高中物理力学试题

高中物理力学试题
高中物理力学试题

高中物理(力学)复习辅导要点和模拟试题

力学包括静力学、运动学和动力学。即:力,牛顿运动定律,物体的平衡,直线运动,曲线运动,振动和波,功和能,动量和冲量,等。

一、重要概念和规律

(一)重要概念

1.力、力矩

力是物体间的相互作用。其效果使物体发生形变和改变物体的运动状态即产生加速度。力不能脱离物体而独立存在.有力作用时,同时存在受力物体和施力物体但物体间不一定接触。力是矢量。力按性质可分重力(G=mg)、弹力(胡克定律f=kX)、摩擦力(0<f

<f最大、,f=μN)、分子力、电磁力等。按

效果可分拉力、压力、支持力,张力、动力、阻力、向心力、回复力等。对于各种力要弄清它的产生原因、特点、大小、方向、作用点和具体效果。

力矩是改变物体转动状态的原因。力矩M=FL通常规定使物体顺(逆)时针转动的力矩为负(正)。注意力臂L是指转轴至力的作用线的垂直距离。11.功(W)

功是表示力作用一段位移(空间积累)效果的物理量。要深刻理解功的杨念:①如果物体在力的方向上发生了位移,就说这个力对物体做了功。因此,凡谈到做功,一定要明确指出是哪个力对哪个物体做了功。②做功出必须具有两个必要的因素;力和物体在力的方向上发生了位移。因此,如果力在物体发生的那段位移里做了功,则物体在发生那段位移的过程里始终受到该力的作用,力消失之时即停止做功之时。③力做功是一个物理过程,做功的多少反映了在这物理过程中能量变化的多少。④功可用公式W=Fscosα计算。当 0<α<90°时,力做正功,当α=90°时,力不做功,当90°<α<180°时,力做负功(或说成物体克服该力做正功)。⑤功是标量,但功有正负。功的正负仅表示力在使物体

移的过程中起了动力作用还是阻力作用。⑥和外力对物体所做的功等于各个外力对物体做功的代数和。

12.功率(P)

功率是表示做功快慢的物理量。要注意理解:①公式P=W/t是功率的定义式,表示在时间t内的平均功率。②公式P=Fvcosa表示即时功率。当发动机的功率一定时,牵引力F与速度v成反比,但不能理解为当v趋近于零时F可趋近于无穷大,也不能理解为当F趋近于零时v可趋近于无穷大,这是由于受到机器构造上的限制的缘故。③要注意区别额定功率(发动机在正常工作时的最大输出功率)和输出功率间的区别和取系。当发动机的输出功率等于额定功率时,它所牵引以物体达最大速度。最大速度受额定功率的限制。④在SI制中,功率的单位是瓦特;实用单位有千瓦等。要注意其换算关系。

13.能量(E)、动能(E

k )、势能(E

p

我们认为能够对外界做功的物体具有能量。能量是表示物体状态的物理量。能量是标量。动能和势能总称为机械能。

动能是由于物体运动而具有的能。用公式E k=mv2/2计算。要注意:①E k 是相对于某一时刻(或某一状态)的动能,动能与物体的质量和速率有关,而与速度方向无关。②动能是标量,且恒为正值。③物体的动能具有相对性,对于不同的参照物,由于v不同。因而E k也不同。通常以地面为参照物。

势能包括重力势能和弹性势能。重力势能是由于物体被举高而具有的能。用公式E p=mgh计算。要注意:①重力势能是物体和地球组成的系统所共有的。因而重力势能具有相对性,它的大小决定于参考平面的选择,通常选择地面为参考平面。重力势能的差值不因选择不同的参考平面而有所不同。②重力对物体做多少正(负)功。物体的重力势能就减少(增加)多少.重力做功的特点是只跟物体的起点和终点位置有关,而限物体运动的路径无关。③重力势能是标量,但有正负。当物体在参考平面上(下)方时观u重力势能为正(负)值。

弹性势能是由于物体发生弹性形变而具有的能。任何发生弹性形变的物体都具有弹性势能.弹力对弹簧做多少正(负)功,弹簧的弹性势能就减少(增

加)多少。弹簧的弹性势能决定于弹簧被压缩(或拉伸)的长度及弹簧的倔强系数。

(二)重要规律

1.力的独立作用原理:当物体受到几个力的作用时,每个力各自独尊地使物体产生一个加速度,就像其他的力不存在一植物体的实际加速度为这几个加速度的矢量和。

2.牛顿运动定律:经典力学的基本定律。适用于低速运动的宏观物体。

牛顿第一定律揭示了惯性和力的物理会义。

牛顿第二定律(F=ma)揭示了物体的加速度跟它所受的外力及物体本身质皮之间的关系、使用时注意矢量性(a与F的方向始终一致)、同时性(有力F必同时产生a)、相对性(相对于地面参照系)、统一性(单位统一用SI制)。

牛顿第三定律(F=-F')揭示了物体相互作用力间的关系。注意相互作用力与平衡力的区别。

3.物体的平衡条件:物体平衡时,即或静止、或匀速直线运动、或匀速转动状态。在共点力作用下物体的平衡条件是F= 0.有固定转动轴的物体的平衡条件是M=0。注意:对于共点力平衡.必有 M=0。对于固定转动轴平衡,必有F=0。还要注意力的平衡和物体的平衡的区别。

4.匀变速直线运动规律:a的大小和方向一定。可以用公式和图象(s-t图象和

v-t图象)描述。注意:①公式v=(v

0+v

t

)/2只适用于匀变速直线运动.②判断

初速度不为零的句变速直线运动或测定其加速度的公式为△s=aT2,即从任一时刻开始,在连续相等的各时间间隔T内的位移差△s都相等。判断初速度为零的

匀变速直线运动时,方法一;用S

1:S

2

:S

3

……=1:3:5……判断(可作为充分

必要条件)。方法二:同时满足△s=aT2(仅作为必要条件)和△s/s

1

=2/1。③利用图象处理问题时,要注意其点、线、斜率、面积等的物理意义。

5.曲线运动的规律:利用运动的合成和分解方法。平抛运动可视为水平匀速直线运动竖直方向的自由落体的合运动。

匀速圆周运动虽向心加速度的大小不变,但方向时刻在变且恒指向圆心,所以是一种变加速运动。其向心力F=mv2/R或F=mω2R,它与速度方向垂直。故只能改变物体的速度方向。向心力不是什么特殊的力,任何一种力或几种力的合力都可提供为向心力。

行星运动的规律由开普勒三定律揭示,三定律分别指明了行星运动的轨道、行星沿轨道运动时速率的变化以及周期与轨道半径的关系(R3/T2=k)。万有引力定律揭示了行星运动的本质原因,可应用来发现天体并计算天体的质量和密度。

7.动能定理

动能定理揭示了外力对物体所做的总功与物体动能变化间的关系。要注意:①动能定理的研究对象是质点(或单个物体)。②由动能定理可知:动力做正功使物体的动能增加Z阻力做负功,使物体的动能减少。③W指作用于物体的

各个力所做功的代数和,因此要注意分辨功的正负。④E

k1和 E

k2

分别为初始状态

和终了状态的动能。因此,E

k2-E

k1

仅由初末两个运动状态决定,不涉及运动过程

中的具体细节。⑤公式W=E

k2- E

k1

为标量式,但有正负。W为正(负)表示物体

的动能增加(减少)。E

k2- E

k1

为正(负)也表示物体的动能增加(减少)。

8.机械能守恒定律

机械能守恒定律揭示了物体在只有重力(或弹力)做功的情况下,物体

总的机械能保持不变及其动能和重力势能相互转化的规律。可表示为E

2=E

1

,要注

意:①该定律所研究的对象是物体系统。所谓机械能守恒,是指系统的总机械能

守恒。②机械能守恒的条件:在只有重力(或弹力)做功的情况下。③E

l 和E

2

是指物体系统在任意两个运动状态时的机械能,并不涉及E

l 和E

2

间互相转化的

具体细节.④动能定理和机械能守恒定律有一定的关系:当只有重力做功时,应用动能定理可以得机械能守恒定律。

6.功和能的关系

功是能的转化的量度。做功的过程总是伴随着能量的改变,能量的改变需通过做功来实现。功是描述物理过程的物理量,能量是描述物理状态的物理量。如果只有重力或弹力做功坝u机械能守恒。如果除重力和弹力做功外,还有其他力做功,则机械能和其他形式的能之间发生转化,但总的能量保持不变,这就是能量的转化和守恒定律。机械能守恒定律是能量守恒定律的一种特殊情况。

二、重要研究方法

1.寻求“守恒量”。物理世界千变万化,但有些物理量在一定条件下遵循守恒的规律。如力学中,有质量守恒、机械能守恒和动量守恒Z电学中有电荷守恒等.由于守恒定律适用范围广。处理问题方便,因此,寻求“守恒量”已成为物理研究的一个重要方面。

2.运用等量转化的研究方法。运用这种方法,可进一步揭示相关物理量之间的联系,发现新规律.如:由重力做功使物体动能增加,可以得到机械能守恒定律的表达形式之一。

3.发散思维。多角度地研究同一物理问题。如力学中,从力的瞬时,时间积累、房间积累效果研究,分别发现了牛顿运动定律、动量定理、动能定理,从各个不同的角度揭示了物探规律;为解决问题提供了多种渠道。

三、基本解题思路

归纳起来,力学中有三把金钥匙,那么.遇到力学问题,究竟怎样选用和使用金钥匙呢?基本思路是:

1.审清题意,弄清物理过程,明确研究对象,画好两图:物理过程示意图和研究对象受力分析图。

2. 对涉及要求速度和位移的问题,先从能量观点入手分析往往会带来方便。即对各个力所做的功,物体速度的变化情况作出分析。如果研究对象是一系统,且只有重力做功,则应用机械能守恒定律解。如果研究对象是一物体,且还有其他

力做功.则应用动能定理解.要注意分清正负功。选定零势能点。初末状态的机械能或动能、统一单位等问题。

3.对涉及要求时间和速度的问题,先从动量和冲量观点入手分析往往会带来方便。即对各个力的冲量、物体动量的变化情况作出分析。如果研究对象是一系统,且所受合力F=0,则应用动量守恒定律解。如果研究对象是一物体,且F≠0,则应用动量定理解。要注意选定正方向、分清动量和冲量的正负。初末状态的动量、统一单位等问题。

4. 对涉及要求加速度和时间的问题,先从牛顿运动定律入手分析往往会带来方民即对研究对象分析其运动状态和受力情况后,列出其运动方程,必要时再运用运动学公式解之。要注意分析各运动过程中物体的受力情况、选定正方向。统一单位等问题。

5.选用上述三把金钥匙解题是相对的。一切要视具体问题来定。有时需同时用之,有时可分别用之。这就需要通过解题不断总结经验教训。才能深刻领会,灵活运用。

四、重要研究方法

1.选取理想化模型和过程。这是重要的科学抽象理想化的方法,即只研究主要因素而忽略次要因素,使研究问题简化。如。质点、自由落体、单摆和弹簧振子等理想化模型和平衡、匀变速直线运动。匀速四周运动、抛体运动、简连振动等理想化物理过程。

2.解析法。通过定量分析用公式表达物理规律。解析法具有推理严密和定量分析的特点

3.图象法。通过建立坐标系表达物理量之间的变化关系。如:位移图象、速度图象、振动图象、波动图象等。图象法具有直观形象的特点。

4.隔离法。把研究对象从周围物体中隔离出来便于受力分析和处理问题。被隔离的研究对象可以是一个物体或物体的一部分,也可以是几个物体组成的系统。

5.矢量运算法。按照平行四边形法则或三角形法则进行。当物体的运动在同一直线上时,可选定一个正方向,将矢量运算转化为代数运算。选定正方向要以处理问题方便为原则,通常可规定初速度方向,加速度方向、坐标轴正方向为正方向。

6.运动的分解合成法。将复杂运动看作由几个简单运动所组成。它包括位移、速度、加速度、力的分解与合成。合成和分解要视问题的需要和实际效果进行.正交分解法是常用的方法。

4. 要注意深化对物理概念的理解

如,关于功的概念,在初中规定功W=FS,其中S为物体在力的方向上通过的距离。在高中则将功定义为W=FScosα,即功等于力跟物体在力的方向上的位移的乘积。讨论了正功和负功的意义以及合外力所做功的计算方法。研究力做功除了力学中涉及的力外,还有电场力、磁场力、洛舍兹力等,复习时,要把它们串起来,比较它们做功的特点。在高中学习能量时,进一步揭示了功的本质,功是描述物理过程的物理量。做功总是伴随着能量的转化。关于功率的概念,讨论了平均功率、即时功率、额定功率、输出功率等概念。关于能量的概念,从初中的定性研究发展至高中的定量计算动能和重力势能。通过动能定理、机械能守恒定律,定量地揭示了功和能的关系;功是能量转化的量度,能量在转化中保持守恒.

物理(力学)模拟试卷1

一、选择题(每题8分,共40分)

1、如图1所示,某质点沿半径为r的半圆弧由a点运动到了b点,则它通过的

位移和路程分别是()

A 0,0

B 2r,向东;πr

C r,向东;πr

D 2r,向东;2r

2、汽车在平直的公路上以20m/s的速度匀速行驶,前面有情况需紧急刹车,刹

车的加速度大小为28/m s ,刹车后可视为匀减速直线运动,刹车3s 后汽车的速度为( )

A 15m/s

B 8m/s

C 4m/s

D 0m/s

3、一木块放在水平桌面上,在水平方向上共受到三个力的作用,1F 、2F 和静摩擦力,木块处于静止状态,如图2所示,已知110F N =,22F N =,若撤去1F ,则木块所受的合力为( )

A 10N 向左

B 6N 向右

C 2N 向左

D 0 4、一物体同时受到同一平面内的三个共点力作用,下列几组力的合力不可能为0的是( )

A 5N ,8N ,9N

B 5N ,2N ,3N

C 2N ,7N ,10N

D 1N ,10N ,10N

5、若两个共点力 1F 、2F 的合力为F ,则有( )

A 合力F 一定大于任何一个分力

B 合力F 至少大于其中一个分力

C 合力F 可以比1F 、2F 都大,也可以比1F 、2F 都小

D 合力F 不可能与1F 、2F 中的一个大小相等

二、名词解释(每题5分,共15分)

1、机械能守恒定律

2、功

3、牛顿第三定律

三、计算题(每题15分,共45分)

1、一物体从H 高处自由下落,经过最后196m 所用的时间为4s ,求物体下落的

高度H 和所用的总时间T 。

2、建筑工人用图示的定滑轮装置运送建筑材料。质量为70kg 的工人站在地面上,通过定滑轮将20kg 的建筑材料以20.5/m s 的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为多少?(g 取210/m s )

3、如图所示,长为5m 的细绳的两端分别系于竖直立在地面上相距为4m 的两杆的顶端A、B上,绳上挂一个光滑的轻质挂钩,其下端连着一个重为12N的物体,平衡时,绳中张力为多少?

参考答案

一、

1、B

2、D

3、D

4、C

5、C

三、

1、222111,()222

x gt H gt H h g T t =→=-=- 带入数据得 6.9,238T s H m ==

2、

由牛顿第二定律可得:1F mg ma -= 由平衡条件得:21F F Mg += 推出 2490F N =

由牛顿第三定律得,人对地面的压力为490N 。

3、

由相似三角形可知45y y x x -=-,得5y=4x 4cos 5y x =

=α 3sin 5

=α 可知:2Fsin G =α 解得10F N =

高考物理超经典力学题集萃

高考物理经典力学计算题集萃 =10m/s沿x1.在光滑的水平面内,一质量m=1kg的质点以速度v 0 轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点 时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人

初中物理力学例题难题[1].doc

1..如图 22所示装置,杠杆 OB 可绕 O 点在竖直平面内转动, OA ∶ AB = 1∶2。当在杠杆 A 点挂 一质量为 300kg 的物体甲时,小明通过细绳对动滑轮施加竖直向下的拉力为 F 1,杠杆 B 端受到 竖直向上的拉力为 T 1时,杠杆在水平位置平衡,小明对地面的压力为 N 1;在物体甲下方加挂 质量为 60kg 的物体乙时,小明通过细绳对动滑轮施加竖直向下的拉力为 F 2 ,杠杆 B 点受到竖 直向上的拉力为 T 2时,杠杆在水平位置平衡,小明对地面的压力为 N 2。已知 N 1∶ N 2= 3∶ 1, 小明受到的重力为 600N ,杠杆 OB 及细绳的质量均忽略不计,滑轮轴间摩擦忽略不计, g 取 10N/kg 。求: ( 1)拉力 T 1; ( 2)动滑轮的重力 G 。 39.解: B A O ( 1)对杠杆进行受力分析如图 1 甲、乙所示: 根据杠杆平衡条件: 甲 G 甲 ×OA = T × 1 OB (G 甲+ G 乙) ×OA =T 2 × OB 又知 OA ∶AB ∶ 2 = 1 所以 OA ∶OB ∶ 3 = 1 图 22 G 甲 m 甲 g 300 kg 10N/kg 3000 N T 1 T 2 A O B A O B G 乙 m 乙 g 60kg 10N/kg 600N G 甲 + G 乙 OA G 甲 1 3000N G 甲 T 1 1000N (1 分) 乙 OB 3 甲 图 1 T 2 OA (G 甲 G 乙 ) 1 3600N 1200N (1 分) F 人 1 F 人 2 OB 3 ( 2)以动滑轮为研究对象,受力分析如图 2 甲、乙所示 因动滑轮处于静止状态,所以: T 动 1=G +2F 1,T 动 2= G + 2F 2 又 T 动 1=T 1,T 动 2=T 2 所以: G 人 G 人 T 1 G 1000N G 500N 1 ( 1 分) 甲 乙 F 1 2 2 G 图 3 2 F 2 T 2 G 1200 N G 600N 1 G (1 分) 2 2 2 T 动 1 T 动 2 以人为研究对象,受力分析如图 3 甲、乙所示。 人始终处于静止状态,所以有: F 人 1+ , = G 人, , = G 人 N 1 F 人 2+ N 2 因为 F 人 1= F 1, F 人 2 =F 2, 1= N , , N 2= 2 , 1 且 G 人 =600N N N G G 所以: 1 2F 2 2F 甲 乙 图 2

高中物理平抛运动的典型例题

平抛运动典型题目 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动 2、飞机距离地面高H=500m,水平飞行速度为v1=100m/s,追击一辆速度为v2=20m/s 同向行驶的汽车,欲使投弹击中汽车,则飞机应在距汽车水平距离x=m远处投弹.(g=10m/s2) 3、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内() A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是(? ) A.同时抛出,且v1< v2? B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2? ? D.甲先抛出,且v1< v2

5、从高H 处以水平速度v 1平抛一个小球1,同时从地面以速度v 2竖直向上抛出一个小球2,两小球在空中相遇则:( ) A .从抛出到相遇所用时间为 H v 1 B .从抛出到相遇所用时间为H v 2 C .抛出时两球的水平距离是v H v 12 D .相遇时小球2上升高度是H gH v 1212 -?? ? ? ? 6.物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tan α随时间t 变化的图像是下( ) 7、子弹从枪口射出,在子弹的飞行途中,有两块相互平行的竖直挡板A 、B (如图所示),A 板距枪口的水平距离为s 1,两板相距s 2,子弹穿过两板先后留下弹孔C 和D ,C 、D 两点之间的高度差为h ,不计挡板和空气阻力,求子弹的初速度v 0. () 2h S S 2S g 2 221+ 8、从高为h 的平台上,分两次沿同一方向水平抛出一个小球。如右图第一次小球落地在a 点。第二次小球落地在b 点,ab 相距为d 。已知第一次抛球的初速度为,求第二次抛 球的初速度是多少—————2h 2gh d V 1+

高中物理力学综合试题及答案教学文案

物理竞赛辅导测试卷(力学综合1) 一、(10分)如图所时,A 、B 两小球用轻杆连接,A 球只能沿竖直固定杆运动,开始时,A 、B 均静止,B 球在水平面上靠着固定 杆,由于微小扰动,B 开始沿水平面向右运动,不计一切摩擦,设A 在下滑过程中机械能最小时的加速度为a ,则a= 。 二、(10分) 如图所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可 伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略,B 在 O 的正上方,OB 之间的距离为H ,某一时刻,当绳的BA 段与 OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速度v M 三、(10分)在密度为ρ0的无限大的液体中,有两个半径为R 、密度为ρ的球,相距为d ,且ρ>ρ0,求两球受到的万有引力。 四、(15分)长度为l 的不可伸长的轻线两端各系一个小物体,它们沿光滑水平面运动。在某一时刻质量为m 1的物体停下来,而质量为m 2的物体具有垂直连线方向的速度v ,求此时线的张力。 五、(15分)二波源B 、C 具有相同的振动方向和振幅,振幅为0.01m ,初位相相差π,相向发出两线性简谐波,二波频率均为100Hz ,波速为430m/s ,已知B 为坐标原点,C 点坐标为x C =30m ,求:①二波源的振动表达式;②二波的表达式;③在B 、C 直线上,因二波叠加而静止的各点位置。 六、(15分) 图是放置在水平面上的两根完全相同的轻 质弹簧和质量为m 的物体组成的振子,没跟弹簧的劲度系数均为k ,弹簧的一端固定在墙上,另一端与物体相连,物体与水平面间的静摩擦因数和动摩擦因数均为μ。当弹簧恰为原长时,物体位于O 点,现将物体向右拉离O 点至x 0处(不超过弹性限度),然后将物体由静止释放,设弹簧被压缩及拉长时其整体不弯曲,一直保持在一条直线上,现规定物体从最右端运动至最左端(或从最左端运动 至最右端)为一个振动过程。求: (1)从释放到物体停止运动,物体共进行了多 少个振动过程;(2)从释放到物体停止运动,物 体共用了多少时间?(3)物体最后停在什么位置?(4)整个过程中物体克服摩擦力做了多少 功? 七、(15分)一只狼沿半径为R 圆形到边缘按逆时针方向匀速跑动,如图所示,当狼经过A 点时,一只猎犬以相同的速度从圆心 出发追击狼,设追击过程中,狼、犬和O 点在任一时刻均在同一直线上,问猎犬沿什么轨迹运动?在何处追击上? M O C y x v v B 0 v 0

高一物理必修1典型例题

高一物理必修1典型例题 例l. 在下图甲中时间轴上标出第2s末,第5s末和第2s,第4s,并说明它们表示的是时间还是时刻。 甲乙 例2. 关于位移和路程,下列说法中正确的是 A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的 B. 在某一段时间内质点运动的路程为零,该质点一定是静止的 C. 在直线运动中,质点位移的大小一定等于其路程 D. 在曲线运动中,质点位移的大小一定小于其路程 例3. 从高为5m处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m处被接住,则在这段过程中 A. 小球的位移为3m,方向竖直向下,路程为7m B. 小球的位移为7m,方向竖直向上,路程为7m C. 小球的位移为3m,方向竖直向下,路程为3m D. 小球的位移为7m,方向竖直向上,路程为3m 例4. 判断下列关于速度的说法,正确的是 A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。 B. 平均速度就是速度的平均值,它只有大小没有方向。 C. 汽车以速度1v经过某一路标,子弹以速度2v从枪口射出,1v和2v均指平均速度。 D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。 例5. 一个物体做直线运动,前一半时间的平均速度为1v,后一半时间的平均速度为2v,则全程的平均速度为多少?如果前一半位移的平均速度为1v,后一半位移的平均速度为2v,全程的平均速度又为多少? 例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间 B. 物体在不同时刻的位置 C. 物体在不同时间内的位移 D. 物体在不同时刻的速度 例7.如图所示,打点计时器所用电源的频率为50Hz,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A、C间的平均速度为m/s,在A、D间的平均速度为m/s,B点的瞬时速度更接近于m/s。 例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零

高中物理力学经典题型

F A B C 一.例题 1.如右图所示,小木块放在倾角为α的斜面上,它受到一个水平向右的力F(F≠0) 的作用下 处于静止状态,以竖直向上为y 轴的正方向,则小木块受到斜面的支持力 摩擦力的合力的方向可能是( ) A.沿y 轴正方向 B.向右上方,与y 轴夹角小于α C.向左上方,与y 轴夹角小于α D.向左上方,与y 轴夹角大于α 2.如图示,物体B 叠放在物体A 上,A 、B 的质量均为m ,且上下表面均与斜面平行,它们以共同的速度沿倾角为θ的固定斜面C 匀速下滑。则:( ) A 、A 、 B 间没有摩擦力 B 、A 受到B 的静摩擦力方向沿斜面向下 C 、A 受到斜面的滑动摩擦力大小为mgsin θ D 、A 与斜面间的动摩擦因数μ=tan θ 3.如图所示,光滑固定斜面C 倾角为θ,质量均为m 的A 、B 一起以某一初速靠惯性 沿斜面向上做匀减速运动,已知A 上表面是水平的。则( ) A .A 受到B 的摩擦力水平向右,B.A 受到B 的摩擦力水平向左, C .A 、B 之间的摩擦力为零 D.A 、B 之间的摩擦力为mgsin θcos θ 4年重庆市第一轮复习第三次月考卷 6.物体A 、B 叠放在斜面体C 上,物体B 上表面水平,如图所示,在水平力F 的作用下一起随斜面向左匀加速运动的过程中,物体A 、B 相对静止,设物体A 受摩擦力为f 1,水平地面给斜面体C 的摩擦为f 2(f 2≠0),则:( ) A .f 1=0 B .f 2水平向左 C .f 1水平向左 D .f 2水平向右 22、如图是举重运动员小宇自制的训练器械,轻杆AB 长1.5m ,可绕固定点O 在竖直平面内自由转动,A 端用细绳通过滑轮悬挂着体积为0.015m3的沙袋,其中OA=1m ,在B 端施加竖直向上600N 的作用力时,轻杆AB 在水平位置平衡,试求沙子的密度.(g 取10N /kg ,装沙的袋子体积和质量、绳重及摩擦不计) B θ C A

最新推荐推荐高三物理力学综合测试经典好题(含答案)教学内容

高三物理力学综合测试题 一、选择题(4×10=50) 1、如图所示,一物块受到一个水平力F 作用静止于斜面上,F 的方向与斜面平行, 如果将力F 撤消,下列对物块的描述正确的是( ) A 、木块将沿面斜面下滑 B 、木块受到的摩擦力变大 C 、木块立即获得加速度 D 、木块所受的摩擦力改变方向 2、一小球以初速度v 0竖直上抛,它能到达的最大高度为H ,问下列几种情况中,哪种情况小球不. 可能达到高度H (忽略空气阻力): ( ) A .图a ,以初速v 0沿光滑斜面向上运动 B .图b ,以初速v 0沿光滑的抛物线轨道,从最低点向上运动 C .图c (H>R>H/2),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 D .图d (R>H ),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 3. 如图,在光滑水平面上,放着两块长度相同,质量分别为M1和M2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块,开始时,各物均静止,今在两物体上各作用一水平恒力F1、F2,当物块和木块分离时,两木块的速度分别为v1和v2,,物体和木板间的动摩擦因数相同,下列说法 若F1=F2,M1>M2,则v1 >v2,; 若F1=F2,M1<M2,则v1 >v2,; ③若F1>F2,M1=M2,则v1 >v2,; ④若F1<F2,M1=M2,则v1 >v2,;其中正确的是( ) A .①③ B .②④ C .①② D .②③ 4.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N 时,物体A 处于静止状态。若小车以1m/s2的加速度向右运动后,则(g=10m/s2)( ) A .物体A 相对小车仍然静止 B .物体A 受到的摩擦力减小 C .物体A 受到的摩擦力大小不变 D .物体A 受到的弹簧拉力增大 5.如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小 球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤gR 3 10,则有关小球能够上 升到最大高度(距离底部)的说法中正确的是: ( ) A .一定可以表示为g v 22 B .可能为3 R C .可能为R D .可能为 3 5R 6.如图示,导热气缸开口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不 漏气。活塞下挂一砂桶,砂桶装满砂子时,活塞恰好静止。现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则 ( ) A .气体压强增大,内能不变 B .外界对气体做功,气体温度不变 C .气体体积减小,压强增大,内能减小 D .外界对气体做功,气体内能增加 7.如图所示,质量M=50kg 的空箱子,放在光滑水平面上,箱子中有一个质量m=30kg 的铁块,铁块与箱子的左端ab 壁相距s=1m ,它一旦与ab 壁接触后就不会分开,铁块与箱底间的摩擦可以忽略不计。用水平向右的恒力F=10N 作用于箱子,2s 末立即撤去作用力,最后箱子与铁块的共同速度大小是( ) θ F R F

高中物理平抛运动经典例题

[例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。再根据平抛运动的 分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。则 所以 根据平抛运动竖直方向是自由落体运动可以写出

所以 所以答案为C。 3. 从分解位移的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”) [例3] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 则, 所以Q点的速度 [例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右 抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有

高中物理经典力学练习题

F 高中物理经典力学练习题 1.一架梯子靠在光滑的竖直墙壁上,下端放在水平的粗糙地面上,有关梯子的受力情况,下 列描述正确的是 ( ) A .受两个竖直的力,一个水平的力 B .受一个竖直的力,两个水平的力 C .受两个竖直的力,两个水平的力 D .受三个竖直的力,三个水平的力 2.如图所示, 用绳索将重球挂在墙上,不考虑墙的摩擦。如果把绳的长度 增加一些,则球对绳的拉力F 1和球对墙的压力F 2的变化情况是( ) A .F 1增大,F 2减小 B .F 1减小,F 2增大 C .F 1和F 2都减小 D .F 1和F 2都增大 3.如图所示,物体A 和B 一起沿斜面匀速下滑,则物体A 受到的力是( ) A .重力, B 对A 的支持力 B .重力,B 对A 的支持力、下滑力 C .重力,B 对A 的支持力、摩擦力 D .重力,B 对A 的支持力、摩擦力、下滑力 4.如图所示,在水平力F 的作用下,重为G 的物体保持沿竖直墙壁匀速下滑, 物体与墙之间的动摩擦因数为μ,物体所受摩擦力大小为:( ) A .μF B .μ(F+G) C .μ(F -G) D .G 5.如图,质量为m 的物体放在水平地面上,受到斜向上的拉力F 的作用而没动, 则 ( ) A 、物体对地面的压力等于mg B 、地面对物体的支持力等于F sin θ C 、物体对地面的压力小于mg D 、物体所受摩擦力与拉力F 的合力方向竖直向上 6.如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,小球被竖直挡板挡住,则球对挡板的压力为( ) A.mgco s θ B. mgtan θ C. mg/cos θ D. mg 7.如图所示,质量为50kg 的某同学站在升降机中的磅秤上,某一时刻该同学发现磅秤的示数为40kg ,则在该时刻升降机可能是以下列哪种方式运动?( ) A.匀速上升 B.加速上升 C.减速上升 D.减 速下降 8. 如图所示,用绳跨过定滑轮牵引小船,设水的阻力不变,则在小船匀速 靠岸的过程中( ) A. 绳子的拉力不断增大 B. 绳子的拉力不变 C. 船所受浮力增大 D. 船所受浮力变小 9.如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1 和k 2,上面木块压在上面的弹簧上(但不拴接) ,整个系统处于平衡状态.现缓

高中物理知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。

高中物理力学经典的题库(含答案)76470

高中物理力学计算题汇总经典精解(50题) 1.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 图1-73 2.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算:(1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体)

3.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少? 4.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块与水平面的动摩擦因数为0.2,物块运动2秒末撤去拉力,g取10m/s2.求 (1)2秒末物块的即时速度. (2)此后物块在水平面上还能滑行的最大距离. 5.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求 图1-74 (1)推力F的大小. (2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离? 6.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m.

高一物理典型例题

高一物理必修1知识集锦及典型例题 一. 各部分知识网络 (一)运动的描述: 测匀变速直线运动的加速度:△x=aT 2 ,6543212 ()()(3) a a a a a a a T ++-++=

a与v同向,加速运动;a与v反向,减速运动。

(二)力: 实验:探究力的平行四边形定则。 研究弹簧弹力与形变量的关系:F=KX.

(三)牛顿运动定律: . 改变

(四)共点力作用下物体的平衡: 静止 平衡状态 匀速运动 F x 合=0 力的平衡条件:F 合=0 F y 合=0 合成法 正交分解法 常用方法 矢量三角形动态分析法 相似三角形法 正、余弦定理法 物 体 的平衡

二、典型例题 例题1..某同学利用打点计时器探究小车速度随时间变化的关系,所用交流电的频率为50 Hz,下图为某次实验中得到的一条纸带的一部分,0、1、2、3、4、5、6、7为计数点,相邻两计数点间还有3个打点未画出.从纸带上测出x1=3.20 cm,x2=4.74 cm,x3=6.40 cm,x4=8.02 cm,x5=9.64 cm,x6=11.28 cm,x7=12.84 cm. (1)请通过计算,在下表空格内填入合适的数据(计算结果保留三位有效数字); (2)根据表中数据,在所给的坐标系中作出v-t图 象(以0计数点作为计时起点);由图象可得,小车 运动的加速度大小为________m /s2 例2. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零 例3. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s末的速度是6m/s。求:(1)第4s末的速度;(2)头7s内的位移;(3)第3s内的位移。 例4. 公共汽车由停车站从静止出发以0.5m/s2的加速度作匀加速直线运动,同时一辆汽车以36km/h的不变速度从后面越过公共汽车。求: (1)经过多长时间公共汽车能追上汽车? (2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 例5.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是 A. 物体立即获得加速度和速度

(完整版)八年级的物理力学典型例题.docx

液体压强典例 例 1 小华制成如图 5 所示的“自动给水装置”,是用一个装满水的塑料瓶子倒放在盆景中, 瓶口刚好被水浸没。其瓶中水面能高于盆内水面,主要是由于() A、瓶的支持力的作用 B、瓶的重力作用 C、水的浮力作用支持力 D、大气压的作用 【解题思路】瓶内高于水面的水与瓶的支持力和重力作用无关,可排除A、 B。瓶内装满水瓶子倒放在盆景中后,是大气压的作用,与浮力无关。 【点评】只所以瓶中水面能高于盆内水面是由于瓶外大气压比瓶内上面的空气气压大。此题考查学生是否理解大气压在生产生活中的应用原理;考查学生的物理知识与生产生活结合能 力。难度较小。 例 2 在塑料圆筒的不同高处开三个小孔,当筒里灌满水时.各孔喷出水的情况如图 5 所示,进表明液体压强() A.与深度有关B.与密度有关 C.与液柱粗细有关D.与容器形状有关 图 5 【解题思路】由图示可知,小孔距水面越远,孔中喷出的水流越远,这说明液体的压强随深 度的增加而增大。【答案】 A 【点评】本题考查了液体内部压强的特点。理解水从孔中喷出的越远,液体压强越大,是解题的关键。本题难度中等。 例 3 在两个完全相同的容器 A 和B 中分别装有等质量的水和酒精(p水>p 酒精 ) ,现将两个完全相同的长方体木块甲和乙分别放到两种液体中,如图 2 所示,则此时甲和乙长方体木块下表 面所受的压强P 甲、 P 乙,以及 A 和B 两容器底部所受的压力F A、 F B的关系是 A.P甲

FB。 C.P甲=P 乙FA

例 4 如图 1 所示,在三个相同的容器中分别盛有甲、乙、 丙三种液体;将三个完全相同的铜 球,分别沉入容器底部,当铜球静止时,容器底受到铜球的压力大小关系是 F < F < , 甲 乙 丙 则液体密度相比较 图 1 A .一样大 B .乙的最小 C .丙的最小 D . 甲的最小 例 5 右图为小明发明的给鸡喂水自动装置, 下列是同学们关于此装置的讨论, 其中说法正确 的是( ) A .瓶内灌水时必须灌满,否则瓶子上端有空气,水会迅速流出 来 B .大气压可以支持大约 10 米高的水柱,瓶子太短,无法实现 自动喂水 C .若外界大气压突然降低,容器中的水会被吸入瓶内,使瓶内的水面升高 D .只有当瓶口露出水面时,瓶内的水才会流出来 例 6 内都装有水的两个完全相同的圆柱形容器, 放在面积足够大的水平桌面中间位置上。 若 将质量相等的实心铜球、铝球(已知 ρ铜 > ρ 铝)分别放入两个量筒中沉底且浸没于水中 后(水未溢出) ,两个圆柱形容器对桌面的压强相等, 则此时水对圆柱形容器底部的压强 大小关系为:( ) A 、放铜球的压强大; B 、放铝球的压强大; C 、可能一样大; D 、一定一样大。 例 7 如图所示,底面积不同的薄壁圆柱形容器内分别盛有液体甲和乙,液面相平。已知甲、 乙液体对容器底部压强相等。 若分别在两容器中放入一个完全相同的金属球后, 且无液体溢出,则:( ) A 、甲对容器底部压强可能等于乙对容器底部压强; B 、甲对容器底部压力可能小于乙对容器底部压力; C 、甲对容器底部压强一定大于乙对容器底部压强; D 、甲对容器底部压力一定大于乙对容器底部压力。 例 8 如图所示, 两个底面积不同的圆柱形容器内分别盛有不同的液体甲和乙, 甲液体对容器 底部的压强等于乙液体对容器底部的压强。 下列措施中, 有可能使甲液体对容器底部的压强

高中物理力学分析及经典题目

力学知识回顾以及易错点分析: 一:竖直上抛运动的对称性 如图1-2-2,物体以初速度v0竖直上抛,A、B为途中的任意两点,C为最高点,则: (1)时间对称性 物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA. (2)速度对称性 物体上升过程经过A点的速度与下降过程经过A点的速度大小相等.[关键一点] 在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也 可能处于下降阶段,因此这类问题可能造成时间多解或者速度多解. 易错现象 1、忽略自由落体运动必须同时具备仅受重力和初速度为零 2、忽略竖直上抛运动中的多解 3、小球或杆过某一位置或圆筒的问题 二、运动的图象运动的相遇和追及问题 1、图象: 图像在中学物理中占有举足轻重的地位,其优点是可以形象直观地反映物理量间的函数 关系。位移和速度都是时间的函数,在描述运动规律时,常用x—t图象和v—t图象.

(1) x—t图象 ①物理意义:反映了做直线运动的物体的位移随时间变化的规律。②表示物体处于静止状态 ②图线斜率的意义 ①图线上某点切线的斜率的大小表示物体速度的大小. ②图线上某点切线的斜率的正负表示物体方向. ③两种特殊的x-t图象 (1)匀速直线运动的x-t图象是一条过原点的直线. (2)若x-t图象是一条平行于时间轴的直线,则表示物体处 于静止状态 (2)v—t图象 ①物理意义:反映了做直线运动的物体的速度随时间变化 的规律. ②图线斜率的意义 a图线上某点切线的斜率的大小表示物体运动的加速度的大小. b图线上某点切线的斜率的正负表示加速度的方向. ③图象与坐标轴围成的“面积”的意义 a图象与坐标轴围成的面积的数值表示相应时间内的位移的大小。 b若此面积在时间轴的上方,表示这段时间内的位移方向为正方向;若此面积在时 间轴的下方,表示这段时间内的位移方向为负方向. ③常见的两种图象形式 (1)匀速直线运动的v-t图象是与横轴平行的直线.

高中物理经典题库1000题

《物理学》题库 一、选择题 1、光线垂直于空气和介质的分界面,从空气射入介质中,介质的折射率为n,下列说法中正确的是() A、因入射角和折射角都为零,所以光速不变 B、光速为原来的n倍 C、光速为原来的1/n D、入射角和折射角均为90°,光速不变 2、甘油相对于空气的临界角为42.9°,下列说法中正确的是() A、光从甘油射入空气就一定能发生全反射现象 B、光从空气射入甘油就一定能发生全反射现象 C、光从甘油射入空气,入射角大于42.9°能发生全反射现象 D、光从空气射入甘油,入射角大于42.9°能发生全反射现象 3、一支蜡烛离凸透镜24cm,在离凸透镜12cm的另一侧的屏上看到了清晰的像,以下说法中正确的是() A、像倒立,放大率K=2 B、像正立,放大率K=0.5 C、像倒立,放大率K=0.5 D、像正立,放大率K=2 4、清水池内有一硬币,人站在岸边看到硬币() A、为硬币的实像,比硬币的实际深度浅 B、为硬币的实像,比硬币的实际深度深 C、为硬币的虚像,比硬币的实际深度浅 D、为硬币的虚像,比硬币的实际深度深 5、若甲媒质的折射率大于乙媒质的折射率。光由甲媒质进入乙媒质时,以下四种答案正确的是() A、折射角>入射角 B、折射角=入射角 C、折射角<入射角 D、以上三种情况都有可能发生 6、如图为直角等腰三棱镜的截面,垂直于CB面入射的光线在AC面上发生全反射,三棱镜的临界角() A、大于45o B、小于45o C、等于45o D、等于90o 7、光从甲媒质射入乙媒质,入射角为α,折射角为γ,光速分别为v甲和v乙,已知折射率为n甲>n乙,下列关系式正确的是() A、α>γ,v甲>v乙 B、α<γ,v甲>v乙 C、α>γ,v甲

高中物理力学经典的题库(含答案)

高中物理力学计算题汇总经典精解(50题)1.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m2s2) 图1-73 2.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体) 3.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出

水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少? 4.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块与水平面的动摩擦因数为0.2,物块运动2秒末撤去拉力,g取10m/s2.求 (1)2秒末物块的即时速度. (2)此后物块在水平面上还能滑行的最大距离. 5.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求 图1-74 (1)推力F的大小. (2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离? 6.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m. (1)若网球在网上0.1m处越过,求网球的初速度. (2)若按上述初速度发球,求该网球落地点到网的距离.

【电路】高中物理电路经典例题

?在许多精密的仪器中,如果需要较精确地调节某一电阻两端的电压,常常采用如图所示的电路.通过两只滑动变阻器R1和R2对一阻值为500 Ω 左右的电阻R0两端电压进行粗调和微调.已知两个滑动变阻器的最大阻值分别为200 Ω和10 Ω.关于滑动变阻器R1、R2的连接关系和各自所起的作用,下列说法正确的是( B A.取R1=200 Ω,R2=10 Ω,调节R1起粗调作用 B.取R1=10 Ω,R2=200 Ω,调节R2起微调作用 C.取R1=200 Ω,R2=10 Ω,调节R2起粗调作用 D.取R1=10 Ω,R2=200 Ω,调节R1起微调作用 滑动变阻器的分压接法实际上是变阻器的一部分与另一部分在跟接在分压电路中的电阻并联之后的分压,如果并联的电阻较大,则并联后的总电阻接近变阻器“另一部分”的电阻值,基本上可以看成变阻器上两部分电阻的分压.由此可以确定R1应该是阻值较小的电阻,R2是阻值较大的电阻,且与R1的一部分并联后对改变电阻的影响较小,故起微调作用,因此选项B是正确的. 如图所示,把两相同的电灯分别拉成甲、乙两种电路,甲电路所加的电压为8V, 乙电路所加的电压为14V。调节变阻器R 1和R 2 使两灯都正常发光,此时变阻器 消耗的电功率分别为P 甲和P 乙 ,下列关系中正确的是( a ) A.P 甲> P 乙 B.P 甲<P 乙 C.P 甲 = P 乙 D.无法确 定 ?一盏电灯直接接在电压恒定的电源上,其功率是100 W.若将这盏灯先接一段很长的导线后,再接在同一电源上,此时导线上损失的电功率是9 W,那么此电灯的实际功率将( ) A.等于91 W B.小于91 W C.大于91 W D.条件不足,无法确定

高中物理力学经典例题集锦

高中物理典型例题集锦 力学部分 1、如图9-1所示,质量为M=3kg的木板静止在光滑水平面上,板的右端放一质量为m=1kg 的小铁块,现给铁块一个水平向左速度V0=4m/s,铁块在木板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求铁块与弹簧相碰过程中,弹性势能的最大值E P。 分析与解:在铁块运动的整个过程中,系统的动量守恒,因此弹簧压缩最大时和铁块停在木板右端时系统的共同速度(铁块与木板的速度相同)可用动量守恒定律求出。在铁块相对于木板往返运动过程中,系统总机械能损失等于摩擦力和相对运动距离的乘积,可利用能量关系分别对两过程列方程解出结果。 设弹簧压缩量最大时和铁块停在木板右端时系统速度分别为V和V’,由动量守恒得:mV0=(M+m)V=(M+m)V’ 所以,V=V’=mV0/(M+m)=1X4/(3+1)=1m/s 铁块刚在木板上运动时系统总动能为:EK=mV02==8J 弹簧压缩量最大时和铁块最后停在木板右端时,系统总动能都为: E K’=(M+m)V2=(3+1)X1=2J 铁块在相对于木板往返运过程中,克服摩擦力f所做的功为: W f=f2L=E K-E K’=8-2=6J 铁块由开始运动到弹簧压缩量最大的过程中,系统机械能损失为:fs=3J 由能量关系得出弹性势能最大值为:E P=E K-E K‘-fs=8-2-3=3J 说明:由于木板在水平光滑平面上运动,整个系统动量守恒,题中所求的是弹簧的最大弹性势能,解题时必须要用到能量关系。在解本题时要注意两个方面:①是要知道只有当铁块和木板相对静止时(即速度相同时),弹簧的弹性势能才最大;弹性势能量大时,铁块和木板的速度都不为零;铁块停在木板右端时,系统速度也不为零。 ②是系统机械能损失并不等于铁块克服摩擦力所做的功,而等于铁块克服摩擦力所做的功和摩擦力对木板所做功的差值,故在计算中用摩擦力乘上铁块在木板上相对滑动的距离。 2、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

相关文档
最新文档