数学实验四题目和答案

数学实验四题目和答案
数学实验四题目和答案

一.实验题目

1.(必做题)解微分方程(组)

(1) 322232(1)(0)0,'(0)1,''(0)1,d y d y dy y dx dx dx y y y ?=---???===-?

(提示可以考虑[0,20]x ∈,以特解函数及其一阶、二阶导数曲线图形来表示)

解: ①将高阶微分方程化为一阶微分方程组,设y y y y y y ''='==321,,,则有

()???

????---='='='2122333221

1y y y y y y y y ②建立函数文件

function dy=myfun(x,y)

dy=[y(2);y(3);(y(3)-1)^2-y(2)-y(1)^2];

③主程序:

[x,y]=ode45('myfun',[0,20],[0;1;-1]);

plot(x,y(:,1),'*',x,y(:,2),'+',x,y(:,3),'o')

%legend('y','y 的一阶导数','y 的二阶导数');

④结果

注意此题得不到解析解,只能用数值解,解法可参看PPT 中数值解例题3 (2)运用数值解手段描述下面常微分方程组在初值0[0;0;110]x e ∈-下的相空间的相轨线.

11232233

1223'()8()/3()()'()10()10()'()()()28()()x t x t x t x t x t x t x t x t x t x t x t x t =-+??=-+??=-+-?

解:①建立函数文件

function dx=lorenz(t,x)

dx=[-8/3*x(1)+x(2)*x(3);-10*x(2)+10*x(3);-x(1)*x(2)+28*x(2)-x(3)];

②主程序文件

[t,x]=ode45('lorenz',[0,100],[0;0;1e-10]);

axis([0 40 -20 20 -20 20]);

plot3(x(:,1),x(:,2),x(:,3));

grid on

③结果

(3)求0.0199.99100(0)2,(0)1dy y z

dx dz z dx y z ?=--???=-??==???

的数值解,并画出图像 解:首先建立odefun1 .m 如下:

function dy=odefun1(x,y);

dy=[-0.01*y(1)-99.99*y(2);-100*y(2)];

然后建立主程序shiyan2_3.m

clc

clear

close all

[x,y]=ode15s('odefun1',[0 100],[2;1])

plot(x,y(:,1) ,'*',x,y(:,2),'r*')

结果为

(4)求下列方程的通解及特解

222'''()022,'22x y xy x n y y y πππ?++-=??????==- ? ????

???(Bessel 方程,令12n =) 解:求通解的主程序为(syms n )

diff_y='x^2*D2y+x*Dy+(x^2-(1/2)^2)*y=0';

y=dsolve(diff_y,'x')

结果为:

y=C1/x^(1/2)*sin(x)+C2/x^(1/2)*cos(x)

y =

(2^(1/2)*C12*cos(x))/(pi^(1/2)*x^(1/2)) + (2^(1/2)*C13*sin(x))/(pi^(1/2)*x^(1/2)) 求特解的主程序为

diff_y='x^2*D2y+x*Dy+(x^2-(1/2)^2)*y=0';

y=dsolve(diff_y,'y(pi/2)=2,Dy(pi/2)=-2/pi','x')

结果为:

y =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x)

y =

(2*sin(x)*(pi/2)^(1/2))/x^(1/2) + (cos(x)*(2/(pi/2)^(1/2) - pi/(pi/2)^(3/2)))/(2*x^(1/2))

2.(必做题)凶杀案作案时间问题:受害者的尸体于晚上7:30被发现,法医于晚上8:20赶到凶案现场,测得尸体温度为32.6℃;一小时后,当尸体即将被抬走时,测得尸体温度为31.4℃,室温在几个小时内始终保持21.1℃。此案最大的嫌疑犯张某声称自己是无罪的,并有证人说:“下午张某一直在办公室上班,5:00时打完电话后就离开了办公室”。从张某到受害者家(凶案现场)步行需5分钟,现在的问题是,张某不在凶案现场的证言能否被采信,使他排除在嫌疑犯之外。(提示:Newton 冷却定理告诉我们“物体在介质中冷却速度同该物体温度与介质温度之差成正比”)

解:首先应确定凶案的发生时间,若死亡时间在下午5点5分之前,则张某就不是嫌疑犯,否则不能将张某排除。

设T(t)表示t 时刻尸体的温度,并记晚上8:20为t=0,则T(0)=32.6℃,T(1)=31.4℃。假设受害者死亡时体温是正常的,即T=37℃(查资料)是要确定受害者死亡的时间,也就是求T(t)=37℃的时刻,进而确定张某是否是嫌疑犯。

人体体温受大脑神经中枢调节。人死亡后体温调节的功能消失,尸体的温度受外界环境温度的影响。假设尸体温度的变化率服从牛顿冷却定律,即尸体温度的变化律与他同周围的温度差成正比。即

模型:由Newton 冷却定理可得一阶线性微分方程模型 (21.1)(0)32.6

t dT T dt T λ?=--???=?

求解:(1)首先用dsolve 求解该方程的解析解

程序:

syms lamd

sy3d11='DT+lamd*(T-21.1)=0';

T=dsolve(sy3d11,'T(0)=32.6','t')

结果:

T =211/10+23/2*exp(-lamd*t)

T =23/(2*exp(lamd*t)) + 211/10

(2)求解参数lamd

可以利用初始条件“1小时后,当尸体即将被抬走时,测得尸体温度为31.4℃” 由上式可以得到:31.4=21.1+11.5*exp(-1*lamd)

lamd 的值为0.11020314013361429463890984998294

(程序:lamd=solve('31.4-21.1-11.5*exp(-1*lamd)=0','lamd')

(3)求解t0

当T=37℃时,有t=-2.95 小时

(程序:t0=solve('37-21.1-11.5*exp(-0.11*t)','t'))

=-2小时57分,

8小时20分-2小时57分=5小时23分。即死亡时间大约在下午5:23,

因此张某不能被排除在嫌疑犯之外。

《数学实验》试题答案

北京交通大学海滨学院考试试题 课程名称:数学实验2010-2011第一学期出题教师:数学组适用专业: 09机械, 物流, 土木, 自动化 班级:学号:姓名: 选做题目序号: 1.一对刚出生的幼兔经过一个月可以长成成兔, 成兔再经过一个月后可以 繁殖出一对幼兔. 如果不计算兔子的死亡数, 请用Matlab程序给出在未来24个月中每个月的兔子对数。 解: 由题意每月的成兔与幼兔的数量如下表所示: 1 2 3 4 5 6 ··· 成兔0 1 1 2 3 5··· 幼兔 1 0 1 1 2 3··· 运用Matlab程序: x=zeros(1,24); x(1)=1;x(2)=1; for i=2:24 x(i+1)=x(i)+x(i-1); end x 结果为x = 1 1 2 3 5 8 13 21 3 4 5 5 89 144 233 377 610 987 1597 2584 4181 6765 1094 6 7711 2865 7 46368 2.定积分的过程可以分为分割、求和、取极限三部分, 以1 x e dx 为例, 利用

已学过的Matlab 命令, 通过作图演示计算积分的过程, 并与使用命令int() 直接积分的结果进行比较. 解:根据求积分的过程,我们先对区间[0,1]进行n 等分, 然后针对函数x e 取和,取和的形式为10 1 i n x i e e dx n ξ=≈ ∑ ? ,其中1[ ,]i i i n n ξ-?。这里取i ξ为区间的右端点,则当10n =时,1 x e dx ?可用10 101 1.805610 i i e ==∑ 来近似计算, 当10n =0时,100 100 1 01 =1.7269100 i x i e e dx =≈ ∑?,当10n =000时,10000 10000 1 1 =1.718410000 i x i e e dx =≈ ∑ ?. 示意图如下图,Matlab 命令如下: x=linspace (0,1,21); y=exp(x); y1=y(1:20); s1=sum(y1)/20 y2=y(2:21); s2=sum(y2)/20 plot(x,y); hold on for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b') end syms k;symsum(exp(k/10)/10,k,1,10);%n=10 symsum(exp(k/100)/100,k,1,100);%n=100 symsum(exp(k/10000)/10000,k,1,10000);%n=10000

高等数学实验试题

东华大学20 ~ 20 学年第__ __学期期_末_试题A 踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负 课程名称______高等数学实验___________使用专业____ 班级_____________姓名________________学号__________ 机号 要求:写出M 函数(如果需要的话)、MATLAB 指令和计算结果。1.设矩阵A = 6 14230215 1 0321 21----, 求A 的行列式和特征值。 2. 设 f (x ,y ) =2x cos (xy 2 ),求 21,2 x y f x y ==???。

3. 求积分? --1 2 2 1)2(x x xdx 的数值解。 4. 求解微分方程0.5e - x d y -sin x d x=0, y (0)=0, 要求写出x =2 时的y 值。 5. 求解下列方程在k=6,θ=π/3附近的解???=-=-1)sin (3 )cos 1(θθθk k

6. 取k 7. 编写一个M 函数文件,使对任意给定的精度ε, 求N 使得 επ≤-∑=612 1 2 N n n 并对ε= 0.001求解。

8. 在英国工党成员的第二代加入工党的概率为0.5,加入保守党的概率为0.4,加入自由党的概率为0.1。而保守党成员的第二代加入保守党的概率为0.7,加入工党的概率为0.2,加入自由党的概率为0.1。而自由党成员的第二代加入保守党的概率为0.2,加入工党的概率为0.4,加入自由党的概率为0.4。求自由党成员的第三代加入工党的概率是多少?假设这样的规律保持不变,在经过很多代后,英国政党大致分布如何?

大学数学实验

大学数学实验 项目一 矩阵运算与方程组求解 实验1 行列式与矩阵 实验目的 掌握矩阵的输入方法. 掌握利用Mathematica (4.0以上版本) 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式. 基本命令 在Mathematica 中, 向量和矩阵是以表的形式给出的. 1. 表在形式上是用花括号括起来的若干表达式, 表达式之间用逗号隔开. 如输入 {2,4,8,16} {x,x+1,y,Sqrt[2]} 则输入了两个向量. 2. 表的生成函数 (1) 最简单的数值表生成函数Range, 其命令格式如下: Range[正整数n]—生成表{1,2,3,4,…,n }; Range[m, n]—生成表{m ,…,n }; Range[m, n, dx]—生成表{m ,…,n }, 步长为d x . (2) 通用表的生成函数Table. 例如,输入命令 Table[n^3,{n,1,20,2}] 则输出 {1,27,125,343,729,1331,2197,3375,4913,6859} 输入 Table[x*y,{x,3},{y,3}] 则输出 {{1,2,3},{2,4,6},{3,6,9}} 3. 表作为向量和矩阵 一层表在线性代数中表示向量, 二层表表示矩阵. 例如,矩阵 ??? ? ??5432 可以用数表{{2,3},{4,5}}表示. 输入 A={{2,3},{4,5}} 则输出 {{2,3},{4,5}} 命令MatrixForm[A]把矩阵A 显示成通常的矩阵形式. 例如, 输入命令: MatrixForm[A] 则输出 ??? ? ??5432 但要注意, 一般地, MatrixForm[A]代表的矩阵A 不能参与运算. 输入 B={1,3,5,7} 输出为 {1,3,5,7} 输入 MatrixForm[B] 输出为

大学数学数学实验(第二版)第7,8章部分习题答案

一、实验内容 P206第六题 function f=wuyan2(c) y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.41 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 251.4 281.4] t=[0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210] f=y-c(1)/(1+c(1)/3.9-1)*exp^(-c(2)*t) c0=[1 1] c=lsqnonlin('wuyan2',c0) P206第七题 function f=wuyan1(c) q=[0.4518 0.4862 0.5295 0.5934 0.7171 0.8964 1.0202 1.1963 1.4928 1.6909 1.8548 2.1618 2.6638 3.4634 4.6759 5.8478 6.7885 7.4463 7.8345 8.2068 8.9468 9.7315 10.5172 11.7390 13.6876 ]; k=[0.0911 0.0961 0.1230 0.1430 0.1860 0.2543 0.3121 0.3792 0.4754 0.4410 0.4517 0.5595 0.8080 1.3072 1.7042 2.0019 2.2914 2.4941 2.8406 2.9855 3.2918 3.7214 4.3500 5.5567 7.0477]; l=[4.2361 4.3725 4.5295 4.6436 4.8179 4.9873 5.1282 5.2783 5.4334 5.5329 6.4749 6.5491 6.6152 6.6808 6.7455 6.8065 6.8950 6.9820 7.0637 7.1394 7.2085 7.3025 7.3470 7.4432 7.5200]; f=q-c(1)*k.^c(2).*l.^c(3) c0=[1 1 1] c=lsqnonlin('wuyan1',c0) c = 0.4091 0.6401 1.1446 a=0.4091 α=0.6401 β=1.1446 P239第五题 c=[-20 -30]; A=[1 2;5 4]; b=[20 70]; v1=[0 0]; [x,f,ef,out,lag]=linprog(c,A,b,[],[],v1) z=-f x = 10.0000 5.0000

清华大学数学实验报告4

清华大学数学实验报告4

————————————————————————————————作者: ————————————————————————————————日期: ?

电13 苗键强2011010645

一、实验目的 1.掌握用 MATLAB 软件求解非线性方程和方程组的基本用法, 并对结果作初步分析; 2.练习用非线性方程和方程组建立实际问题的模型并进行求解。 二、实验内容 题目1 【问题描述】 (Q1)小张夫妇以按揭方式贷款买了1套价值20万元的房子,首付了5万元,每月还款1000元,15年还清。问贷款利率是多少? (Q2)某人欲贷款50 万元购房,他咨询了两家银行,第一家银行 开出的条件是每月还4500元,15 年还清;第二家银行开出的条件是每年还45000 元,20年还清。从利率方面看,哪家银行较优惠(简单假设:年利率=月利率×12)? 【分析与解】 假设初始贷款金额为x0,贷款利率为p,每月还款金额为x,第i 个月还完当月贷款后所欠银行的金额为x i,(i=1,2,3,......,n)。由题意可知: x1=x0(1+p)?x x2=x0(1+p)2?x(1+p)?x x3=x0(1+p)3?x(1+p)2?x(1+p)?x ……

x n=x0(1+p)n?x(1+p)n?1???x(1+p)?x =x0(1+p)n?x (1+p)n?1 p =0 因而有: x0(1+p)n=x (1+p)n?1 p (1) 则可以根据上述方程描述的函数关系求解相应的变量。 (Q1) 根据公式(1),可以得到以下方程: 150p(1+p)180?(1+p)180+1=0 设 f(p)=150p(1+p)180?(1+p)180+1,通过计算机程序绘制f(p)的图像以判断解p的大致区间,在Matlab中编程如下: fori = 1:25 t = 0.0001*i; p(i) = t; f(i) =150*t*(1+t).^180-(1+t).^180+1; end; plot(p,f),hold on,grid on; 运行以上代码得到如下图像:

数学实验答案-1

1.(1) [1 2 3 4;0 2 -1 1;1 -1 2 5;]+(1/2).*([2 1 4 10;0 -1 2 0;0 2 3 -2]) 2. A=[3 0 1;-1 2 1;3 4 2],B=[1 0 2;-1 1 1;2 1 1] X=(B+2*A)/2 3. A=[-4 -2 0 2 4;-3 -1 1 3 5] abs(A)>3 % 4. A=[-2 3 2 4;1 -2 3 2;3 2 3 4;0 4 -2 5] det(A),eig(A),rank(A),inv(A) 求计算机高手用matlab解决。 >> A=[-2,3,2,4;1,-2,3,2;3,2,3,4;0,4,-2,5] 求|A| >> abs(A) ans = ( 2 3 2 4 1 2 3 2 3 2 3 4 0 4 2 5 求r(A) >> rank(A) ans =

4 求A-1 《 >> A-1 ans = -3 2 1 3 0 -3 2 1 2 1 2 3 -1 3 -3 4 求特征值、特征向量 >> [V,D]=eig(A) %返回矩阵A的特征值矩阵D 与特征向量矩阵V , V = - + + - - + - + - + - + D = { + 0 0 0 0 - 0 0 0 0 + 0 0 0 0 - 将A的第2行与第3列联成一行赋给b >> b=[A(2,:),A(:,3)'] b = 《 1 - 2 3 2 2 3 3 -2

1. a=round(unifrnd(1,100)) i=7; while i>=0 i=i-1; b=input('请输入一个介于0到100的数字:'); if b==a ¥ disp('You won!'); break; else if b>a disp('High'); else if b

重庆大学数学实验 方程模型及其求解算法 参考答案

实验2 方程模型及其求解算法 一、实验目的及意义 [1] 复习求解方程及方程组的基本原理和方法; [2] 掌握迭代算法; [3] 熟悉MATLAB软件编程环境;掌握MATLAB编程语句(特别是循环、条件、控制等语句); [4] 通过范例展现求解实际问题的初步建模过程; 通过该实验的学习,复习和归纳方程求解或方程组求解的各种数值解法(简单迭代法、二分法、牛顿法、割线法等),初步了解数学建模过程。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。 二、实验内容 1.方程求解和方程组的各种数值解法练习 2.直接使用MATLAB命令对方程和方程组进行求解练习 3.针对实际问题,试建立数学模型,并求解。 三、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.根据观察到的结果写出实验报告,并浅谈学习心得体会。 四、实验要求与任务 基础实验 1.用图形放大法求解方程x sin(x) = 1. 并观察该方程有多少个根。 画出图形程序: x=-10:0.01:10; y=x.*sin(x)-1; y1=zeros(size(x)); plot(x,y,x,y1) MATLAB运行结果:

-10-8-6-4-20246810 -8-6 -4 -2 2 4 6 8 扩大区间画图程序: x=-50:0.01:50; y=x.*sin(x)-1; y1=zeros(size(x)); plot(x,y,x,y1) MATLAB 运行结果: -50-40-30-20-1001020304050 由上图可知,该方程有偶数个无数的根。

清华大学2002至2003学年第二学期数学实验期末考试试题A

清华大学2002至2003学年第二学期数学实验期末考试试题A 数学实验试题 2003.6.22 上午 (A卷;90分钟) 一. 某两个地区上半年6个月的降雨量数据如下(单位:mm): 月份123456 地区A259946337054 地区B105030204530 在90%的置信水平下,给出A地区的月降雨量的置信区 间: 在90%的置信水平下,A地区的月降雨量是否不小于70(mm)? 在90%的置信水平下,A、B地区的月降雨量是否相同? A地区某条河流上半年6个月对应的径流量数据如下(单位:m3):110,184,145,122,165,143。该河流的径流量y与当地的降雨量x的线性回归方程为;若当地降雨量为55mm,该河流的径流量的预测区间为(置信水平取90%)。 答案:(程序略) (1) [32.35,76.65] (2) 是 (3) 否 (4) y=91.12+0.9857x (5) [130.9,159.7] 二.(10分) (1)(每空1分)给定矩阵,如果在可行域上考虑线性函数,其中,那么的最小值是,最小点为;最大值是,最大点为。 (每空2分)给定矩阵,,考虑二次规划问题,其最优解为,(2) 最优值为,在最优点处起作用约束 为 。 答案:(1)最小值为11/5,最大值为7/2,最小点为(0,2/5,9/5),最大点为(1/2,0,3/2)。 (2)最优解为(2.5556,1.4444),最优值为–1.0778e+001,其作用约束为。 三.(10分)对线性方程组:,其中A=,b= (3分)当时,用高斯—赛德尔迭代法求解。取初值为,写出迭代第4步的结果=____________________。 (4分)当时,用Jacobi 迭代法求解是否收敛?__________ , 理由是_________________________________________________ 。 (3分)求最大的c, 使得对任意的,用高斯—赛德尔迭代法求解一定收敛,则c应为__________。 答案:(1)x = [ -1.0566 1.0771 2.9897]

matlab数学实验复习题(有标准答案)

复习题 1、写出3 2、i nv(A)表示A的逆矩阵; 3、在命令窗口健入 clc,4、在命令窗口健入clea 5、在命令窗口健入6、x=-1:0.2:17、det(A)表示计算A的行列式的值;8、三种插值方法:拉格朗日多项式插值,分段线性插值,三次样条插值。 9、若A=123456789?? ????????,则fliplr (A)=321654987?????????? A-3=210123456--??????????A .^2=149162536496481?????????? tril(A)=100450789?????????? tri u(A,-1)=123456089??????????diag(A )=100050009?????????? A(:,2),=2 58A(3,:)=369 10、nor mcd f(1,1,2)=0.5%正态分布mu=1,s igm a=2,x =1处的概率 e45(@f,[a,b ],x0),中参数的涵义是@fun 是求解方程的函数M 文 件,[a,b ]是输入向量即自变量的范围a 为初值,x0为函数的初值,t 为输出指定的[a,b],x 为函数值 15、写出下列命令的功能:te xt (1,2,‘y=s in(x)’

hold on 16fun ction 开头; 17 ,4) 3,4) 21、设x 是一向量,则)的功能是作出将X十等分的直方图 22、interp 1([1,2,3],[3,4,5],2.5) Ans=4.5 23、建立一阶微分方程组? ??+='-='y x t y y x t x 34)(3)(2 的函数M 文件。(做不出来) 二、写出运行结果: 1、>>ey e(3,4)=1000 01000010 2、>>s ize([1,2,3])=1;3 3、设b=ro und (unifrnd(-5,5,1,4)),则=3 5 2 -5 >>[x,m]=min(b);x =-5;m=4 ,[x,n ]=sort(b ) -5 2 3 5 4 3 1 2 mea n(b)=1.25,m edian(b)=2.5,range(b)=10 4、向量b如上题,则 >>an y(b),all(b<2),all(b<6) Ans =1 0 1 5、>>[5 6;7 8]>[7 8;5 6]=00 11 6、若1234B ??=???? ,则 7、>>diag(d iag (B ))=10 04 8、>>[4:-2:1].*[-1,6]=-4 12 9、>>acos(0.5),a tan(1) ans = 1.6598 ans=

东华大学MATLAB数学实验第二版答案(胡良剑)

东华大学M A T L A B数学实验第二版答案(胡良 剑) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学实验答案 Chapter 1 Page20,ex1 (5) 等于[exp(1),exp(2);exp(3),exp(4)] (7) 3=1*3, 8=2*4 (8) a为各列最小值,b为最小值所在的行号 (10) 1>=4,false, 2>=3,false, 3>=2, ture, 4>=1,ture (11) 答案表明:编址第2元素满足不等式(30>=20)和编址第4元素满足不等式(40>=10) (12) 答案表明:编址第2行第1列元素满足不等式(30>=20)和编址第2行第2列元素满足不等式(40>=10) Page20, ex2 (1)a, b, c的值尽管都是1,但数据类型分别为数值,字符,逻辑,注意a与c 相等,但他们不等于b (2)double(fun)输出的分别是字符a,b,s,(,x,)的ASCII码 Page20,ex3 >> r=2;p=0.5;n=12; >> T=log(r)/n/log(1+0.01*p) Page20,ex4 >> x=-2:0.05:2;f=x.^4-2.^x; >> [fmin,min_index]=min(f) 最小值最小值点编址 >> x(min_index) ans = 0.6500 最小值点 >> [f1,x1_index]=min(abs(f)) 求近似根--绝对值最小的点 f1 = 0.0328 x1_index = 24 >> x(x1_index) ans = -0.8500 >> x(x1_index)=[];f=x.^4-2.^x; 删去绝对值最小的点以求函数绝对值次小的点>> [f2,x2_index]=min(abs(f)) 求另一近似根--函数绝对值次小的点 f2 = 0.0630 x2_index = 65 >> x(x2_index) ans =

大学数学实验心得体会

大学数学实验心得体会 [模版仅供参考,切勿通篇使用] 大学数学实验心得体会(一) 数学,在整个人类生命进程中至关重要,从小学到中学,再到大学,乃至更高层次的科学研究都离不开数学,随着时代的发展,人们越来越重视数学知识的应用,对数学课程提出了更高层次的要求,于是便诞生了数学实验。 学期最初,大学数学实验对于我们来说既熟悉又陌生,在我们的记忆中,我们做过物理实验、化学实验、生物实验,故然我们以为数学实验与它们一样,当我们在网上搜索有关数学实验的信息时,我们才知道,大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流。 当我们怀着好奇的心情走进屈静国老师的数学实验课堂时,我们才渐渐懂得,数学实验是一门有关计算机软件的课程,就像c语言一样,需要编辑运行程序,从而进行数学运算,它不需要自己来运算,就像计算器一样,只要我们自己记下重要程序语句,输入运行程序,便可得到运行结果,大大降低了我们的运算量,

给我们生活带来许多便捷,在大一时,我学过c语言,由于这样的基础,让我能够更快的学会并应用此软件。 时间飞逝,转眼间,我们就要结课了,这学期我们学习了mathematics的基础,微积分实验,线性代数实验,概率论与数理统计实验,数值计算方法及实验。通过这学期的学习,我也积累了些自己的学习方法和心得。首先,我们要在平时上课牢记那些mathematics语言和公式,那些东西就想单词和公式一样,只需要背诵;然后,我们要看几遍书,并多看一下例题;最后,我们要多应用mathematics软件去练习。正所谓熟能生巧,我坚信,只要我们能够做到这三步,我们就能很好的掌握这门课程。 通过学习使用数学软件,数学实验建模,使我们能够从实际问题出发,认真分析研究,建立简单数学模型,然后借助先进的计算机技术,最终找出解决实际问题的一种或多种方案,从而提高了我们的数学思维能力,为我们参加数学竞赛和数学建模打下了坚实的基础,同时也为我们进一步深造和参加工作打下一定的实践基础! 大学数学实验心得体会(二) 在此期间我充分利用研修活动时间学习,感到既有辛苦,又有收获。既有付出,又有新所得。这次远程研修让我有幸与专家和各地的数学精英们交流,面对每次探讨的主题,大家畅所欲言,

实验二极限与连续数学实验课件习题答案

天水师范学院数学与统计学院 实验报告 实验项目名称极限与连续 所属课程名称数学实验 实验类型上机操作 实验日期 2013-3-22 班级 10数应2班 学号 291010836 姓名吴保石 成绩

【实验过程】(实验步骤、记录、数据、分析) 1.数列极限的概念 通过计算与作图,加深对极限概念的理解. 例2.1 考虑极限3321 lim 51 x n n →∞++ Print[n ," ",Ai ," ",0.4-Ai]; For[i=1,i 15,i++,Aii=N[(2i^3+1)/(5i^3+1),10]; Bii=0.4-Aii ;Print[i ," ",Aii ," ",Bii]] 输出为数表 输入 fn=Table[(2n^3+1)/(5n^3+1),{n ,15}]; ListPlot[fn ,PlotStyle {PointSize[0.02]}] 观察所得散点图,表示数列的点逐渐接近直线y=0 .4 2.递归数列 例2.2 设n n x x x +==+2,211.从初值21=x 出发,可以将数列一项项地计算出来,这样定义的数列称为 数列,输入 f[1]=N[Sqrt[2],20]; f[n_]:=N[Sqrt[2+f[n-1]],20]; f[9] 则已经定义了该数列,输入 fn=Table[f[n],{n ,20}] 得到这个数列的前20项的近似值.再输入 ListPlot[fn ,PlotStyle {PointSize[0.02]}] 得散点图,观察此图,表示数列的点越来越接近直线2y =

例2.3 考虑函数arctan y x =,输入 Plot[ArcTan[x],{x ,-50,50}] 观察函数值的变化趋势.分别输入 Limit[ArcTan[x],x Infinity ,Direction +1] Limit[ArcTan[x],x Infinity ,Direction -1] 输出分别为2 π 和2π-,分别输入 Limit[sign[x],x 0,Direction +1] Limit[Sign[x],x 0,Direction -1] 输出分别为-1和1 4.两个重要极限 例2.4 考虑第一个重要极限x x x sin lim 0→ ,输入 Plot[Sin[x]/x ,{x ,-Pi ,Pi}] 观察函数值的变化趋势.输入 Limit[Sin[x]/x ,x 0] 输出为1,结论与图形一致. 例2.5 考虑第二个重要极限1 lim(1)x x x →∞+,输入 Limit[(1+1/n)^n ,n Infinity] 输出为e .再输入 Plot[(1+1/n)^n ,{n ,1,100}] 观察函数的单调性 5.无穷大 例2.6 考虑无穷大,分别输人 Plot[(1+2x)/(1-x),{x ,-3,4}] Plot[x^3-x ,{x ,-20,20}] 观察函数值的变化趋势.输入 Limit[(1+2x)/(1-x),x 1] 输出为-∞ 例2.7 考虑单侧无穷大,分别输人 Plot[E^(1/x),{x ,-20,20},PlotRange {-1,4}] Limit[E^(1/x),x 0,Direction +1] Limit[E^(1/x),x 0,Direction -1] 输出为图2.8和左极限0,右极限∞.再输入 Limit[E^(1/x),x 0] 观察函数值的变化趋势. 例2.8 输入 Plot[x+4*Sin[x],{x ,0,20Pi}] 观察函数值的变化趋势. 输出为图2 .9.观察函数值的变化趋势,当x →∞时,这个函数是无穷大,但是,它并不是单调增加.于是,无并不要求函数单调 例2.9 输入

数学实验(MATLAB版韩明版)5.1,5.3,5.5,5.6部分答案

练习 B的分布规律和分布函数的图形,通过观1、仿照本节的例子,分别画出二项分布()7.0,20 察图形,进一步理解二项分布的性质。 解:分布规律编程作图:>> x=0:1:20;y=binopdf(x,20,; >> plot(x,y,'*') 图像: y x 分布函数编程作图:>> x=0::20; >>y=binocdf(x,20, >> plot(x,y) 图像: 《

1 x 观察图像可知二项分布规律图像像一条抛物线,其分布函数图像呈阶梯状。 2、仿照本节的例子,分别画出正态分布()25,2N的概率密度函数和分布函数的图形,通过观察图形,进一步理解正态分布的性质。 解:概率密度函数编程作图:>> x=-10::10; >> y=normpdf(x,2,5); >> plot(x,y) 图像:

00.010.020.030.040.050.060.070.08x y 分布函数编程作图:>> x=-10::10; >> y=normcdf(x,2,5); ~ >> plot(x,y) 图像:

01x y 观察图像可知正态分布概率密度函数图像像抛物线,起分布函数图像呈递增趋势。 3、设()1,0~N X ,通过分布函数的调用计算{}11<<-X P ,{}22<<-X P , {}33<<-X P . 解:编程求解: >> x1=normcdf(1)-normcdf(-1),x2=normcdf(2)-normcdf(-2),x3=normcdf(3)-normcdf(-3) x1 = x2 = ) x3 = 即:{}6827.011=<<-X P ,{}9545.022=<<-X P ,{}9973.033=<<-X P . 4、设()7.0,20~B X ,通过分布函数的调用计算{}10=X P 与{}10> x1=binopdf(10,20,,x2=binocdf(10,20,-binopdf(10,20, x1 = x2 =

《大学物理实验》模拟试卷与答案

二、判断题(“对”在题号前()中打√×)(10分) (√)1、误差是指测量值与真值之差,即误差=测量值-真值,如此定义的误差反映的是测量值偏离真值的大小和方向,既有大小又有正负符号。 (×)2、残差(偏差)是指测量值与其算术平均值之差,它与误差定义一样。(√)3、精密度是指重复测量所得结果相互接近程度,反映的是随机误差大小的程度。 (√)4、测量不确定度是评价测量质量的一个重要指标,是指测量误差可能出现的范围。 (×)7、分光计设计了两个角游标是为了消除视差。 (×)9、调节气垫导轨水平时发现在滑块运动方向上不水平,应该先调节单脚螺钉再调节双脚螺钉。 (×)10、用一级千分尺测量某一长度(Δ仪=0.004mm),单次测量结果为N=8.000mm,用不确定度评定测量结果为N=(8.000±0.004)mm。 三、简答题(共15分) 1.示波器实验中,(1)CH1(x)输入信号频率为50Hz,CH2(y)输入信号频率为100Hz;(2)CH1(x)输入信号频率为150Hz,CH2(y)输入信号频率为50Hz;画出这两种情况下,示波器上显示的李萨如图形。(8分)

差法处理数据的优点是什么?(7分) 答:自变量应满足等间距变化的要求,且满足分组要求。(4分) 优点:充分利用数据;消除部分定值系统误差 四、计算题(20分,每题10分) 1、用1/50游标卡尺,测得某金属板的长和宽数据如下表所示,求金属板的面 解:(1)金属块长度平均值:)(02.10mm L = 长度不确定度: )(01.03/02.0mm u L == 金属块长度为:mm L 01.002.10±= %10.0=B (2分) (2)金属块宽度平均值:)(05.4mm d = 宽度不确定度: )(01.03/02.0mm u d == 金属块宽度是:mm d 01.005.4±= %20.0=B (2分) (3)面积最佳估计值:258.40mm d L S =?= 不确定度:2222222 221.0mm L d d s L s d L d L S =+=??? ????+??? ????=σσσσσ 相对百分误差:B =%100?S s σ=0.25% (4分) (4)结果表达:21.06.40mm S ±= B =0.25% (2分) 注:注意有效数字位数,有误者酌情扣 5、测量中的千分尺的零点误差属于已定系统误差;米尺刻度不均匀的误差属于未

matlab数学实验练习题

Matlab 数学实验 实验一 插值与拟合 实验内容: 预备知识:编制计算拉格朗日插值的M 文件。 1. 选择一些函数,在n 个节点上(n 不要太大,如5 ~ 11)用拉格朗日、分段线性、三次样条三种插值方法,计算m 个插值点的函数值(m 要适中,如50~100)。通过数值和图形输出,将三种插值结果与精确值进行比较。适当增加n ,再做比较,由此作初步分析。下列函数任选一种。 (1)、 ;20,sin π≤≤=x x y (2)、;11,)1(2/12≤≤--=x x y (3)、;22,c o s 10 ≤≤-=x x y (4)、22),exp(2≤≤--=x x y 2.用电压V=10伏的电池给电容器充电,电容器上t 时刻的电压为 ) (0)()(t e V V V t v ---=,其中0V 是电容器的初始电压,τ是充电常数。试由下面 一组t ,V 数据确定0V 和τ。 实验二 常微分方程数值解试验 实验目的: 1. 用MATLAB 软件求解微分方程,掌握Euler 方法和龙格-库塔方法; 2. 掌握用微分方程模型解决简化的实际问题。 实验内容:

实验三地图问题 1.下图是一个国家的地图,为了计算出它的国土面积,首先对地图作如下测量: 以由西向东方向为x轴,由南到北方向为y轴,选择方便的原点,并将从最西边界点到最东边界点在x轴上的区间适当地划分为若干段,在每个分点的y方向测出南边界点和北边界点的y坐标y1和y2,这样就得到了表中的数据(单位mm)。 根据地图的比例我们知道18mm相当于40km,试由测量数据计算该国土 的近似面积,并与它的精确值41288km2比较。

东南大学高等数学数学实验报告上

高等数学数学实验报告实验人员:院(系) ___________学号_________姓名____________ 实验地点:计算机中心机房 实验一 一、实验题目: 根据上面的题目,通过作图,观察重要极限:lim(1+1/n)n=e 二、实验目的和意义 方法的理论意义和实用价值。 利用数形结合的方法观察数列的极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值;通过编程可以输出数列的任意多项值,以此来得到数列的收敛性。通过此实验对数列极限概念的理解形象化、具体化。 三、计算公式(1+1/n)n 四、程序设计 五、程序运行结果 六、结果的讨论和分析 当n足够大时,所画出的点逐渐接近于直线,即点数越大,精确度越高。对于不同解题方法最后均能获得相同结果,因此需要择优,从众多方法中尽可能选择简单的一种。程序编写需要有扎实的理论基础,因此在上机调试前要仔细审查细节,对程序进行尽可能的简化、改进与完善。 实验二 一、实验题目 制作函数y=sin cx的图形动画,并观察参数c对函数图形的影响。 二、实验目的和意义 本实验的目的是让同学熟悉数学软件Mathematica所具有的良好的作图功能,并通过函数图形来认识函数,运用函数的图形来观察和分析函数的有关性态,建立数形结合的思想。 三、计算公式:y=sin cx 四、程序设计 五、程序运行结果

六、结果的讨论和分析 c 的不同导致函数的区间大小不同。 实验三 一、实验题目 观察函数f(x)=cos x 的各阶泰勒展开式的图形。 二、实验目的和意义 利用Mathematica 计算函数)(x f 的各阶泰勒多项式,并通过绘制曲线图形,来进一步掌握泰勒展开与函数逼近的思想。 三、计算公式 四、程序设计 五、程序运行结果 六、结果的讨论和分析 函数的泰勒多项式对于函数的近似程度随着阶数的提高而提高,但是对于任一确定次数的多项式,它只在展开点附近的一个局部范围内才有较好的近似精确度。 实验四 一、实验题目 计算定积分的黎曼和 二、实验目的和意义 在现实生活中许多实际问题遇到的定积分,被积函数往往不能用算是给出,而通过图像或表格给出;或虽然给出,但是要计算他的原函数却很困难,甚至原函数非初等函数。本实验目的,就是为了解决这些问题,进行定积分近似计算。 三、计算公式 四、程序设计 五、程序运行结果 六、结果的讨论和分析 本实验求的近似值由给出的n 的值的不同而不同。给出的n 值越大,得到的结果越接近准确的

南京邮电大学数学实验练习题参考答案

第一次练习 教学要求:熟练掌握Matlab 软件的基本命令和操作,会作二维、三维几何图形,能够用Matlab 软件解决微积分、线性代数与解析几何中的计算问题。 补充命令 vpa(x,n) 显示x 的n 位有效数字,教材102页 fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形 在下面的题目中m 为你的学号的后3位(1-9班)或4位(10班以上) 计算30sin lim x mx mx x →-与3 sin lim x mx mx x →∞- 程序: syms x limit((1001*x-sin(1001*x))/x^3,x,0) 结果: 程序: syms x limit((1001*x-sin(1001*x))/x^3,x,inf) 结果: 0 cos 1000 x mx y e =,求''y 程序: syms x diff(exp(x)*cos(1001*x/1000),2) 结果: -2001/1000000*exp(x)*cos(1001/1000*x)-1001/500*exp(x)*sin(1001/1000*x)

计算 2 2 11 00 x y e dxdy +?? 程序: dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1) 结果: 计算4 2 2 4x dx m x +? 程序: syms x int(x^4/(1000^2+4*x^2)) 结果: (10)cos , x y e mx y =求 程序: syms x diff(exp(x)*cos(1000*x),10) 结果: 给出 0x =的泰勒展式(最高次幂为4). 程序: syms x taylor(sqrt(1001/1000+x),5) 结果: Fibonacci 数列{}n x 的定义是121,1x x ==, 12,(3,4,)n n n x x x n --=+=L 用循环语句编程给出该数列的前20项(要求将结果用向量的形式给出)。 程序: x=[1,1]; for n=3:20 x(n)=x(n-1)+x(n-2); end x 结果: Columns 1 through 10 1 1 2 3 5 8 13 21 3 4 5 5 Columns 11 through 20 89 144 233 377 610 987 1597 2584 4181 6765

大学数学实验—期末考试试题6

数学实验试题 2003.6.22 上午 班级姓名学号得分 说明: (1)第一、二、三题的答案直接填在试题纸上; (2)第四题将数学模型、简要解题过程和结果写在试题纸上;卷面空间不够时,可写在背面; (3)考试时间为90分钟。 一.(10分,每空2分)(计算结果小数点后保留4位有效数字) 地区的月降雨量的置信区间: (2)在90%的置信水平下,A地区的月降雨量是否不小于70(mm)? (3)在90%的置信水平下,A、B地区的月降雨量是否相同? (4)A地区某条河流上半年6个月对应的径流量数据如下(单位:m3):110,184,145,122,165,143。该河流的径流量y与当地的降雨量x的线性回归方程为;若当地降雨量为55mm,该河流的径流量的预测区间为(置信水平取90%)。 二.(10分) (1)(每空1分)给定矩阵,如果在可行域上考虑线性函数,其中,那么的最小值是,最小点为;最大值是,最大点为。 (2)(每空2分)给定矩阵,,考虑二次规划问题,其最优解 为,最优值为,在最优点处起作用约束为。 三.(10分)对线性方程组:,其中A=,b=

(1)(3分)当时,用高斯—赛德尔迭代法求解。取初值为, 写出迭代第4步的结果=____________________。 (2)(4分)当时,用Jacobi 迭代法求解是否收敛?__________ , 理由是_________________________________________________ 。 (3)(3分)求最大的c, 使得对任意的,用高斯—赛德尔迭代法求解一 定收敛,则c应为__________。 四.(20分)一个二级火箭的总重量为2800公斤。第一级火箭的重量为1000公斤,其中燃料为800公斤。第一级火箭燃料燃烧完毕后自动脱落,第二级火箭立即继续燃烧。第二级火箭中的燃料为600公斤。假设火箭垂直向上发射,两级火箭中的燃料同质,燃烧率为15公斤/秒,产生的推力为30000牛顿。火箭上升时空气阻力正比于速度的平方,比例系数为0.4公斤/米。 (1)建立第一级火箭燃烧时火箭运行的数学模型,并求第一级火箭脱落时的高度、速度和加速度; (2)建立第二级火箭燃烧时火箭运行的数学模型,并求火箭所有燃料燃烧完毕瞬间的高度、速度、和加速度。 (提示:牛顿第二定律f=ma,其中f为力,m为质量,a为加速度。重力加速度9.8米/平方秒。)

数学实验答案

实验一 %sy1ljq20111668 %第一大题 %1 x=[3,2*pi]; y1=sin(x)+exp(x) %y1= 20.2267 535.4917 %2 x=2:2:10 y2=x.^2+sqrt(2*x) %y2= 6.0000 18.8284 39.4641 68.0000 104.4721 %3 a=2*pi,b=35/180*pi,c=exp(2); y31=sin(a/5)+cos(b)*c y32=tan(b)*cot(a/3) %y31 =7.0038 %y32 =-0.4043 %6 a1=-6.28,a2=7.46,a3=5.37; a11=fix(a1) a21=fix(a2) a31=fix(a3) %a11=-6 %a21=7 %a31=5 %7

y71=abs(a1*a2+a3) y72=a1^2*sqrt(a2*a3/2) %y71 =41.4788 %y72 =176.5066 %8 save sy1 clear %9 load sy1 %10 A=[2 -5 6;8 3 1;-4 6 9]; A1=A' A2=det(A) A3=5*A save sy1 A1 A2 A3 %A1 = 2 8 -4 -5 3 6 6 1 9 %A2 =782 %A3 = 10 -25 30 40 15 5 -20 30 45 %第二大题 %1 X=0:pi/10:2*pi; Y=cos(X);S=[X',Y']

%S = 0 1.0000 0.3142 0.9511 0.6283 0.8090 0.9425 0.5878 1.2566 0.3090 1.5708 0.0000 1.8850 -0.3090 2.1991 -0.5878 2.5133 -0.8090 2.8274 -0.9511 3.1416 -1.0000 3.4558 -0.9511 3.7699 -0.8090 4.0841 -0.5878 4.3982 -0.3090 4.7124 -0.0000 5.0265 0.3090 5.3407 0.5878 5.6549 0.8090 5.9690 0.9511 6.2832 1.0000 %2 a22=input('a22='); b22=input('b22=');

相关文档
最新文档