升压电感的计算方法

升压电感的计算方法
升压电感的计算方法

基于L6562的高功率因数boost电路的设计

0 引言

Boost是一种升压电路,这种电路的优点是可以使输入电流连续,并且在整个输入电压的正弦周期都可以调制,因此可获得很高的功率因数;该电路的电感电流即为输入电流,因而容易调节;同时开关管门极驱动信号地与输出共地,故驱动简单;此外,由于输入电流连续,开关管的电流峰值较小,因此,对输入电压变化适应性强。

储能电感在Boost电路起着关键的作用。一般而言,其感量较大,匝数较多,阻抗较大,容易引起电感饱和,发热量增加,严重威胁产品的性能和寿命。因此,对于储能电感的设计,是Boost电路的重点和难点之一。本文基于ST公司的L6562设计了一种Boost电路,并详细分析了磁性元器件的设计方法。

1 Boost电路的基本原理

Boost电路拓扑如图1所示。图中,当开关管T导通时,电流,IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容Cout 放电为负载提供能量;而当开关管T关断时,由于线圈中的磁能将改变线圈L两端的电压VL卡及性,以保持其电流IL不突变。这样,线圈L转化的电压VL与电源Vin串联,并以高于输出的电压向电容和负载供电,如图2所示是其电压和电流的关系图。图中,Vcont

为功率开关MOSFET的控制信号,VI为MOFET两端的电压,ID为流过二极管D的电流。以电流,IL作为区分,Boost电路的工作模式可分为连续模式、断续模式和临界模式三种。

分析图2,可得:

式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。

式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。

2 临界状态下的Boost-APFC电路设计

基于L6562的临界工作模式下的Boost-APFC电路的典型拓扑结构如图3所示,图4所示是其APFC工作原理波形图。

利用Boost电路实现高功率因数的原理是使输入电流跟随输入电压,并获得期望的输出电压。因此,控制电路所需的参量包括即时输入电压、输入电流及输出电压。乘法器连接输入电流控制部分和输出电压控制部分,输出正弦信号。当输出电压偏离期望值,如输出电压跌落时,电压控制环节的输出电压增加,使乘法器的输出也相应增加,从而使输入电流有效值也相应增加,以提供足够的能量。在此类控制模型中,输入电流的有效值由输出电压控制环节实现调制,而输入电流控制环节使输入电流保持正弦规律变化,从而跟踪输入电压。本文在基于此类控制模型下,采用ST公司的L6562作为控制芯片,给出了Boost-APFC电路的设计方法。

L6562的引脚功能如下:

INV:该引脚为电压误差放大器的反相输入端和输出电压过压保护输入端;

COMP:该引脚同时为电压误差放大器的输出端和芯片内部乘法器的一个输人端。反馈补偿网络接在该引脚与引脚INV之间;

MULT:该引脚为芯片内部乘法器的另一输入端;

CS:该脚为芯片内部PWM比较器的反相输入端,可通过电阻R6来检测MOS管电流;

ZCD:该脚为电感电流过零检测端,可通过一限流电阻接于Boost电感的副边绕组。R7的选取应保证流入ZCD引脚的电流不超过3 mA;

GND:该引脚为芯片地,芯片所有信号都以该引脚为参考,该引脚直接与主电路地相连;GD:为MOS管的驱动信号输出引脚。为避免MOS管驱动信号震荡,一般在GD引脚与MOS管的栅极之间连接一十几欧姆到几十欧姆的电阻,电阻的大小由实际电路决定;

VCC:芯片电源引脚。该引脚同时连接于启动电路和电源电路。

另外,在电路设计时,稳压管D2应选用15 V稳压管,电容C2应选用10μF的电解电容;二极管D5应选用快恢复二极管(如1N4148);电阻R3应选用几百千欧的电阻。

图5给出了由L6562构成的APFC电源的实际电路图。图中,输入交流电经整流桥整流后变换为脉动直流,作为Boost电路的输入;电容C4用以滤除电感电流中的高频信号,降低输入电流的谐波含量;电阻R1和R2构成电阻分压网络,用以确定输入电压的波形与相位,电容C10用以虑除3号引脚的高频干扰信号;Boost电感L的一个副边绕组,一方面通过电阻R7将电感电流过零信号传递到芯片的5脚,另一方面作为芯片正常工作时的电源;芯片驱动信号通过电阻R8和R9连到MOS管的门极;电阻R11作为电感电流检测电阻,用以采样电感电流的上升沿(MOS管电流),该电阻一端接于系统地,另一端同时接在MOS 管的源极,同时经电阻R10接至芯片的4脚;电阻R5和R6构成电阻分压网络,同时形成输出电压的负反馈回路;电容C9连接于芯片1、2脚之间,以组成电压环的补偿网络;电阻R4,电容C6,二极管D5,稳压管D6和Boost电感的副边则共同构成芯片电源。

3 Boost电感的设计

本设计采用AP法则来设计Boost电感。其原理是首先根据设计要求计算所需电感:

式中,Virms为输入电压有效值;Vo为输出电压,fsw(min)为MOS管的最小工作频率,通常在20kHz以上;Pi为输入功率。计算要求的AP值为:

式中,Ku为磁芯窗口利用率,Jc为电流密度,IL(pk)为电感电流峰值。

DCDC电容电感计算

BOOST电路的电感、电容计算 升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 其他参数: 电感:L 占空比:D 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd ***************************************************** 1:占空比 稳定工作时,每个开关周期导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*D/(f*L)=(Vo+Vd-Vi)*(1-D)/(f*L),整理后有 D=(Vo+Vd-Vi)/(Vo+Vd),参数带入,D=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量,其值为Vi*(1-D)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*D/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,

当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面 影响取L=60uH, deltaI=Vi*D/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-D)-(1/2)*deltaI, I2= Io/(1-D)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容: 此例中输出电容选择位陶瓷电容,故ESR可以忽略 C=Io*D/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径

PFC电感及匝数计算

(1) 升压电感的设计 升压电感的值决定转换器开关频率的大小,它主要由最小开关频率和输出功率决定。设开关管在一个周期里的导通时间为on t ,关断时间为off t ,则: VAC I L V I L t Lpk inpk Lpk on ??=???=2)sin()sin(θθ (2.32) ) sin(2)sin(θθ??-??=VAC V I L t out Lpk off (2.33) 式中,θ为交流输入电压的瞬时相位。 由式(2.33)可知,在交流输入电压的一个周期内,开关管的导通时间与电压的瞬时相位无关。由on t 和off t ,可得开关周期: [] )sin(22) sin(22)sin(2)sin(2122θθθθ??-????=??-????=?? ??????-+???=+=VAC V VAC P V L VAC V VAC V I L VAC V VAC I L t t T out in out out out Lpk out Lpk off on s (2.34) 故变换器的开关频率为: [] in out out sw sw P V L VAC V VAC T f ?????-?==2)sin(212θ (2.35) 所以,当1)sin(=θ时,开关频率最小;当0)sin(=θ时,开关频率最大。 故升压电感大小为: [] in out sw out P V f VAC V VAC L ????-?=min 222 (2.36) 由式(2.35)可知,最小开关频率出现在交流输入电压最大或最小时,分别计算它们对应的电感值: uH H VAC L 35.336400 220300002)2652400(265)(2max =????-?= (2.37) uH H VAC L 89.382400 220300002)852400(85)(2min =????-?= (2.38) 比较两个值,取uH L 310=。当V a c V in 85=时,由式(2.36)可得 k H z k H z f sw 207.33min >=,从而可以避免音频噪声。 根据近似的面积乘积(AP )法来估算升压电感磁芯尺寸的大小,其中面积

电感的计算方法和BOOST升压电路的电感、电容计算

电感计算方法 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) = 阻抗 (ohm) ?(2*3.14159) ?F (工作频率) = 360 ?(2*3.14159) ?7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ?圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ?2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈)

BOOST升压电路的电感、电容计算

【转】 BOOST升压电路的电感、电容计算 2011-05-06 23:54 转载自分享 最终编辑kxw102 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f ***************************************************************** ******* 1:占空比 稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有 don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量 其值为Vi*(1-don)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显, 当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取 L=60uH, deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A

3:输出电容: 此例中输出电容选择位陶瓷电容,故 ESR可以忽略 C=Io*don/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径 其他参数: 电感:L 占空比:don 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd

DC-DC电感选择

电感 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注与解释:电感上的DC 电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L(C 是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中(Fairchild 典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1 过程中,电感会通过(高边“high-side”)MOSFET 连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET 接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态 1 过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2 过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2 所示: 通过上图我们可以看到,流过电感的最大电流为DC 电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流: 其中,ton 是状态1 的时间,T 是开关周期(开关频率的倒数),DC 为状态1 的占空比。 警告:上面的计算是假设各元器件(MOSFET 上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。 如果,器件的下降不可忽略,就要用下列公式作精确计算: 同步转换电路: 异步转换电路:

BOOST升压电路的电感、电容计算

BOOST升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 1:占空比 稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即 Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有 don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量 其值为Vi*(1-don)/(f*2*Io) ,参数带入,Lx=38.5uH, deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显, 当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小, 由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取L=60uH, deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容:

此例中输出电容选择位陶瓷电容,故 ESR可以忽略 C=Io*don/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径 其他参数: 电感:L 占空比:don 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd

升压电感的计算方法

基于L6562的高功率因数boost电路的设计 0 引言 Boost是一种升压电路,这种电路的优点是可以使输入电流连续,并且在整个输入电压的正弦周期都可以调制,因此可获得很高的功率因数;该电路的电感电流即为输入电流,因而容易调节;同时开关管门极驱动信号地与输出共地,故驱动简单;此外,由于输入电流连续,开关管的电流峰值较小,因此,对输入电压变化适应性强。 储能电感在Boost电路起着关键的作用。一般而言,其感量较大,匝数较多,阻抗较大,容易引起电感饱和,发热量增加,严重威胁产品的性能和寿命。因此,对于储能电感的设计,是Boost电路的重点和难点之一。本文基于ST公司的L6562设计了一种Boost电路,并详细分析了磁性元器件的设计方法。 1 Boost电路的基本原理 Boost电路拓扑如图1所示。图中,当开关管T导通时,电流,IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容Cout 放电为负载提供能量;而当开关管T关断时,由于线圈中的磁能将改变线圈L两端的电压VL卡及性,以保持其电流IL不突变。这样,线圈L转化的电压VL与电源Vin串联,并以高于输出的电压向电容和负载供电,如图2所示是其电压和电流的关系图。图中,Vcont 为功率开关MOSFET的控制信号,VI为MOFET两端的电压,ID为流过二极管D的电流。以电流,IL作为区分,Boost电路的工作模式可分为连续模式、断续模式和临界模式三种。 分析图2,可得: 式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。

式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。 2 临界状态下的Boost-APFC电路设计 基于L6562的临界工作模式下的Boost-APFC电路的典型拓扑结构如图3所示,图4所示是其APFC工作原理波形图。 利用Boost电路实现高功率因数的原理是使输入电流跟随输入电压,并获得期望的输出电压。因此,控制电路所需的参量包括即时输入电压、输入电流及输出电压。乘法器连接输入电流控制部分和输出电压控制部分,输出正弦信号。当输出电压偏离期望值,如输出电压跌落时,电压控制环节的输出电压增加,使乘法器的输出也相应增加,从而使输入电流有效值也相应增加,以提供足够的能量。在此类控制模型中,输入电流的有效值由输出电压控制环节实现调制,而输入电流控制环节使输入电流保持正弦规律变化,从而跟踪输入电压。本文在基于此类控制模型下,采用ST公司的L6562作为控制芯片,给出了Boost-APFC电路的设计方法。 L6562的引脚功能如下: INV:该引脚为电压误差放大器的反相输入端和输出电压过压保护输入端; COMP:该引脚同时为电压误差放大器的输出端和芯片内部乘法器的一个输人端。反馈补偿网络接在该引脚与引脚INV之间; MULT:该引脚为芯片内部乘法器的另一输入端; CS:该脚为芯片内部PWM比较器的反相输入端,可通过电阻R6来检测MOS管电流; ZCD:该脚为电感电流过零检测端,可通过一限流电阻接于Boost电感的副边绕组。R7的选取应保证流入ZCD引脚的电流不超过3 mA;

DC-DC升压和降压电路电感参数选择详解

DC-DC 升压和降压电路电感参数选择 注:只有充分理解电感在DC-DC 电路中发挥的作用,才能更优的设计DC-DC 电路。本文 还包括对同步DC-DC 及异步DC-DC 概念的解释。 DC-DC 电路电感的选择简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还 要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC 电流 效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L ( C 是具中的输出电容1虽然这 样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中 (Fairchild 典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率 切换连接到输入电压或GND 。 Figure 1. Basic Switching Action of a Converter 在状态1过程中,电感会通过(高边"high-side" ) MOSFET 连接到输入电压。在状态2 过程中,电感连接到GND 。由于使用了这类的控制器,可以采用两种方式实现电感接地: 通过二极管接地或通过(低边"low-side" ) MOSFET 接地。如果是后一种方式,转换器 就称为" 同步 ▼ State 2

(synchronus )"方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的 F连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须1:匕输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示: Figure 2. Inductor Current 通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

压敏电阻型号及电感计算公式

压敏电阻型号及电感计算公式 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

电感计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm> = 2 * 3.14159 * F(工作频率> * 电感量(mH>,设定需用 360ohm 阻抗,因此: 电感量(mH> = 阻抗(ohm> ÷ (2*3.14159> ÷ F (工作频率> = 360 ÷ (2*3.14159> ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋>> + ( 40 * 圈长(吋>>}] ÷ 圈直径(吋> 圈数= [8.116 * {(18*2.047> + (40*3.74>}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH>=(0.08D.D.N.N>/(3D+9W+10H> D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫M和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N>/(L/D+0.44> 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0>*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125MHZ 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式1。针对环行CORE,有以下公式可利用: (IRON>

DC-DC升压和降压电路电感参数选择详解

DC-DC升压和降压电路电感参数选择详解 注:只有充分理解电感在DC-DC电路中发挥的作用,才能更优的设计DC-DC电路。本文还包括对同步DC-DC及异步DC-DC概念的解释。DC-DC电路电感参数选择详解 DC-DC电路电感的选择简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。DC-DC电路电感参数选择详解 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式:DC-DC电路电感参数选择详解 V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示:

LCL电感计算

开关频率:fs=4.8K 开关周期:Ts=1/4.8K= 2.0833e-004s P=100K,U_gird=380V 升压变压器变比为:277/480 网侧额定电流有效值:I_grid=100000/3/(380/1.732)=151.9A 逆变侧额定电流有效值:I_inv=100000/3/(380/1.732)*400/277=219.4A 取电感电流纹波10%计算电感量: 母线电压Ud Ud最大取800V 100KLCL计算 线电压为380V,总功率为100kW,开关频率为9.6kHz,根据这些原始条件来设计。这样可以得到 (1)选择2.7%的阻抗基值作为变换器侧电感的感抗,这样可以获得10%的电流波动。LC部分的作用是将这10%的电流波动衰减为2%。 L=计算得到124uH的电感值,这里取128uH。 (2)最大的电容值为,选的电容,也可以先取一半50uF (3) 通过选择电流的衰减比和谐振频率来选择两个电感之间的比例。谐振频率与开关频率无关,但谐振频率要高于控制系统的带宽文献上一般采用是开关频率1/4~1/2左右。定选在2.4k~4.8k之间,可以取为4K。500K电感计算: 开关频率:fs=2.4K 开关周期:Ts=1/2.4K= 4.1667e-004s P=500K,UL=277V 网侧额定电流有效值: I_grid=500000/3/(277/1.732)*1.414=1.4736e+003A 以电感电流纹波为峰值电流10%计算,母线电压取500V 50%占空比工作时电感纹波最大: 等效阻抗: 100K电感计算: 开关频率:fs=4.8K 开关周期:Ts=1/4.8K= 2.0833e-004s P=100K,UL=277V 网侧额定电流有效值:

(完整)升压斩波电路电感电容的计算

(完整)升压斩波电路电感电容的计算 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)升压斩波电路电感电容的计算)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)升压斩波电路电感电容的计算的全部内容。

升压斩波电路电感电容的计算: 升压斩波主电路的基本原理 ?1。电路的基本工作原理, ?当V1导通时,能量从输入电源流入,并储存于电感L1中,由于V1导通期间正向饱和管压降很小,故这时二级管VD反偏,负载由滤波电容C供给能量,将C中储存的电能释放给负载.当V截止时,电感L中电流不能突变,它所产生的感应电势阻止电流减小,感应电势的极性为下正上负,二极管VD导通,电感 中储存的能量经二极管VD,流入电容C,并给负载.在V导通的他t on期间,能量储存在电感L中,在V截止的t off期间,电感L释放能量,补充在t on期间电容C上损失的能量。V截止时电感L上电压跳变的幅值是是与占空比有关的,t on越大,L中峰值电流大,储存的磁能越大。所以如果要在t on期间储存的能量要在t off期间释放出来,那末,L上的电压脉冲必定是比较高的。假定开关管没有损耗,升压斩波电路在输入电压V i、输入电流I i下,能在较低的输出电流I o下,输出较高的电压V o。 2.电感电容的选择 输入V i=26V直流稳压电,输出电压V o=36V,电流I o=2A。,△V0=1V,开关频率f在10KHz以上 (1)储能电感L的选择 电感电流包括直流平均植和纹波分量两部分,其电流平均值如下确定。假定忽略 电路的内部损耗,则V i*I i=V o*I o,其中I i是从电源V i取出的平均电流,也是流入

升压斩波电路电感电容的计算

升压斩波电路电感电容的计算: 升压斩波主电路的基本原理 1.电路的基本工作原理, 当V1导通时,能量从输入电源流入,并储存于电感L1中,由于V1导通期间正向饱和管压降很小,故这时二级管VD反偏,负载由滤波电容C供给能量,将C中储存的电能释放给负载。当V截止时,电感L中电流不能突变,它所产生的感应电势阻止电流减小,感应电势的极性为下正上负,二极管VD导通,电感中储存的能量经二极管VD,流入电容C,并给负载。在V导通的他t on期间,能量储存在电感L中,在V截止的t off期间,电感L释放能量,补充在t on期间电容C上损失的能量。V截止时电感L上电压跳变的幅值是是与占空比有关的,t on 越大,L中峰值电流大,储存的磁能越大。所以如果要在t on期间储存的能量要在t off期间释放出来,那末,L上的电压脉冲必定是比较高的。假定开关管没有损耗,升压斩波电路在输入电压V i、输入电流I i下,能在较低的输出电流I o下,输出较高的电压V o。 2.电感电容的选择 输入V i=26V直流稳压电 , 输出电压V o=36V,电流I o=2A.,△V0=1V,开关频率f在10KHz以上 (1)储能电感L的选择

电感电流包括直流平均植和纹波分量两部分,其电流平均值如下确定。假定忽略电路的内部损耗,则V i*I i=V o*I o,其中I i是从电源V i取出的平均电流,也是流入电感的平均电流I L, V o= V i*T/t off,故有 I i= V o*I o/ V i=I o*T/t off 我们选择ΔI=V i*t on/L=1.4I i,则电感L为 L= V i*t on/1.4I i t on=T*( V o- V i)/ V o=(V o-V i)/(f*V o) 假定忽略内部的损耗,则 V i*I i=V o*I o 故有 I i= V o*I o/ V i 因此 L= V i*t on/(1.4I i)= V i2*(V o- V i)/(1.4f * V o2*I o) 已知输出电压V o、输出电流I o、输入电压V i和开关频率f,就可求出电感值。则: L≤262(36-26)/1.4*10000*362*2=1.86*10(-4)H 2.输出滤波电容的选择 假如输出滤波电容C必须在V开启的t on期间供给全部负载电流,设在t on 期间,C上的电压降≤纹波电压ΔV o,由式得 C=I o*(t on/ΔV o) 由式,求得t on=T*(V o-V i)/V o 故有 C= T*I o*(V o-V i)/(V o*ΔV o)= I o*(V o-V i)/(f*V o*ΔV o) C≤2*(36-26)/(10000*1*36)=55.6uF

电感计算方法

电感计算方法 电感在电路中的选择 (注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。本文还包括对同步 DC/DC及异步DC/DC概念的解释。) 简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可

承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L (C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1过程中,电感会通过(高边“high-side)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低

边“low-side”MOSFET接地。如果是后一种方式,转换器就称为"同步(synchronuS"方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端 连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dl/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时 (状态2),电感上的电流就会减小。通过电感的电流如图2所示:

升压芯片用电感

美莱实业有限公司 深圳市美莱鑫电子科技有限公司 M e l e d T e c h n o l o g y J o i n t -S t o c k C o m p a n y L i m i t e d MELED SMD POWER 美莱贴片功率电感 SMD 43 TYPE z MELED TYPE DIMENSIONS(UNIT:mm) ● MELED SMD 43 SERIES 美莱SMD 43规格参数 Test Frequency 测试条件 DC Resistance 直流电阻 MLED Part Number 美莱产品型号 Inductance(uH)电感值 (HZ) (ΩMAX) Rated DC Current 额定电流 (A) SMD43-1R0 1.0 7.96M 0.033 3.80 SMD43-1R5 1.5 7.96M 0.038 3.30 SMD43-1R8 1.8 7.96M 0.042 2.91 SMD43-2R2 2.2 7.96M 0.047 2.60 SMD43-2R7 2.7 7.96M 0.052 2.43 SMD43-3R3 3.3 7.96M 0.058 2.15 SMD43-3R9 3.9 7.96M 0.076 1.98 SMD43-4R7 4.7 7.96M 0.094 1.70 SMD43-5R6 5.6 7.96M 0.101 1.60 SMD43-6R8 6.8 7.96M 0.117 1.41 SMD43-8R2 8.2 7.96M 0.132 1.26 SMD43-100 10 2.52M 0.182 1.15 SMD43-120 12 2.52M 0.210 1.05 SMD43-150 15 2.52M 0.235 0.92 A 4.5±0.3 B 4.0±0.3 C 3.2±0.3 D 1.2REF E 0.8 F 2.1 G 4.5 电性结构图:

电感的作用及用途及经验计算公式

电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一,相关产品如共膜滤波器等。 一、自感与互感 (一)自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。 (二)互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。 二、电感器的作用与电路图形符号 (一)电感器的电路图形符号 电感器是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母"L"表示,图6-1是其电路图形符号。 (二)电感器的作用 电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。 三、变压器的作用及电路图形符号 (一)变压器的电路图形符号 变压器是利用电感器的电磁感应原理制成的部件。在电路中用字母"T"(旧标准为"B")表示,其电路图形符号如图6-12所示。 (二)变压器的作用 变压器是利用其一次(初级)、二次(次级)绕组之间圈数(匝数)比的不同来改变电压比或电流比,实现电能或信号的传输与分配。其主要有降低交流电压、提升交流电压、信号耦合、变换阻抗、隔离等作用。 (一)电感器的结构与特点 电感器一般由骨架、绕组、屏蔽罩、封装材料、磁心或铁心等组成。 1.骨架骨架泛指绕制线圈的支架。一些体积较大的固定式电感器或可调式电感器(如振荡线圈、阻流圈等),大多数是将漆包线(或纱包线)环绕在骨架上,再将磁心或铜心、铁心等装入骨架的内腔,以提高其电感量。 骨架通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。 小型电感器(例如色码电感器)一般不使用骨架,而是直接将漆包线绕在磁心上。 空心电感器(也称脱胎线圈或空心线圈,多用于高频电路中)不用磁心、骨架和屏蔽罩等,而是先在模具上绕好后再脱去模具,并将线圈各圈之间拉开一定距离。 2.绕组绕组是指具有规定功能的一组线圈,它是电感器的基本组成部分。 绕组有单层和多层之分。单层绕组又有密绕(绕制时导线一圈挨一圈)和间绕(绕制时每圈导线之间均隔一定的距离)两种形式;多层绕组有分层平绕、乱绕、蜂房式绕法等多种,如图6-5所示。 3.磁心与磁棒磁心与磁棒一般采用镍锌铁氧体(NX系列)或锰锌铁氧体(MX系列)等材料,它有"工"字形、柱形、帽形、"E"形、罐形等多种形状,如图6-6所示。 4.铁心铁心材料主要有硅钢片、坡莫合金等,其外形多为"E"型。 5.屏蔽罩为避免有些电感器在工作时产生的磁场影响其它电路及元器件正常工作,就为其增加了金属屏幕罩(例如半导体收音机的振荡线圈等)。采用屏蔽罩的电感器,会增加线圈的损耗,使Q值降低。 6.封装材料有些电感器(如色码电感器、色环电感器等)绕制好后,用封装材料将线

电感式DCDC升压原理

电感式DC/DC 升压原理 什么是电感型升压DC/DC转换器? 如图1所示为简化的电感型DC-DC转换器电路,闭合开关会引起通过电感的电流增加。打开开关会促使电流通过二极管流向输出电容。因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。 决定电感型升压的DC-DC转换器输出电压的因素是什么? 在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能? 因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。 电感型升压转换器IC电路输出二极管选择的原则是什么? 升压转换器要选快速肖特基整流二极管。与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。肖特基二极管平均电流额定值应大于电路最大输出电压。 怎样选择电感型升压转换器IC电路的输入电容? 升压调节器的输入为三角形电压波形,因此要求输入电容必须减小输入纹波和噪声。纹波的幅度与输入电容值的大小成反比,也就是说,电容容量越大,纹波越小。如果转换器负载变化很小,并且输出电流小,使用小容量输入电容也很安全。如果转换器输入与源输出相差很小,也可选小体积电容。如果要求电路对输入电压源纹波干扰很小,就可能需要大容量电容,并(或)减小等效串联电阻(ESR)。 在电感型升压转换器IC电路中,选择输出电容时要考虑哪些因素?

DC-DC升压和降压电路电感参数选择详解

DC-DC 升压和降压电路电感参数选择 注:只有充分理解电感在DC-DC 电路中发挥的作用,才能更优的设计DC-DC 电路。本文 还包括对同步DC-DC 及异步DC-DC 概念的解释。 DC-DC 电路电感的选择简介 在开关电源的设计中电感的设计为工程I 丿帀带来的许多的挑战。工程师不仅要选择电感值,还 要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC 电流 效应。这也会为选择合适的电感提供必要的倍息。 理解电感的功能 电感常常被理解为开关电瞬I 出端中的LC 滤波电路中的L ( C 是其中的输出电容X 虽然这 样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中 (Fairchild 典型的开关控制器),电感的一端是连接到DC 输出电压。另Fii 过开关频率 切换连接到输入电压或GND 。 V1N DC Output Voltage 在状态1过程中,电感会通过(离边〃high ?sidy ) MOSFET 到输入电压。在状态2 过程中,电感连接到GND 。由于使用了这类的控制器,可以采用两种方式实现电感接地: 通过二极管接地或通过(低边"low ?sidy )MOSFET 接地。如果是后一种方式,转换器 就称为"同步(synchronus ) ”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的 ▲ State t ▼ State 2 Figure 1, Basic Switching Action of a Converter

端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须t瀚出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来到输入电压的电感一端被连接到地。对于一个降压转换器?输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此■当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时 (状态2 ).电感上的电流就会减小。通过电感的电流如图2所示: Figure 2. Inductor Current 通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流: _ T 丄Ipp _ T 丄1代力 - Vom)X toa PK _ 丄DC + Sc + 2 L 」(Vg—V“JxTxDC DC 巧----- E -------- 其中,ton是状态1的时间,T是开关周期(开关频率的倒数),DC为状态1的占空比。 警告:上面的计算是假设各元器件(MOSFET上的导通压降,电感的导通压降或异步电路中肖特基二极簣的正向压降)上的压降对比输入和输出电压是可以忽略的。

电感式升压原理及电路

先看看下面的图: 电感回路通电瞬间(原文件名: 相信有初中文化是坛友们都知道,一个电池对一个线圈通电,这是个电磁铁.不论你是否科盲,你一定会奇怪,这有什么值得分析的呢有!我们要分析它通电和断电的瞬间发生了什么. 线圈(以后叫作"电感"了)有一个特性---电磁转换,电可以变成磁,磁也可以变回电.当通电瞬间,电会变为磁并以磁的形式储存在电感内.而断电瞬磁会变成电,从电感中释放出来. 现在我们看看下图,断电瞬间发生了什么:

断电瞬间(原文件名: 前面我说过了,电感内的磁能会在电感断电时重新变回电,然而问题来了:此时回路已经断开,电流无处可以,磁如何能转换成电流呢很简单,电感两端会出现高压!电压有多高呢无穷高,直到击穿任何阻挡电流前进的介质为止. 这里我们了解了电感的第二个特性----升压特性.当回路断开时,电感内的能量会以无穷高电压的形式变换回电,电压能升多高,仅取决于介质变的击穿电压. 现在可以小结一下了: 下面是正压发生器,你不停地扳动开关,从输入处可以得到无穷高的正电压.电压到底升到多高,取决于你在二极管的另一端接了什么东西让电流有处可去.如果什么也不接,电流就无处可去,于是电压会升到足够高,将开关击穿,能量以热的形式消耗掉.

正压发生器原理图(原文件名: 下面是负压发生器,你不停地扳动开关,从输入处可以得到无穷高的负电压. 负压发生器原理图(原文件名: 上面说的都是理论,现在来点实际的电子线路图,看看正/负压发生器的"最小系统"到底什么样子:

实际电子线路(原文件名: 你可以很清楚看到演变,电路中仅仅把开关换成了三极管换而已. 不要小看这两个图,事实上,所以开关电源都是由这两个图组合变换而来,所以掌握这两个图非常重要. 最后要提提磁饱合的问题.什么是磁饱合 从上面的背景知道我们可以知道电感能储存能量,将能量以磁场方式保存,但能存多少呢存满之后会发生什么情况呢 存多少: "最大磁通量"这个参数就是干这个用的,很显然,电感不能无限保 存能量,它存储能量的数量由电压与时间的乘积决定,对于每个电感来说,

电感的作用及用途及经验计算公式

电感的作用及用途及经 验计算公式 -CAL-FENGHAI.-(YICAI)-Company One1

电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一,相关产品如共膜滤波器等。 一、自感与互感 (一)自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。 (二)互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。 二、电感器的作用与电路图形符号 (一)电感器的电路图形符号 电感器是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母"L"表示,图6-1是其电路图形符号。 (二)电感器的作用 电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。 三、变压器的作用及电路图形符号 (一)变压器的电路图形符号 变压器是利用电感器的电磁感应原理制成的部件。在电路中用字母"T"(旧标准为"B")表示,其电路图形符号如图6-12所示。 (二)变压器的作用 变压器是利用其一次(初级)、二次(次级)绕组之间圈数(匝数)比的不同来改变电压比或电流比,实现电能或信号的传输与分配。其主要有降低交流电压、提升交流电压、信号耦合、变换阻抗、隔离等作用。 (一)电感器的结构与特点 电感器一般由骨架、绕组、屏蔽罩、封装材料、磁心或铁心等组成。 1.骨架骨架泛指绕制线圈的支架。一些体积较大的固定式电感器或可调式电感器(如振荡线圈、阻流圈等),大多数是将漆包线(或纱包线)环绕在骨架上,再将磁心或铜心、铁心等装入骨架的内腔,以提高其电感量。 骨架通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。 小型电感器(例如色码电感器)一般不使用骨架,而是直接将漆包线绕在磁心上。 空心电感器(也称脱胎线圈或空心线圈,多用于高频电路中)不用磁心、骨架和屏蔽罩等,而是先在模具上绕好后再脱去模具,并将线圈各圈之间拉开一定距离。 2.绕组绕组是指具有规定功能的一组线圈,它是电感器的基本组成部分。

相关文档
最新文档