产生次品与其它工序无关。试求这种零件的次品率。 2. 某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。求该选手两发都脱靶的概率。 3. 某企业决策人考虑是否采用一种新的生产管理流程。据对同行的调查得知,采用新生产管理流程后产品优质率达95%的占四成,优质率维持在原来水平(即80%)的占六成。该企业利用新的生产管理流程进行一次试验,所生产5件产品全部达到优质。问该企业决策者会倾向于如何决策?

4. 一家人寿保险公司某险种的投保人数有20000人,据测算被保险人一年中的死亡率为万分之5。保险费每人50元。若一年中死亡,则保险公司赔付保险金额50000元。试求未来一年该保险公司将在该项保险中(这里不考虑保险公司的其它费用):(1)至少获利50万元的概率;(2)亏本的概率;(3)支付保险金额的均值和标准差。 5. 某企业生产的某种电池寿命近似服从正态分布,且均值为200小时,标准差为30小时。若规定寿命低于150小时为不合格品。试求该企业生产的电池的:(1)合格率是多少?(2)电池寿命在200左右多大的范围内的概率不小于0.9。

6. 某商场某销售区域有6种商品。假如每1小时内每种商品需要12分钟时间的咨询服务,而且每种商品是否需要咨询服务是相互独立的。求:(1)在同一时刻需用咨询的商品种数的最可能值是多少?(2)若该销售区域仅配有2名服务员,则因服务员不足而不能提供咨询服务的概率是多少? 7. 美国汽车联合会(AAA)是一个拥有90个俱乐部的非营利联盟,它对其成员提供旅行、金融、保险以及与汽车相关的各项服务。1999年5月,AAA通过对会员调查得知一个4口之家出游中平均每日餐饮和住宿费用大约是213美元(《旅行新闻》Travel News,1999年5月11日)。假设这个花费的标准差是15美元,并且AAA所报道的平均每日消费是总体均值。又假设选取49个4口之家,并对其在1999年6月期间的旅行费用进行记录。⑴ 描述x(样本家庭平均每日餐饮和住宿的消费)的抽样分布。特别说明x服从怎样 的分布以及x的均值和方差是什么?证明你的回答;⑵对于样本家庭来说平均每日消费大于213美元的概率是什么?大于217美元的概率呢?在209美元和217美元之间的概率呢? 解: a. 正态分布, 213, 4.5918 b. 0.5, 0.031, 0.938

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

考研数学概率论重要知识点梳理

2017考研数学:概率论重要知识点梳理 来源:文都图书 概率论在历年考研数学真题中特点比较明显。概率论与数理统计对计算技巧的要求低一些,一些题目,尤其是文字叙述题要求考生有比较强的分析问题的能力。所以考生应在这门中尽量做到那全分,这样才能保证数学的分数,下面我们整理了一些概率论的重要知识点: 第一部分:随机事件和概率 (1)样本空间与随机事件 (2)概率的定义与性质(含古典概型、几何概型、加法公式) (3)条件概率与概率的乘法公式 (4)事件之间的关系与运算(含事件的独立性) (5)全概公式与贝叶斯公式 (6)伯努利概型 其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,考生务必引起重视, 第二部分:随机变量及其概率分布 (1)随机变量的概念及分类 (2)离散型随机变量概率分布及其性质 (3)连续型随机变量概率密度及其性质 (4)随机变量分布函数及其性质 (5)常见分布 (6)随机变量函数的分布 其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。 第三部分:二维随机变量及其概率分布 (1)多维随机变量的概念及分类 (2)二维离散型随机变量联合概率分布及其性质 (3)二维连续型随机变量联合概率密度及其性质

(4)二维随机变量联合分布函数及其性质 (5)二维随机变量的边缘分布和条件分布 (6)随机变量的独立性 (7)两个随机变量的简单函数的分布 其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视! 第四部分:随机变量的数字特征 (1)随机变量的数字期望的概念与性质 (2)随机变量的方差的概念与性质 (3)常见分布的数字期望与方差 (4)随机变量矩、协方差和相关系数 其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算 第五部分:大数定律和中心极限定理 (1)切比雪夫不等式 (2)大数定律 (3)中心极限定理 其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。 第六部分:数理统计的基本概念 (1)总体与样本 (2)样本函数与统计量 (3)样本分布函数和样本矩 其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下 第七部分:参数估计 (1)点估计 (2)估计量的优良性 (3)区间估计

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- g g g g 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12(34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k (1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<}; (4)求P{X+Y≤4}. 【解】(1)由性质有

常用分布概率计算的Excel应用

上机实习常用分布概率计算的Excel应用利用Excel中的统计函数工具,可以计算二项分布、泊松分布、正态分布等常用概率分布的概率值、累积(分布)概率等。这里我们主要介绍如何用Excel来计算二项分布的概率值与累积概率,其他常用分布的概率计算等处理与此类似。 §3.1 二项分布的概率计算 一、二项分布的(累积)概率值计算 用Excel来计算二项分布的概率值P n(k)、累积概率F n(k),需要用BINOMDIST函数,其格式为: BINOMDIST (number_s,trials, probability_s, cumulative) 其中 number_s:试验成功的次数k; trials:独立试验的总次数n; probability_s:一次试验中成功的概率p; cumulative:为一逻辑值,若取0或FALSE时,计算概率值P n(k);若取1 或TRUE时,则计算累积概率F n(k),。 即对二项分布B(n,p)的概率值P n(k)和累积概率F n(k),有 P n(k)=BINOMDIST(k,n,p,0);F n(k)= BINOMDIST(k,n,p,1) 现结合下列机床维修问题的概率计算来稀疏现象(小概率事件)发生次数说明计算二项分布概率的具体步骤。 例3.1某车间有各自独立运行的机床若干台,设每台机床发生故障的概率为0.01,每台机床的故障需要一名维修工来排除,试求在下列两种情形下机床发生故障而得不到及时维修的概率: (1)一人负责15台机床的维修; (2)3人共同负责80台机床的维修。 原解:(1)依题意,维修人员是否能及时维修机床,取决于同一时刻发生故障的机床数。 设X表示15台机床中同一时刻发生故障的台数,则X服从n=15,p=0.01的二项分布: X~B(15,0.01), 而 P(X= k)= C15k(0.01)k(0.99)15-k,k = 0, 1, …, 15 故所求概率为 P(X≥2)=1-P(X≤1)=1-P(X=0)-P(X=1) =1-(0.99)15-15×0.01×(0.99)14 =1-0.8600-0.1303=0.0097 (2)当3人共同负责80台机床的维修时,设Y表示80台机床中同一时刻发生故障的台数,则Y服从n=80、p=0.01的二项分布,即 Y~B(80,0.01) 此时因为 n=80≥30, p=0.01≤0.2 所以可以利用泊松近似公式:当n很大,p较小时(一般只要n≥30,p≤0.2时),对任一确定的k,有(其中 =np)

概率论与数理统计习题及答案 第三章

《概率论与数理统计》习题及答案 第 三 章 1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。 解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以 1 1()(1)(1),2,3,.k k P X k p p p p k --==-+-=L 2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个 数X 的分布列。 解 从a b +个球中任取r 个球共有r a b C +种取法,r 个球中有k 个黑球的取法有k r k b a C C -,所以X 的分布列为 ()k r k b a r a b C C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+L , 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。 3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1 (1,2,3)1 i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。 解 设i A =‘第i 个零件是合格品’1,2,3i =。则 1231111 (0)()23424 P X P A A A === ??= , 123123123(1)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1111211136 23423423424 = ??+??+??= , 123123123(2)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424 = ??+???+??=,

第5、6章习题常用的概率分布

常用的概率分布 一、正态分布 概率密度函数:22 2)(21)(σμπσ--=x e x f 正态分布曲线的特点:在μ=x 处最高,两个参数(σμ,),曲线下面积等于1。 正态分布的应用:确定正常值范围 二、二项分布 概念:服从伯努力试验序列的试验,在n 次实验中发生阳性结果的次数为x 次的概率为二项分布,x n x x n c x P --=) 1()(ππ。 二项分布的特点:图形的形态取决于n 和?。 阳性率:n x p =, 标准差 :n p ) 1(ππσ-= 二项分布的应用:计算二项分布中出现阳性次数最多为k 次或者是至少为k 次的概率。 三.Poisson 分布 概念:Poisson 分布看作二项分布的特例,单位空间、单位面积或单位时间内某稀有事件发生次数的概率分布. μμ-=e x x P x !)( Poisson 分布的特点:图形的形态取决于 ? , 总体均数

等于方差, 具有可加性。 注意: 凡个体间有传染性、聚集性,均不能视为二项分布或Poisson 分布。 应用:计算Poisson 分布中某稀有事件出现次数最多为k 次或者是至少为k 次的概率。 ∑ ∑-+----=-+-222)2()2)(1(2)1())2()1((μμμμμμy y x x y x 案例分析: (一)观察某地100名12岁男孩身高,均数为138.00cm ,标准差为 4.12cm ,12 .400.13800.128-=u ,则9925.0)(1=-u φ,结论正确是_____________。 A .理论上身高低于138.00cm 的12岁男孩占%。 B .理论上身高高于138.00cm 的12岁男孩占% C .理论上身高在128.00cm 和138.00cm 之间的12岁男孩占%。 D .理论上身高高于128.00cm 的12岁男孩占% (二)研究人员为了解该地居民发汞(?mol/kg )的基础水平,为汞污染的环境监测积累资料,调查了居住该市1年以上,无明显肝、肾疾病,无汞作业接触史的居民230人,数据如下:

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布 摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。 关键词:二项分布;Poisson 分布;正态分布;定义;性质 一、二项分布 二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生 这种分布的重要现实源泉是所谓的伯努利试验。 (一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布) 1.泊努利试验 在许多实际问题中,我们感兴趣的是某事件A 是否发生。例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。 为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = () q p A P =-=1。 2.泊努利分布 定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数, 则??? ? ??ξp q 10 ~,称ξ服从参数为)10(<

概率论知识点的总结

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为 随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全 体样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。

3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。 运算律: 设A,B,C为事件,则有 (1)交换律:A∪B=B∪A,AB=BA (2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC (3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC (4)德摩根律:B A = A B = A B A B

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布 习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律. (X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }= 35147 2222=C C C P {X=1, Y=1 }=356 47221213=C C C C P {X=1, Y=2 }= 3564 7 1 2 2213=C C C C P {X=2, Y=0 }=353 472 223=C C C P {X=2, Y=1 }= 35124 712 1223=C C C C P {X=2, Y=2 }=353 47 2 223=C C C P {X=3, Y=0 }= 35247 1233=C C C P {X=3, Y=1 }=352 47 1233=C C C P {X=3, Y=2 }=0 习题3-2 设随机变量),(Y X 的概率密度为 ?? ?<<<<--=其它 , 0, 42,20), 6(),(y x y x k y x f (1) 确定常数k ; (2) 求{}3,1<

?? ????????<<<<=42,20),(y x y x D o 解:(1)∵??? ? +∞∞-+∞ ∞ ---= = 20 12 )6(),(1dydx y x k dy dx y x f ,∴8 1= k (2)8 3 )6(8 1)3,1(32 1 ? ?= --= <

相关文档
最新文档