机械毕业设计英文外文翻译155粉碎的非圆柱形辊破碎机

机械毕业设计英文外文翻译155粉碎的非圆柱形辊破碎机
机械毕业设计英文外文翻译155粉碎的非圆柱形辊破碎机

翻译

英文原文

COMMINUTION IN A NON-CYLINDRICAL ROLL CRUSHER*

P. VELLETRI ~ and D.M. WEEDON ~

~[ Dept. of Mechanical & Materials Engineering, University of Western Australia, 35 Stirling Hwv,

Crawley 6009, Australia. E-mail piero@https://www.360docs.net/doc/5c715791.html,.au

§ Faculty of Engineering and Physical Systems, Central Queensland University, PO Box 1!:;19,

Gladstone, Qld. 4680, Australia

(Received 3 May 2001; accepted 4 September 2001)

ABSTRACT

Low reduction ratios and high wear rates are the two characteristics ntost commonh" associated with conventional roll crushers. Because of this, roll crushers are not often considered Jor use in mineral processing circuits, attd many of their advantages are being largely overlooked. This paper describes a novel roll crusher that has been developed ipt order to address these issues.Relbrred to as the NCRC (Non-Cylindrical Roll Crusher), the new crusher incorporates two rolls comprised qf an alternating arrangement of platte attd convex or concave su@wes. These unique roll prqfiles improve the angle qf nip, enabling the NCRC to achieve higher reduction ratios than conventional roll crushers. Tests with a model prototype have indicated thar evell fi)r very hard ores, reduction ratios exceeding lO:l can be attained. In addition, since the comminution process in the NCRC combines the actions of roll arM jaw crushers there is a possibili O' that the new profiles may lead to reduced roll wear rates. ? 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Comminution; crushing

INTRODUCTION

Conventional roll crushers suffer from several disadvantages that have lcd to their lack of popularity in mineral processing applications. In particular, their low reduction ratios (typically limited to about 3:1) and high wear rates make them unattractive when compared to other types of comminution equipment, such as cone crushers. There are, however, some characteristics of roll crushers that are very desirable from a mineral processing point of view. The relatively constant operating gap in a roll crusher gives good control over product size. The use of spring-loaded rolls make these machines tolerant to uncrushable material (such as tramp metal). In addition, roll crushers work by drawing material into the compression region between the rolls and do not rely on gravitational feeci ~like cone and jaw crushers. This generates a continuous crushing cycle, which yields

high throughput rates and also makes the crusher capable of processing wet and sticky ore. The NCRC is a novel roll crusher that has been dcveloped at the University of Western Australia in ordcr to address some of the problems associated with conventional roll crushers. The new crusher incorporates two rolls comprised of an alternating arrangement of plane and convex or concave surfaccs. Thcse unique roll profiles improve the angle of nip, enabling the NCRC to achieve higher reduction ratios than conventional roll crushers. Preliminary tests with a model prototype have indicated that, even for very hard oics, reduction ratios exceeding 10:I can be attained (Vellelri and Weedon, 2000). These initial findings were obtained for single particle feed. where there is no significant interaction between particles during comminution. The current work extends the existing results bv examining inulti-particle comminution inthe NCRC. It also looks at various othcr factors that influencc the perli~rmance of the NCRC and explores

the effectiveness of using the NCRC for the processing of mill scats. PRINCIPLE OF OPERATION

The angle of nip is one of the main lectors effccting the performance of a roll crusher. Smaller nip angles

are beneficial since they increase tl~e likelihood of parlictes bcing grabbed and crushed by lhe rolls. For a

given feed size and roll gap, the nip angle in a conventional rtHl crusher is limited by the size of thc rolls.

The NCRC attempts to overcome this limitation through the use of profiled rolls, which improve the angle

of nip at various points during one cycle (or revolution) of the rolls. In addition to the nip angle, a number

of other factors including variation m roll gap and mode of commmution were considered when selecting

Ille roll profiles. The final shapes of the NCRC rolls are shown in Figure I. One of the rolls consists {sI an

alternating arrangement of plane and convex surfaces, while the other is formed from an alternating

arrangement of phme and concave surlaccs.

The shape of the rolls on the NCRC result in several unique characteristics. Tile most important is that, lk)r a given particle size and roll gap, the nip angle generated m the NCRC will not remain constant as the rolls rotate. There will be times when the nip angle is much lower than it would be for the same sized cylindrical rolls and times when it will be much highcr. The actual variation in nip angle over a 60 degree roll rotation is illustrated in Figure 2, which also shows the nip angle generated under similar conditions m a cylindrical roll crusher of comparable size. These nip angles were calculated for a 25ram diameter circular particle between roll of approximately 200ram diameter set at a I mm minimum gap. This example can be used to illustrate the potential advantage of using non-cylindrical rolls. In order for a particle to be gripped, thc angle of nip should normally not exceed 25 ° . Thus, the cylindrical roll crusher would never nip this particle, since the actual nip angle remains constant at approximately 52 °. The nip angle generated by the NCRC, however, tidls below 25 ° once as the rolls rotate by (~0 degrees. This means that the non-cylindrical rolls have a possibility of nipping the particlc 6 times during one roll rewHution.

EXPERIMENTAL PROCEDURE

The laboratory scale prototype of the NCRC (Figure 3) consists of two roll units, each comprising a motor, gearbox and profiled roll. Both units are mounted on linear bearings, which effectively support any vertical componcnt of force while enabling horizontal motion. One roll unit is horizontally fixed while the other is

restrained via a compression spring, which allows it to resist a varying degree of horizontal load.

The pre-load on the movable roll can be adjusted up to a maximum of 20kN. The two motors that drive the rolls are electronically synchronised through a variable speed controller, enabling the roll speed to be continuously varied up to 14 rpm (approximately 0.14 m/s surface speed). The rolls have a centre-to-centre distance ~,at zero gap setting) of I88mm and a width of 100mm. Both drive shafts are instrumented with strain gauges to enable the roll torque to be measured. Additional sensors are provided to measure the horizontal force on the stationary roll and the gap between the rolls. Clear glass is fitted to the sides of the NCRC to facilitate viewing of the crushing zonc during operation and also allows the crushing sequence to

bc recorded using a high-speed digital camera.

Tests were performed on several types of rocks including granite, diorite, mineral ore, mill scats and concrete. The granite and diorite were obtained from separate commercial quarries; the former had been pre-crushed and sized, while the latter was as-blasted rock. The first of the ore samples was SAG mill feed obtained from Normandy Mining's Golden Grove operations, while the mill scats were obtained from Aurora Gold's Mt Muro mine site in central Kalimantan. The mill scats included metal particles of up to 18ram diameter from worn and broken grinding media. The concrete consisted of cylindrical samples (25mm diameter by 25ram high) that were prepared in the laboratory in accordance with the relevant Australian Standards. Unconfined uniaxial compression tests were performed on core samples (25mm diameter by 25mm high) taken from a number of the ores. The results indicated strength ranging from 60 MPa for the prepared concrete up to 260 MPa for the Golden Grove ore samples.

All of the samples were initially passed through a 37.5mm sieve to remove any oversized particles. The undersized ore was then sampled and sieved to determine the feed size distribution. For each trial approximately 2500g of sample was crushed in the NCRC. This sample size was chosen on the basis of statistical tests, which indicated that at least 2000g of sample needed to be crushed in order to estimate the

product P80 to within +0.1ram with 95% confidence. The product was collected and riffled into ten subsamples,

and a standard wet/dry sieving method was then used to determine the product size distribution.

For each trial, two of the sub-samples were initially sieved. Additional sub-samples were sieved if there

were any significant differences in the resulting product size distributions.

A number of comminution tests were conducted using the NCRC to determine the effects of various parameters including roll gap, roll force, feed size, and the effect of single and multi-particle feed. The roll speed was set at maximum and was not varied between trials as previous experiments had concluded that there was little effect of roll speed on product size distribution. It should be noted that the roll gap settings quoted refer to the minimum roll gap. Due to the non-cylindrical shape of the rolls, the actual roll gap will vary up to 1.7 mm above the minimum setting (ie: a roll gap selling of l mm actually means 1-2.7mm roll gap).

RESULTS

Feed material

The performance of all comminution equipment is dependent on the type of material being crushed. In this respect, the NCRC is no different. Softer materials crushed in the NCRC yield a lower P80 than harder materials. Figure 4 shows the product size distribution obtained when several different materials were crushed under similar conditions in the NCRC. It is interesting to note that apart from the prepared concrete

samples, the P80 values obtained from the various materials were fairly consistent. These results reflect the

degree of control over product size distribution that can be obtained with the NCRC.

Multiple feed particles

Previous trials with the NCRC were conducted using only single feed particles where there was little or no interaction between particles. Although very effective, the low throughput rates associated with this mode of comminution makes it unsuitable for practical applications. Therefore it was necessary to determine the effect that a continuous feed would have to the resulting product size distribution. In these tests, the NCRC was continuously supplied with feed to maintain a bed of material level with the top of the rolls. Figure 5 shows the effect that continuous feed to the NCRC had on the product size distribution for the Normandy Ore. These results seem to show a slight increase in P80 with continuous (multi-particle) feed, however the shift is so small as to make it statistically insignificant. Similarly, the product size distributions would seem to indicate a larger proportion of fines for the continuously fed trial, but the actual difference is negligible. Similar trials were also conducted with the granite samples using two different roll gaps, as shown in Figure 6. Once again there was little variation between the single and multi-particle tests. Not surprisingly, the difference was even less significant at the larger roll gap, where the degree of comminution (and hence interaction between particles) is smaller.

All of these tests would seem to indicate that continuous feeding has minimal effect on the performance of the NCRC. However, it is important to realise that the feed particles used in these trials were spread over a very small size range, as evident by the feed size distribution shown in Figure 6 (the feed particles in the Normandy trials were even more uniform). The unilormity in feed particle size results in a large amount of free space, which allow:s for swelling of the broken ore in the crushing chamber, thereby limiting the amount of interaction between particles. True "choke" feeding of the NCRC with ore having a wide

distribution of particle sizes (especially in the smaller size range) is likely to generate much larger pressures

in the crushing zone. Since the NCRC is not designed to act as a "'high pressure grinding roll" a larger number of oversize particles would pass between the rolls under these circumstances.

Roll gap

As with a traditional roll crusher, the roll gap setting on the NCRC has a direct influence on the product size distribution and throughput of the crusher. Figure 7 shows the resulting product size distribution obtained when the Aurora Gold ore (mill scats) was crushed at three different roll gaps. Plotting the PSO values taken from this graph against the roll gap yields the linear relationship shown in Figure 8. As explained previously, the actual roll gap on the NCRC will vary over one revolution. This variation accounts for the difference between the specified gap setting and product Ps0 obtained from the crushing trials. Figure 8 also shows the effect of roll gap on throughput of the crusher and gives an indication of the crushing rates that can be obtained with the laboratory scale model NCRC.

Roll force

The NCRC is designed to operate with minimal interaction between particles, such that comminution is primarily achieved by fracture of particles directly between the rolls. As a consequence, the roll force only needs to bc large enough to overcome the combined compressive strengths of the particles between the

roll

surlaces. If the roll force is not large enough then the ore particles will separate the rolls allowing oversized particles to lall through. Increasing the roll force reduces the tendency of the rolls to separate and therefore

provides better control over product size. However, once a limiting roll force has been reached (which is dependent on the size and type of material being crushed) any further increase in roll force adds nothing to the performance of the roll crusher. This is demonstrated in Figure 9, which shows that for granite feed of 25-3 Imm size, a roll force of approximately 16 to 18 kN is required to control the product size. Using a larger roll force has little effect on the product size, although there is a rapid increase in product P80 if the roll force is reduced bek>w this level.

As mentioned previously, the feed size distribution has a significant effect on the pressure generated in the crushing chamber. Ore that has a finer feed size distribution tends to "choke" the NCRC more, reducing the effectiveness of the crusher. However, as long as the pressure generated in not excessive the NCRC maintains a relatively constant operating gap irrespective of the feed size. The product size distribution will, therefore, also bc independent of the feed size distribution. This is illustrated in Figure 10, which shows the results of two crushing trials using identical equipment settings but with feed ore having different size distributions. In this example, the NCRC reduced the courser ore from an Fs0 of 34mm to a Ps0 of 3.0mm (reduction ratio of 11:1), while the finer ore was reduced from an Fs0 of 18mm to a Pso of 3.4mm (reduction ratio of 5:1). These results suggest that the advantages of using profiled rolls diminish as the ratio of the feed size to roll size is reduced. In other words, to achieve higher reduction ratios the feed particles must be large enough to take advantage of the improved nip angles generated in the NCRC.

Mill scats

Some grinding circuits employ a recycle or pebble crusher (such as a cone crusher) to process material which builds up in a mill and which the mill finds hard to break (mill scats). The mill scats often contain worn or broken grinding media, which can find its way into the recycle crusher. A tolerance to uncrushable material is therefore a desirable characteristic for a pebble crusher to have. The NCRC seems ideally suited to such an application, since one of the rolls has the ability to yield allowing the uncrushable material to pass through.

The product size distributions shown in Figure 1 1 were obtained from the processing of mill scats in the NCRC. Identical equipment settings and feed size distributions were used for both results, however one of the trials was conducted using feed ore in which the grinding media had been removed. As expected, the NCRC was able to process the feed ore containing grinding media without incident. However, since one roll was often moving in order to allow the grinding media to pass, a number of oversized particles were able to fall through the gap without being broken. Consequently, the product size distribution for this feed ore shows a shift towards the larger particle sizes, and the Ps0 value increases from 4ram to 4.7mm. In spite

of this, the NCRC was still able to achieve a reduction ratio of almost 4:1.

Wear

Although no specific tesls were conducted to determine the wear rates on the rolls of the NCRC, a number of the crushing trials were recorded using a high-speed video camera in order to try and understand the comminution mechanism. By observing particles being broken between the rolls it is possible to identify portions of the rolls which are likely to suffer from high wear and to make some subjective conclusions as to the effect that this wear will have on the perlbrmance of the NCRC. Not surprisingly, the region that shows up as being the prime candidate for high wcar is the transition between the flat and concave surfaces.

What is surprising is that this edge does not play a significant role in generating the improved nip angles. The performance of the NCRC should not be adversely effccted by wear to this edge because it is actually the transition between the fiat and convex surfaces (on the opposing roll) that results in the reduced nip angles.

The vide() also shows that tor part of each cycle particles are comminuted between the flat surfaces of the rolls, in much the same way as they would be in a jaw crusher. This can be clearly seen on the sequence of images in Figure 12. The wear on the rolls during this part of the cycle is likely' to be minimal since there is

little or no relative motion between the particles and the surface of the rolls.

CONCLUSIONS

The results presented have demonstrated some of the factors effecting the comminution of particles in a

non-cylindrical roll crusher. The high reduction ratios obtained from early single particle tests can still be achieved with continuous multi-particle feed. However, as with a traditional roll crusher, the NCRC is susceptible to choke feeding and must be starvation fed in order to operate effectively. The type of feed material has little effect on the performance of the NCRC and, although not tested, it is anticipated that the moisture content of the feed ore will also not adversely affect the crusher's per[Brmance. Results from the mill scat trials are particularly promising because they demonstrate that the NCRC is able to process ore containing metal from worn grinding media. The above factors, in combination with the flaky nature of the product generated, indicate that the NCRC would make an excellent recycle or pebble crusher. It would

also be interesting to determine whether there is any difference in the ball mill energy required to grind product obtained from the NCRC compared that obtained from a cone crusher.

中文译文

摘要

低的破碎比和高的磨损率是与传统的破碎机相联系的很常见的两个特性。因为这点,在矿石处理流程的应用中,很少考虑到它们,并且忽略了很多它们的优点。本文描述了一个已被发展起来的新颖的对辊破碎机,旨在提出这些论点。作为NCRC,这种新式破碎机结合了两个辊筒,它们由一个交替布置的平面和一个凸的或者凹的表面组成。这种独特的辊筒外形提高了啮合角,使NCRC可以达到比传统辊式破碎机更高的破碎比。用一个模型样机做的试

验表明:即使对于非常硬的矿石,破碎比任可以超过10。另外,既然在NCRC 的破碎处理中结合了辊式和颚式破碎机的作用,那就有一种可能:那种新的轮廓会带来辊子磨损率的降低。

关键字:

介绍

传统的辊筒破碎机因为具有几个缺陷而导致了其在矿石处理应用中的不受欢迎。尤其是当与其它的一些破碎机比起来,诸如圆锥破碎机等,它们的低破碎比(一般局限在3以内)和高的磨损率使它们没有吸引力。然而,从矿石处理这一点来说,辊筒破碎机有一些非常可取的特点:辊筒破碎机的相对稳定的操作宽度可以很好控制产物粒度。弹簧承重的辊子的使用使这些机器容许不可破碎的物料(诸如夹杂金属等)。另外,辊筒破碎机是这样工作的:将物料牵引至辊子之间的挤压区而不是象圆锥和颚式破碎机那样依靠重力。这产生了一个连续的破碎周期,避免了高通过率,同时也使破碎机可处理潮湿的和胶粘的物料。

NCRC是一种新颖的破碎机,发明于澳大利亚西部大学,为得是提出一些与传统辊筒破碎机相联系的一些问题。新的破碎机结合了两个辊子,由间隔布置的平面和凸的或者凹的表面组成。这种独特的辊子轮廓提高了啮合角,使NCRC可达到比传统辊筒破碎机更高的破碎比。用一个模型样机的初步试验已表明:即使非常硬的物料,超过10的破碎比也可以实现。这些初期的发现是通过单一颗粒进给而获得的,在破碎中没有显著的物块间的相互作用。目前的工作在NCRC中用多物块试验延伸了现存的结果。同时也顾及了各种其他因素:影响NCRC特性和探索NCRC在选矿处理中使用效率。

操作原理

啮合角是影响辊筒破碎机性能的重要因素之一。小的啮合角是有利的,因为它们增大了物块被辊筒抓住的可能性。对于一个给定的入料粒度和辊隙,传统的辊筒破碎机的啮合角受限于辊筒的尺寸。NCRC试图通过有特殊轮廓的辊筒克服这种限制,这种轮廓提高了辊筒在一转中变化点的啮合角。至于啮合角,在选择辊面时,很多其他的因素,包括变化的辊隙,破碎的方式都考虑了。最终NCRC辊筒形状如图1所示。其中一个辊子由间隔布置的平面和凸面组成,而另一个是由间隔布置的平面和凹面组成。

NCRC辊筒的形状导致了几个独特的特点。其中最重要的就是在辊筒转动时,对于一个给定物块粒度和辊隙,NCRC所产生的啮合角将不再保持稳定。时而啮合角比相同尺寸的圆柱辊筒低很多,时而高很多。辊子转动中啮合角的实际变化量超过60度,如图2所示,图2也表示了相同情况下,可相比尺寸的圆柱辊筒破碎机所产生的啮合角。这些啮合角是对一个直径为25毫米的圆形物块放在辊径大约200毫米、最小辊隙1毫米的辊筒间计算出来的。这个例子可以用来描述使用非圆柱辊筒的潜在优点。为了抓住物块,通常啮合角不超过25度。因此,圆柱辊筒破碎机将一直夹不住这个物块,因为其

实际啮合角一直稳定在52度。然而,在辊筒转过60度时,NCRC的啮合角降至25度以下。这意味着辊筒每转过一转,非圆柱辊筒破碎机可能有6次夹住物块。

试验过程

NCRC的实验室模型由两个辊筒部件组成,每一个由发动机、齿轮箱和有形辊筒组成。两个部件都安置在线性轴承上,其有效支持任何垂直部件的力,同时保证其水平运动。一个辊筒部件水平固定,而另一个通过压缩弹簧限制,压缩弹簧使辊筒抵抗一个变化的水平载荷。

可动辊筒上的预载荷可被调整直至最大值20千牛。驱动辊筒的两个电动机通过一个变化的速度控制器实现电同步,速度控制器使辊速连续变化直至14转每秒(大概0.14米每秒的线速度)。辊筒有一个188毫米的中心距,100毫米宽。两个驱动轴都装有应变规,用以测量辊筒扭矩。附加的传感器用以测量固定辊筒的水平力和辊隙。NCRC的边上装有透明玻璃以便于在运行是观察破碎区域,同时也使破碎流程得以用数码相机进行纪录。

试验进行于几种岩石,包括花岗岩、闪长岩、矿石、采石场弃石和混凝土。花岗岩和混凝土各取自商业性的采石场,前者先破碎、成形,而后者是爆炸的岩石。第一种矿石样品是SAG采石场进料,取于诺曼底煤矿的GGO,采石场弃石取于KAGMM煤矿。采石场弃石含有直径直至18毫米的金属颗粒,它们来自于经反复磨削和破碎的介质。混凝土由圆柱体样品(直径25毫米、高25毫米)组成,它们根据澳大利亚的有关标准制备。不受限制的单轴压力测试进行于矿山样本(直径25毫米、高25毫米),取于大量的矿石。结果表明:对于制备混凝土的强范围从60兆帕直至GG矿石样品的260兆帕。

起初,所有的样品都通过一个37.5毫米的过滤器去处任何粒度过大的物块。低于粒度要求的矿石被取样,并且过滤以决定入料粒度分布。在NCRC 中每一个试验大约破碎2500克样品。这种样品粒度基于统计测试进行选择,那些统计测试表明:为了估计百分之八十的通过率在正负0.1毫米范围内的百分之九十五的可靠度至少需要破碎2000克样品。选择并振动产品使其10次掉于过滤器下,使用一个标准的干的或湿的过滤方法以决定产品粒度分布。对于每一次试验,子样品中的两个被最先滤掉。如果产品粒度有任何显著的不同,额外的子样品将被滤掉。

使用NCRC进行大量的破碎试验以决定各种变化的参数的效果,参数包括:辊隙、辊上作用力、入料粒度和单个或多个物料进给。因为前面的试验以得出辊速对产品粒度分布影响很小,所以将辊速设定在最大值且前面两个试验之间不变。应该指出的是:辊隙设置引用提及的最小辊隙。因为辊筒的非圆

柱体形,实际辊隙在设置的最小值以上的1.7毫米范围内变化(例:一个1毫米的辊隙设置值其意味着辊隙为1-2.7毫米)。

结果

入料

所有破碎设备的性能都依赖破碎物料的种类。在这方面,NCRC没有什么不同。在NCRC中破碎较软物料可产生低于较硬物料p80的碎强。图4所示是在NCRC中在相似条件下破碎几种不同物料时得到的产物粒度分布。有趣的是,除了备制混凝土样品外,从各种不同的物料中,p80碎强的获得也相当一致。结果反映:利用NCRC可获得对产物粒度分布的控制程度。

多入料物块

前面在NCRC上做的试验仅使用单入料物块,很少或没有物块间的相互作用。虽然很有效,但与这种破碎方式相联系的低的通过率不适合于实际应用。因此,决定连续进给对最终产品粒度分布的影响是有必要的。在这些测试中,连续供应以保持足够的物料以达到辊顶。图5显示,连续进给NCRC对诺曼底矿石产物粒度分布的影响。这些结果好像表明了使用连续(多物块)进给在p80碎强上的一个轻微的增加,然而变化太小以致其没有统计学意义。相似地,对于连续进给试验,产物粒度分布表明了一个较好结果,但实际上区别是微不足道的。如图6所示,用花岗岩样品使用不同的两个辊隙进行了相似的试验。又一次,在单个和多个物块测试间无变化。毫不夸张地,更大的辊隙、更小的破碎程度(物料间的相互作用),区别将更不明显。

所有的这些测试好像表明连续进给对NCRC的性能影响极小。然而,意识到在这些试验中用的进给物料在很小的范围内波动是重要的,如图6(诺曼底试验的进给物块甚至更一致)所示进给物块粒度分布。进给物块粒度的一致性导致了大量的自由空间,允许破碎腔内破碎矿石的增多,因此限制了物块间的相互作用。有一宽广物块粒度分布(尤其是较小的粒度范围)的带矿石的NCRC的真的“卡死”进给可能在破碎区域产生大得多的压力。既然NCRC 不是作为“高压力破碎辊”而设计的,在这些情况下,更多的过大物块将从两辊间通过。

辊隙

象传统的辊筒破碎机一样,NCRC的辊隙设置对产品粒度分布和破碎机通过率有直接影响。图7展示了以三种不同辊隙破碎AG矿石(废弃矿石)时的最终产物粒度分布。针对辊隙从这张图中标出80值产生一线性关系,如

图p8所示。如前解释所述,NCRC的实际辊隙将随着一转而变化。这一变化补偿了具体的辊隙设置和取于破碎试验中的产物百分之八十通过率间的差别。图8显示了辊隙对破碎机通过率的影响并给出了用NCRC的试验模型得到的破碎率。

辊动力

NCRC是利用煤块间的相互作用实现破碎机而设计的,这种破碎主要是通过直接折断辊间物块。因此,辊动力仅需足够大以克服辊面间物块的复合力。如果辊动力不够大,那么矿石块将分开辊筒,从而过粒度物块将落下。增大辊动力以减小辊筒分离倾向以更好控制产物粒度。然而,一旦达到限制辊动力(决定于被破碎物料的粒度和种类),辊动力的任何进一步增加都不能提高辊筒破碎机的性能。这由图9可得证,显示了25-31毫米的花岗岩入料,大约16-18千牛的辊动力去控制产物粒度。如果辊动力降至低于这一水平,虽然p80产物有一瞬间的增加,使用更大的辊动力对产物粒度仅有很小影响。

入料粒度分布

和前面提及的一样,入料粒度分布对破碎腔内产生的压力有明显影响。有更细的入料粒度分布的矿石更趋向于“卡死” NCRC,降低破碎机的效率。然而,只要所产生的压力不超过NCRC,不考虑入料粒度维持在一个相对稳定的操作间隙。因此,产物粒度分布也将不依赖于入料粒度分布。如图10所描述的,显示了使用相同的设备但不同的粒度分布的入料的两个破碎机试验的结果。在这个例子中,NCRC将较粗糙的矿石从80的34毫米破碎至80的3.0毫米(破碎比11:1),同时较细的矿石从80的18毫米破碎至80的3.4毫米(破碎比5:1)。这些结果表明,使用有形辊筒的缺点减少,同时,入料粒度和辊筒尺寸的比例在减小。另一方面,为了达到较高的破碎比,入料块度必须足够大以利用NCRC产生高的啮合角的优点。

废弃矿石

一些磨矿流程使用往复或石子破碎机(例如圆锥破碎机)去处理那些取自于选矿厂和发现难于破碎(废弃矿石)的物料。废弃矿石常含有坏的或破碎的磨粒,常见于往复破碎机中。因此,对于一个石子破碎机,不可破碎的公差是一个有意义的特性。NCRC看上去完美地适合于这一应用,既然其中一个辊筒能产生屈服以让不可破碎的物料通过。

图11所示的产物粒度分布取自于NCRC处理废弃矿石。对两个结果都使用相同的设备和入料粒度,然而,使用去处磨粒的矿石进行其中一个试验。和预料的一样,NCRC可以处理含有未进经INCIDENT的入料矿石。然而,既然一个辊筒为了让磨粒通过而经常移动,大量的未经破碎的过粒度物块可以通过辊隙。结果,这种入料粒度的产物粒度分布显示:对于更大的物块粒度的变化和P80值从4毫米增至4.7毫米。尽管如此,NCRC仍可以达到差不多4:1的破碎比。

磨损

虽然没有对NCRC做具体的测试以决定磨损率,但为了试着了解破碎机理用高速录像机纪录了很多破碎试验。通过观察辊筒间被破碎物块,辊筒的部分区域好像受高磨损,并且得出一些主观结论:这种磨损对NCRC的性能有影响,这些都是可能的。毫不夸张地,所显示的高磨损的首要区域是平的和凹的过渡表面。令人惊讶的是,这种边缘在产生提高的啮合角方面不起重要作用。NCRC的性能不应该直接受这边磨损的影响,因为它实际上是平的和凸的表面的过渡区域(在辊筒的对面),导致了减小的啮合角。

机械毕业设计英文外文翻译460数字控制 (2)

附录 科技译文: Numerical Control Numerical Control(NC) is a method of controlling the movements of machineComponents by directly inserting coded instructions in the form of numerical data(numbers and data ) into the system.The system automatically interprets these data and converts to output signals. These signals ,in turn control various machine components ,such as turning spindles on and off ,changing tools,moving the work piece or the tools along specific paths,and turning cutting fluits on and off. In order to appreciate the importer of numerical control of machines ,let’s briefly review how a process such as machining has been carried out traditionally .After studying the working drawing of a part, the operator sets up the appropriate process parameters(such as cutting speed ,feed,depth of cut,cutting fluid ,and so on),determines the sequence of operations to be performed,clamps the work piece in a workholding device such as chuck or collet ,and proceeds to make the part .Depending on part shape and the dimensional accuracy specified ,this approach usually requires skilled

机械专业毕业论文外文翻译

附录一英文科技文献翻译 英文原文: Experimental investigation of laser surface textured parallel thrust bearings Performance enhancements by laser surface texturing (LST) of parallel-thrust bearings is experimentally investigated. Test results are compared with a theoretical model and good correlation is found over the relevant operating conditions. A compari- son of the performance of unidirectional and bi-directional partial-LST bearings with that of a baseline, untextured bearing is presented showing the bene?ts of LST in terms of increased clearance and reduced friction. KEY WORDS: ?uid ?lm bearings, slider bearings, surface texturing 1. Introduction The classical theory of hydrodynamic lubrication yields linear (Couette) velocity distribution with zero pressure gradients between smooth parallel surfaces under steady-state sliding. This results in an unstable hydrodynamic ?lm that would collapse under any external force acting normal to the surfaces. However, experience shows that stable lubricating ?lms can develop between parallel sliding surfaces, generally because of some mechanism that relaxes one or more of the assumptions of the classical theory. A stable ?uid ?lm with su?cient load-carrying capacity in parallel sliding surfaces can be obtained, for example, with macro or micro surface structure of di?erent types. These include waviness [1] and protruding microasperities [2–4]. A good literature review on the subject can be found in Ref. [5]. More recently, laser surface texturing (LST) [6–8], as well as inlet roughening by longitudinal or transverse grooves [9] were suggested to provide load capacity in parallel sliding. The inlet roughness concept of Tonder [9] is based on ??e?ective clearance‘‘ reduction in the sliding direction and in this respect it is identical to the par- tial-LST concept described in ref. [10] for generating hydrostatic e?ect in high-pressure mechanical seals. Very recently Wang et al. [11] demonstrated experimentally a doubling of the load-carrying capacity for the surface- texture design by reactive ion etching of SiC

双齿辊破碎机设计-开题报告

本科毕业设计(论文)开题报告 题目名称双齿辊破碎机 学生姓名专业班级学号 一、选题的目的和意义: 新型双齿辊破碎机是国外近年出现的一种破碎设备,同其他类型的破碎机相比,具有重量轻、体积小、功耗低,生产率高,出粒粒度均匀等诸多优点,特别适用用与露天矿的破碎站很公路建设碎石,目前国内对该设备需求量很大,由于引进价格昂贵,因为对其进行技术消化吸收便成为当前的迫切责任。建设一批高产,高效的现代化矿区国产辊式破碎机在我国综合机械化煤矿、冶金、水泥、玻璃,陶瓷等工业部门中起主导作用,对我国煤炭产业经济的发展具有重要的现实意义,从而促进国民经济的发展和社会的稳定。 二、国内外研究现状简述: 辊式破碎机出现于1806年,它是一种较为古老的破碎设备。但是,由于它的结构简单、紧凑轻便、易于制造、工作可靠,特别是它的产品过粉碎少,因此,至今仍在选煤、冶金烧结、水泥、玻璃、陶瓷等工业部门,以及小型选矿厂中使用,而且有新的改进与发展。辊式破碎机被广泛用于破碎软质和中等硬度的物料,对破碎湿料和黏性物料和坚硬物料,使用范围受到了限制。 近年来,国外辊式破碎机发展的得很快,种类也很齐全。按辊子的数目,辊式破碎几可以分为单辊、双辊、三辊、和四辊四种;按辊面形

状,可以分为光辊、齿辊、槽辊破碎机,辊式破碎机等等 就其结构而言,大多采用自动移动辊机结构,液压调整,油—液控制系统等新技术、新结构。但各制造厂所采用的结构形式和控制系统各有不同,独具特色。如美国Pettibone公司生产的双辊破碎机,应用橡胶轮胎传动,液压调整机构,采用自动定位滚子轴承,运转平稳,使用寿命较长。还有美国Portec公司生产的三辊破碎机,由一个固定辊和两个移动辊组成。移动辊由弹簧保持压力及固定工作位置。固定辊由齿轮驱动,移动辊由橡胶轮胎传动,可进行单向给料破碎和双向给料破碎。三辊破碎机由单辊破碎机和双辊破碎机组合而成。而四辊破碎机由两个双辊破碎机组合而成,这种破碎机能完成粗碎和终碎两道工序,破碎效率很高。 三、毕业设计(论文)所采用的研究方法和手段: 对辊式破碎机进行分析,探究双齿辊破碎机设计的可行性。完成对辊式破碎机的分析并对双齿辊破碎机进行结构设计,零、部件的设计计算及其强度校核,并对破碎部分进行优化,主要是齿辊与破碎砧部分。 具体设计步骤如下: 1、初步确定破碎机参数 2、确定原动机 3、选择传动机构 4、带传动设计 5、齿轮传动设计

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

机械毕业设计英文外文翻译204机电一体化

附录 INTEGRATION OF MACHINERY (From ELECTRICAL AND MACHINERY INDUSTRY)ABSTRACT Machinery was the modern science and technology development inevitable result, this article has summarized the integration of machinery technology basic outline and the development background .Summarized the domestic and foreign integration of machinery technology present situation, has analyzed the integration of machinery technology trend of development. Key word:integration of machinery ,technology,present situation ,product t,echnique of manufacture ,trend of development 0. Introduction modern science and technology unceasing development, impelled different discipline intersecting enormously with the seepage, has caused the project domain technological revolution and the transformation .In mechanical engineering domain, because the microelectronic technology and the computer technology rapid development and forms to the mechanical industry seepage the integration of machinery, caused the mechanical industry the technical structure, the product organization, the function and the constitution, the production method and the management system has had the huge change, caused the industrial production to enter into “the integration of machinery” by “the machinery electrification” for the characteristic development phase. 1. Integration of machinery outline integration of machinery is refers in the organization new owner function, the power function, in the information processing function and the control function introduces the electronic technology, unifies the system the mechanism and the computerization design and the software which constitutes always to call. The integration of machinery development also has become one to have until now own system new discipline, not only develops along with the science and technology, but also entrusts with the new content .But its basic characteristic may summarize is: The integration of machinery is embarks from the system viewpoint, synthesis community technologies and so on utilization mechanical technology, microelectronic technology, automatic control technology,

机械类毕业设计外文翻译

本科毕业论文(设计) 外文翻译 学院:机电工程学院 专业:机械工程及自动化 姓名:高峰 指导教师:李延胜 2011年05 月10日 教育部办公厅 Failure Analysis,Dimensional Determination And

Analysis,Applications Of Cams INTRODUCTION It is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designed.Sometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speed.On the other hand,a failure may be no more than a nuisance.An example is the loosening of the radiator hose in an automobile cooling system.The consequence of this latter failure is usually the loss of some radiator coolant,a condition that is readily detected and corrected.The type of load a part absorbs is just as significant as the magnitude.Generally speaking,dynamic loads with direction reversals cause greater difficulty than static loads,and therefore,fatigue strength must be considered.Another concern is whether the material is ductile or brittle.For example,brittle materials are considered to be unacceptable where fatigue is involved. Many people mistakingly interpret the word failure to mean the actual breakage of a part.However,a design engineer must consider a broader understanding of what appreciable deformation occurs.A ductile material,however will deform a large amount prior to rupture.Excessive deformation,without fracture,may cause a machine to fail because the deformed part interferes with a moving second part.Therefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required function.Sometimes failure may be due to abnormal friction or vibration between two mating parts.Failure also may be due to a phenomenon called creep,which is the plastic flow of a material under load at elevated temperatures.In addition,the actual shape of a part may be responsible for failure.For example,stress concentrations due to sudden changes in contour must be taken into account.Evaluation of stress considerations is especially important when there are dynamic loads with direction reversals and the material is not very ductile. In general,the design engineer must consider all possible modes of failure,which include the following. ——Stress ——Deformation ——Wear ——Corrosion ——Vibration ——Environmental damage ——Loosening of fastening devices

双齿辊破碎机设计说明书

摘要 (Ⅰ) ABSTRACT (Ⅱ) 1 绪论 (1) 1.1引言 (1) 1.2发展历史 (2) 1.3应用效果 (3) 2 双齿辊破碎机总体设计方案 (4) 2.1辊式破碎机的类型 (4) 2.2双齿辊破碎机的工作原理 (4) 2.3双齿辊破碎机的基本构造 (5) 3 力能参数计算 (6) 3.1双齿辊破碎机的生产能力 (6) 3.2电动机的选择 (7) 3.2.1电动机型号的选择7 3.2.2电动机的功率选择7 3.3联轴器的选择与校核 (8) 3.3.1联轴器类型的选择8 3.3.2联轴器的安全校核8 4 减速器的基本设计 (10) 4.1总体设计方案 (10) 4.2减速器传动比的分配 (10) 4.3齿轮的设计 (12) 4.3.1高速级传动齿轮的设计12 4.3.2按齿面接触强度设计12 4.3.3按齿根弯曲强度设计12 4.3.4各级齿轮传动12

5 主要零部件的设计和校核 (19) 5.1主轴的材料 (19) 5.2轴的结构设计 (19) 5.2.1主轴的功率P、转速n和转矩T19 5.2.2轴的最小直径的确定19 5.2.3轴的结构设计20 5.3主轴受力分析与计算 (21) 5.3.1主轴的受力分析22 5.3.2主轴力的计算22 5.3.3主轴弯矩、扭矩的计算24 5.4主轴的安全校核 (26) 5.4.1主轴的强度校核26 5.4.2精确校核轴的疲劳强度27 5.5轴承的安全校核 (27) 5.6齿轮的校核 (29) 5.6.1齿面接触强度校核29 5.6.2齿根弯曲强度校核30 6 系统润滑 (32) 6.1电动机的校核 (32) 6.2润滑方法 (33) 6.3润滑剂的种类 (33) 6.4破碎机润滑剂的选择特点 (34) 6.5润滑方式的选择 (34) 6.5.1减速器的润滑34 6.5.2万向联轴器的润滑34 6.5.3其余零部件的润滑35 7 设备的经济技术分析 (36) 7.1设备的环保措施 (36)

毕业设计英文翻译

使用高级分析法的钢框架创新设计 1.导言 在美国,钢结构设计方法包括允许应力设计法(ASD),塑性设计法(PD)和荷载阻力系数设计法(LRFD)。在允许应力设计中,应力计算基于一阶弹性分析,而几何非线性影响则隐含在细部设计方程中。在塑性设计中,结构分析中使用的是一阶塑性铰分析。塑性设计使整个结构体系的弹性力重新分配。尽管几何非线性和逐步高产效应并不在塑性设计之中,但它们近似细部设计方程。在荷载和阻力系数设计中,含放大系数的一阶弹性分析或单纯的二阶弹性分析被用于几何非线性分析,而梁柱的极限强度隐藏在互动设计方程。所有三个设计方法需要独立进行检查,包括系数K计算。在下面,对荷载抗力系数设计法的特点进行了简要介绍。 结构系统内的内力及稳定性和它的构件是相关的,但目前美国钢结构协会(AISC)的荷载抗力系数规范把这种分开来处理的。在目前的实际应用中,结构体系和它构件的相互影响反映在有效长度这一因素上。这一点在社会科学研究技术备忘录第五录摘录中有描述。 尽管结构最大内力和构件最大内力是相互依存的(但不一定共存),应当承认,严格考虑这种相互依存关系,很多结构是不实际的。与此同时,众所周知当遇到复杂框架设计中试图在柱设计时自动弥补整个结构的不稳定(例如通过调整柱的有效长度)是很困难的。因此,社会科学研究委员会建议在实际设计中,这两方面应单独考虑单独构件的稳定性和结构的基础及结构整体稳定性。图28.1就是这种方法的间接分析和设计方法。

在目前的美国钢结构协会荷载抗力系数规范中,分析结构体系的方法是一阶弹性分析或二阶弹性分析。在使用一阶弹性分析时,考虑到二阶效果,一阶力矩都是由B1,B2系数放大。在规范中,所有细部都是从结构体系中独立出来,他们通过细部内力曲线和规范给出的那些隐含二阶效应,非弹性,残余应力和挠度的相互作用设计的。理论解答和实验性数据的拟合曲线得到了柱曲线和梁曲线,同时Kanchanalai发现的所谓“精确”塑性区解决方案的拟合曲线确定了梁柱相互作用方程。 为了证明单个细部内力对整个结构体系的影响,使用了有效长度系数,如图28.2所示。有效长度方法为框架结构提供了一个良好的设计。然而,有效长度方法的

机械类毕业设计外文文献翻译

沈阳工业大学工程学院 毕业设计(论文)外文翻译 毕业设计(论文)题目:工具盒盖注塑模具设计 外文题目:Friction , Lubrication of Bearing 译文题目:轴承的摩擦与润滑 系(部):机械系 专业班级:机械设计制造及其自动化0801 学生姓名:王宝帅 指导教师:魏晓波 2010年10 月15 日

外文文献原文: Friction , Lubrication of Bearing In many of the problem thus far , the student has been asked to disregard or neglect friction . Actually , friction is present to some degree whenever two parts are in contact and move on each other. The term friction refers to the resistance of two or more parts to movement. Friction is harmful or valuable depending upon where it occurs. friction is necessary for fastening devices such as screws and rivets which depend upon friction to hold the fastener and the parts together. Belt drivers, brakes, and tires are additional applications where friction is necessary. The friction of moving parts in a machine is harmful because it reduces the mechanical advantage of the device. The heat produced by friction is lost energy because no work takes place. Also , greater power is required to overcome the increased friction. Heat is destructive in that it causes expansion. Expansion may cause a bearing or sliding surface to fit tighter. If a great enough pressure builds up because made from low temperature materials may melt. There are three types of friction which must be overcome in moving parts: (1)starting, (2)sliding, and(3)rolling. Starting friction is the friction between two solids that tend to resist movement. When two parts are at a state of rest, the surface irregularities of both parts tend to interlock and form a wedging action. To produce motion in these parts, the wedge-shaped peaks and valleys of the stationary surfaces must be made to slide out and over each other. The rougher the two surfaces, the greater is starting friction resulting from their movement . Since there is usually no fixed pattern between the peaks and valleys of two mating parts, the irregularities do not interlock once the parts are in motion but slide over each other. The friction of the two surfaces is known as sliding friction. As shown in figure ,starting friction is always greater than sliding friction . Rolling friction occurs when roller devces are subjected to tremendous stress which cause the parts to change shape or deform. Under these conditions, the material in front of a roller tends to pile up and forces the object to roll slightly uphill. This changing of shape , known as deformation, causes a movement of molecules. As a result ,heat is produced from the added energy required to keep the parts turning and overcome friction. The friction caused by the wedging action of surface irregularities can be overcome

毕业设计外文翻译

毕业设计(论文) 外文翻译 题目西安市水源工程中的 水电站设计 专业水利水电工程 班级 学生 指导教师 2016年

研究钢弧形闸门的动态稳定性 牛志国 河海大学水利水电工程学院,中国南京,邮编210098 nzg_197901@https://www.360docs.net/doc/5c715791.html,,niuzhiguo@https://www.360docs.net/doc/5c715791.html, 李同春 河海大学水利水电工程学院,中国南京,邮编210098 ltchhu@https://www.360docs.net/doc/5c715791.html, 摘要 由于钢弧形闸门的结构特征和弹力,调查对参数共振的弧形闸门的臂一直是研究领域的热点话题弧形弧形闸门的动力稳定性。在这个论文中,简化空间框架作为分析模型,根据弹性体薄壁结构的扰动方程和梁单元模型和薄壁结构的梁单元模型,动态不稳定区域的弧形闸门可以通过有限元的方法,应用有限元的方法计算动态不稳定性的主要区域的弧形弧形闸门工作。此外,结合物理和数值模型,对识别新方法的参数共振钢弧形闸门提出了调查,本文不仅是重要的改进弧形闸门的参数振动的计算方法,但也为进一步研究弧形弧形闸门结构的动态稳定性打下了坚实的基础。 简介 低举升力,没有门槽,好流型,和操作方便等优点,使钢弧形闸门已经广泛应用于水工建筑物。弧形闸门的结构特点是液压完全作用于弧形闸门,通过门叶和主大梁,所以弧形闸门臂是主要的组件确保弧形闸门安全操作。如果周期性轴向载荷作用于手臂,手臂的不稳定是在一定条件下可能发生。调查指出:在弧形闸门的20次事故中,除了极特殊的破坏情况下,弧形闸门的破坏的原因是弧形闸门臂的不稳定;此外,明显的动态作用下发生破坏。例如:张山闸,位于中国的江苏省,包括36个弧形闸门。当一个弧形闸门打开放水时,门被破坏了,而其他弧形闸门则关闭,受到静态静水压力仍然是一样的,很明显,一个动态的加载是造成的弧形闸门破坏一个主要因素。因此弧形闸门臂的动态不稳定是造成弧形闸门(特别是低水头的弧形闸门)破坏的主要原是毫无疑问。

机械毕业设计外文翻译---装载机发展概况

外文资料翻译 学生姓名: 专业班级:机械设计制造及其自动化04级2班指导教师: 2008年6月

装载机发展概况 Abstract This paper have discussed s.s. ZL-50 type fork-lift truck mainly overall fictitious prototype design as well as some kinds of typical schoolwork operating modes imitate and emulate , include equipment and the overall parts needed build mould. In this design course, have applied ADAMS software and the software of PRO/ENGINEER. ADAMS software is used in the emulation of some kinds of schoolwork operating modes, and the software of PRO/ENGINEER is used to build mould mainly. Through the simulated emulation for some kinds of overall schoolwork operating modes, can see relatively distinctly the overall possible condition in actual schoolwork course that met , can in time modify , have reduced actual design time , have raised production efficiency. The innovation of this design Zhi is in in, imitate and have emulated fork-lift truck the 3 kinds of typical schoolwork operating mode in actual schoolwork, is effect again have imitated in actual schoolwork the hydraulic impact of use, so when being helpful to solve actual loading, the actual problem of meeting the stock that is hard to uninstall can so raise production efficiency. Key words: Fork-lift truck 、fictitious prototype , build mould, emulation, optimization、production efficiency Loader Development China's modern 20 wheel loaders began in the mid-1960s of the Z435. The aircraft as a whole rack, rear axle steering. After years of hard work, the attraction was the world's most advanced technology wheel loader on the basis of the successful development of the power of 162 KW of shovel-fit wheel loaders, stereotypes for Z450 (later ZL50), and in 1971 December 18, formally appraised by experts. Thus the birth of China's first articulated wheel loader, thus creating our industry loader formation and development history. Z450-type loader with hydraulic mechanical transmission, power shift, Shuangqiaoshan drive, hydraulic manipulation, articulated power steering, gas oil Afterburner brake wheel loaders, and other modern, the basic structure of the world's advanced level for the time . Basically represent the first generation of wheeled loading the basic structure. The aircraft in the overall performance of dynamic, and insertion force a rise of power and flexibility, manipulation of light, the higher operating efficiency of a series of advantages. 1978, Heavenly Creations by the Department in accordance with the requirements of machinery, worked out to LIUGONG Z450-based type of wheel loaders series of standards. The development of standards, with reservations Z

相关文档
最新文档