储罐基础知识介绍

储罐基础知识介绍
储罐基础知识介绍

储罐按其制造材质可分为金属罐和非金属罐。在化工、石油化工和石油等工业中储存液化气以外的原料油主要采用金属储罐,即金属油罐。

(一)油罐分类金属油罐可根据油罐所处位置、几何形状和不同结构形式等几方面来划分。

1、按油罐所处位置划分分为地上油罐、半地下油罐和地下油罐三种。

(1)地上油罐。指油罐的罐底位于设计标高±0.00及其以上;罐底在设计标高±0.00以下但不超过油罐高度的1/2,也称为地上油罐。

(2)半地下油罐。半地下油罐是指油罐埋入地下深于其高度的1/2,而且油罐的液位的最大高度不超过设计标高±0.00以上0.2m。

(3)地下油罐。地下油罐指罐内液位处于设计标高±0.00以下0.2m的油罐。

2、按油罐的几何形状划分按油罐的几何形状可划分为:

(1)立式圆柱形罐;

(2)卧式圆柱形罐;

(3)球形罐;

3、按油罐的不同结构形式划分可分为:固定顶储罐、无力矩顶储罐、浮顶储罐和套顶储罐。(1)固定顶储罐:固定顶储罐又可分为锥顶储罐、拱顶储罐、自支承伞形储罐。

(2)无力矩顶储罐(悬链式无力矩储罐):无力矩顶储罐是根据悬链线理论,用薄钢板制造的。其顶板纵断面呈悬链曲线状。由于这种形状的罐顶板只受拉力作用而不产生弯矩,所以称为无力矩顶油罐。

(3)浮顶储罐:浮顶储罐分为浮顶储罐、内浮顶储罐(带盖内浮顶储罐)。

1)浮顶储罐。浮顶储罐的浮顶是一个漂浮在贮液表面上的浮动顶盖,随着储液的输入输出而上下浮动,浮顶与罐壁之间有一个环形空间,这个环形空间有一个密封装置,使罐内液体在顶盖上下浮动时与大气隔绝,从而大大减少了储液在储存过程中的蒸发损失。采用浮顶罐储存油品时,可比固定顶罐减少油品损失80%左右。

2)内浮顶储罐。内浮顶储罐是带罐顶的浮顶罐,也是拱顶罐和浮顶罐相结合的新型储罐。内浮顶储罐的顶部是拱顶与浮顶的结合,外部为拱顶,内部为浮顶。内浮顶储罐具有独特优点:一是与浮顶罐比较,因为有固定顶,能有效地防止风、砂、雨、雪或灰尘的侵入,绝对保证储液的质量。同时,内浮盘漂浮在液面上,使液体无蒸汽空间,减少蒸发损失85%~96%;减少空气污染,减少着火爆炸危险,易于保证储液质量,特别适合于储存高级汽油和喷气燃料及有毒的石油化工产品;由于液面上没有气体空间,故减少罐壁罐顶的腐蚀,从而延长储罐的使用寿命,二是在密封相同情况下,与浮顶相比可以进一步降低蒸发损耗。内浮顶储罐的缺点:与拱顶罐相比,钢板耗量比较多,施工要求高;与浮顶罐相比,维修不便(密封结构),储罐不易大型化,目前一般不超过10000m3。(舟山项目以为15000m3)

(二)金属油罐附件罐体上安装的一些供特殊用途的附属配件,即油罐附件,应适应各种油品的储存、发放、计量和维修等的要求,确保金属油罐的正常工作。

(1)人孔:专为操作人员进出油罐检查、清洗和修理之用。

(2)透光孔:专为罐内进行检查、修理、刷洗时透光、通风之用。一般安装在罐内的顶部。(3)排污孔(管):用于清扫油罐时排出淤泥油污等,平时可以通过放水管排泄罐底沉积水。(4)放水管:用于排除罐底的沉积水。

(5)罐顶结合管与罐壁接合管:用于进出储存介质之用。

(6)量油孔:用于测量罐内油品的液面、温度及取样。量油孔一般与测量液位的仪表相连。通常安装在罐顶平台附近。

(7)呼吸阀、安全阀:呼吸阀的作用是调节罐内油气压力,当罐内压力过高时,通过呼吸阀将部分多余油气排出,使罐内压力下降;当罐内压力过低时,通过呼吸阀从罐外吸入空气,使罐内压力升高,始终保持与大气压恒定的状态。安全阀的作用是当油罐在操作过程中,由

于呼吸阀失灵或其他原因影响正常工作时,可通过它调节罐内压力,从而防止由于罐内正压或负压太高、罐壁应力过大而造成油罐外形破坏或油罐被抽瘪。

(8)防火器:用来防止火星、空气经过安全阀或呼吸阀进入罐内引起意外,它安装在呼吸阀或安全阀的下面。

(9)内部关闭阀操纵装置:该装置用来连接罐内外自动关闭阀,完成进油和出油。

(10)加热器:加热器分局部加热器和全面加热器两种。其作用是通过蒸汽对原油和重油加热,以防止油品凝固。

(11)升降管:通过回转接头与出油接合管相连接,用卷扬机带动升降,可选择抽取罐内任何部位油品,一般只安装在润滑油或特种油品罐上。

(12)泡沫发生器:当罐内油品发生意外起火燃烧时,利用泡沫发生器产生泡沫剂灭火。(13)进料孔:用于进料。

(三)金属油罐的制作安装

1、罐底预制与安装罐底安装时要注意,中间条板的中心线必须与基础上的纵横中心线重合。相邻两条中幅板上的短缝应错开500mm以上,中幅板和边板的焊缝应错开200mm以上。底板铺设之前,应在底面涂防腐沥青漆(搭接部位可不刷涂)。罐底的焊接步骤是:先焊接中幅板,在丁字缝处用捻锤将焊缝打严,然后按焊接顺序对称施焊。

2、罐顶预制与安装罐顶预制和安装与罐体的安装工艺密切相关,对于采用倒装法安装工艺的油罐,其罐顶预制与安装过程为:当罐底铺好后,即开始安装罐顶。

3、金属油罐的安装施工方法

(1)机械正装法。

(2)抱杆倒装法。

(3)卷装法。

(4)充气升顶法。

(5)水浮正装法。水浮正装法适用于大容量的浮船式金属储罐的施工。

4、金属油罐的试验

(1)油罐焊缝质量的检验及验收。为确保油罐安装的焊缝质量,应对油罐焊缝上外观和内部质量进行检验,采用相应的无损探伤方法和技术标准。常用的无损探伤方法有:超声波探伤、射线探伤、磁粉探伤、渗透探伤等。

(2)油罐严密性试验。油罐(包括附件)安装完毕,应按设计技术条件和规范要求,分别对罐底、罐壁、罐顶及附件进行严密性试验。油罐严密性试验的目的是检验其本身结构强度及焊缝严密性。几种常见的试验方法有:真空箱试验法、煤油试漏方法、化学试验法、压缩空气试验法。罐底焊接完毕后,通常用真空箱试验法或化学试验法进行严密性试验,罐壁严密性试验一般采用煤油试漏法,罐顶则一般利用煤油试漏或压缩空气试验法以检查其焊缝的严密。

(3)油罐充水试验。对油罐的罐底、罐壁、罐顶分别进行严密性试验后,应再进行充水试验,并检查下列试验内容::罐底严密性,罐壁强度及严密性,固定顶强度、稳定性及严密性,浮顶及内浮面的升降试验及严密性,中央排水管的严密性,基础的沉降观测。

球罐球形罐与立式圆筒形储罐相比,在相同容积和相同压力下,球罐的表面积最小,故所需钢材面积少;在相同直径情况下,球罐壁内应力最小,而且均匀,其承载能力比圆筒形容器大1倍,故球罐的板厚只需相应圆筒形容器壁板厚度的一半。由上述特点可知,采用球罐,可大幅度减少钢材的消耗,一般可节省钢材30%~45%;此外,球罐占地面积较小,基础工程量小,可节省土地面积。

(一)球罐的构造与分类

1、球罐的构造球罐由本体、支柱(承)及附件组成。

(1)球罐本体。球壳有环带式(橘瓣式)、足球瓣式、混合式结构三种形式。

(2)球罐支柱(承)。球罐支柱(承)是用于支承球罐本体重量和储存物料重量的结构部件,有柱式、裙式半埋入式及高架式支座多种。

1)柱式支座。赤道正切柱式支座是使用最多的一种形式,另外,还有V型支承或三柱合一型支承。

2)裙式支座。这种结构的特点是支座较低,由钢板制成,其优点是稳定性好,节省钢材。3)半埋入支座。这种结构是半球体支承于钢筋混凝土基础上。

(3)球罐的附件

1)梯子平台:一般球罐设置顶部平台和中间平台,顶部平台是工艺操作平台。

2)人孔和接管:人孔是为了操作人员进出球罐进行检验和维修而设置的,同时也用于现场组装焊接球罐时进行焊后整体热处理、进风、燃烧口和烟气排出等。

3)水喷淋装置:球罐上装设水喷淋装置是为了贮存的液化石油气、可燃气体和毒性气体的隔热需要,同时也可起消防保护作用。

4)隔热和保冷设施。隔热和保冷一般是为了保证贮存介质的一定温度。储存液化石油气、可燃性气体和液化气及有毒气体的球罐和支柱,应该设置隔热设施。球罐储存低温物料(如乙烯、液氨等)时应设保冷装置。

5)液面计。为了观测球罐内液位情况,一般在储存液体和液化气体的球罐中装置液面计。6)压力表。为了测量球罐内的压力而设置压力表。考虑到压力表由于某种原因而发生故障或由于仪表检查而取出等情况,应在球壳的上部和下部各设一块压力表。

2、球罐分类球罐的结构是多种多样的,根据不同的使用条件(介质、容量、压力湿度)有不同的结构形式。通常按照外观形状、壳体构造和支承方式的不同来分类。

(1)按形状分为圆球形和椭球形

(2)按壳体层数分为单层壳体和双层壳体

1)单层壳体最常见,多用于常温高压和高温中压球罐。

2)双层壳体球罐,由外球和内球组成,由于双层壳体间放置了优质绝热材料,所以绝热保冷性能好,故能储存温度低的液化气。双层壳体球罐采用双金属复合板制造,适用于超高压气体或液化气的储存,目前使用不多。

(3)按球壳的组合方式分为纯橘瓣式、纯足球瓣式和足球橘瓣混合式。

1)纯橘瓣式球壳是按橘瓣结构形式(或称西瓜皮瓣)进行分割组合的,这种结构形式称纯橘瓣球壳。这种球壳的特点是球壳拼装焊缝较规则,施工简单。纯橘瓣式球壳结构有赤道带,球罐支承大多数为赤道正切柱式支承。

2)足球瓣式球壳。其优点是球瓣的尺寸相同或相近,制作开片简单省料。缺点是组装比较困难,有部分支柱搭在球壳的焊缝上造成该处焊接应力较复杂。

3)足球橘瓣混合式球壳。其结构特点是赤道带采用橘瓣式,上下极板是足球瓣式。优点是制造球皮工作量小,焊缝短,施工进度快,另处可以避免支柱搭在球壳焊缝上带来的不足,缺点是两种球瓣组装校正麻烦,球皮制造要求高。

(4)按支承结构分为柱式支承和裙式支承,半埋入式支承、高架支承等。

(二)球罐的安装施工

1、球罐的拼装方法

(1)分片组装法。采用分片组装法的优点是:施工准备工作量少,组装速度快,组装应力小,而且组装精度易于掌握,不需要很大的吊装机械,也不需要太大的施工场地,缺点是高空作业量大,需要相当数量的夹具,全位置焊接技术要求高,而且焊工施焊条件差,劳动强度大。分片组装法适用于任意大小球罐的安装。

(2)拼大片组装法。拼大片组装法是分片组装法的延伸。在胎具上将已预热好、编了号的

相邻两片或多片球壳瓣,拼接成较大的球壳片,然后吊装组焊成球壳体。组合的球壳片瓣数多少为宜,要根据吊装能力确定。拼大片组装法由于在地面上进行组装焊接,减少了高空作业,并可以采用自动焊进行焊接,从而提高了焊接质量。

(3)环带组装法。环带组装法一般分两种,一种是在预制厂先将各环带预制成型,然后运输到现场组装,这种方法常受各种限制,比较大的球罐很少采用。大多数施工单位一般都是在现场进行预制并组装。在临时钢平台上,先后将赤道带,上下温带、上下极板分别组对焊接成环带,然后将各环带组装焊接成球体。环带组装法组装的球壳,各环带纵缝的组装精度高,组装的拘束力小,减少了高空作业和全位置焊接,施工进度快,提高了工效。同时也减少了不安全因素,并能保证纵缝的焊接质量。环带组装法现场施工时,需要一定面积的临时钢平台,占用场地大;组装时需用的加固支撑较多;组成的环带重量较大,组装成球时需较大的吊装机械。另外,环缝组对时难以避免强制性组装,因而强装焊接后产生较大的应力。环带组装法一般适用于中、小球罐的安装。

(4)拼半球组装法。这种施工方法的特点是:高空作业少,安装速度快,但需用吊装能力较大的起重机械等,故仅适用于中、小型球罐的安装。

(5)分带分片混合组装法。这种方法适用于中、小型球罐的安装。上述这组装方法中,在施工中较常用的是分片组装法和环带组装方法。

2、球罐焊接球罐的焊接工作量很大,焊接难度高,焊缝包括平、立、仰、横各种位置的焊接,技术要求十分严格。

3、球罐焊前预热、焊后热处理及整体热处理

(1)焊前预热。预热是指施焊前把焊接的工件加热到比环境更高的温度,再在此温度下进行焊接,球罐的材质大多数为高强度的合金钢,在焊接过程中,由于材质焊后冷却收缩,易于产生冷裂纹及脆性断裂。预热的目的就是为了防止焊接金属的热影响区产生裂纹,减少应力变形量,防止金属热影响区的塑性、韧性的降低,并且可以除去表面水分。根据施工规范规定,球罐的预热温度根据焊件材质、厚度、接头的拘束度、焊接材料及气象条件确定。预热时要求对焊接部位均匀加热,使其达到焊接工艺规定的温度,预热范围为焊接接头中心两侧各3倍板厚以上且不少于100mm的范围内。

(2)焊后热处理。球罐焊接完后应立即进行焊后热处理。焊后热处理的主要目的:一方面是释放残余应力,改善焊缝塑性和韧性;更重要的是为了消除焊缝中的氢根,改善焊接部位的力学性能。球罐的焊接后消氢处理应由焊接工艺评定结果确定,焊后热处理温度一般要求应与预热温度相同(200~350℃),保温时间应为0.5~1h。遇有下列情况的焊缝,均应在焊后立即进行焊后热消氢处理。

1)厚度大于32mm的高强度钢;

2)厚度大于38mm的其他低合金钢;

3)锻制凸缘与球壳板的对接焊缝。

(3)整体热处理

1)整体热处理的目的。球罐整体热处理的目的是为了消除由于球罐组焊产生的应力,稳定球罐几何尺寸,改变焊接金相组织,提高金属的韧性和抗应力能力,防止裂纹的产生。同时,由于溶解氢的析出,防止延迟裂纹产生,预防滞后破坏,提高耐疲劳强度与蠕变强度。目前我国对壁厚大于34mm的各种材质的球罐都采用整体热处理。2)整体热处理的方法。球罐整体热处理有两种方法:内燃法和电热法。

4、球罐的检验焊接质量检验是保证球罐质量不可缺少的重要手段。

(1)焊缝检查。

(2)水压试验。水压试验是为了检查球罐的强度、考核球罐组装焊接质量,以保证球罐能够承受设计压力不漏。经过水压超载能够改善球罐的承载能力。尽管球罐在制造、组装焊接

过程中和焊后都进行了严格的检验工作,但漏检的缺陷有可能在水压试验中出现。因此水压试验也是比较重要的检验手段。

(3)气密性试验。根据规定,球罐经水压试验合格后要再进行一次磁粉探伤或渗透探伤;排除表面裂纹及其他缺陷后,再进行气密性试验。气密性试验是在球罐各附件安装完毕、压力表、安全阀、温度计经过校验合格后进行。气密性试验所用气体应是干燥、清洁空气或其他惰性气体,气体温度不得低于5℃。

原油储罐基础工程施工组织设计方案

第一章编制依据 本施工组织设计是根据: 1.**15万方储油罐地基与基础工程施工招标文件。 2.**油库15万方原油储罐基础施工图纸。 3.现行国家有关施工及验收规范。 4.江苏省及扬州市地方政府有关法规、法令及文件规定。 5.本企业质量体系及企业内部工法。 6.中华人民共和国建设部令第15号《建设工程施工现场管理规定》 7.国家现行的安全生产操作规程及《炼油、化工施工安全规程》等安全方面的有关 规定。 8.踏勘工地现场和调查咨询资料。 9.其他有关规范及文献资料。 结合我司以往施工过同类工程(**工程)的施工经验进行编制的。

第二章工程概况 本工程为**集团管道储运公司工程处新建的15万方原油储罐基础,位于×××。主要工程内容包括:T1、T2两座原油储罐基础。 1原油罐基础设计情况 原油罐基础外径R=50.32m(半径),环墙厚度为800mm,高度为2300mm。T 1罐基础中心施工标高30.525m,环墙施工顶标高29.77m,油罐底由中心坡向四周 =0.015;T2罐基础中心施工标高30.665,环墙施工顶标高29.91m,油罐底由中心坡向四周 =0.015。 地基采用振冲碎石桩复合地基,罐基础为800mm厚C25钢筋砼环墙,罐基中间各层从上到下依次为:油罐底板→150mm厚沥青砂绝缘层→400mm厚砂垫层→450mm厚素土夯实并找坡→碎石垫层→复合地基; 环墙基础环向钢筋接头采用焊接或机械连接,钢筋净保护层厚度35mm。 2工程特点 2.1本工程土石方工程量大,工期紧迫。 2.2在大型储罐中,环墙质量的好坏对罐的建造质量至关重要。因环墙为薄壁超 长结构,极易受温度与收缩应力等因素的影响而出现裂缝,施工难度大。 3施工建议 3.1为克服环墙因温度及收缩应力可能出现的裂缝,我司建议在混凝土中掺入PPT -

储罐基础设计的合理性

储罐基础设计的合理性 随着国民经济的发展,人们物质生活的提高,对能源及化工用品的需求量增大,化工行业得到蓬勃发展,各种石油产品储罐以及化工行业的气罐、液体原料罐日益增多,成为设计人员经常碰到的课题。 罐基础设计的合理与否直接影响到储罐是否能安全,正常的工作,从事故发生的原因来看一般反应在以下几个方面。 基础的选型是设计是否能达到安全、经济、合理的关键,基础的选型应根据储罐的形式、容积、储存的介质,地质条件、业主所能提供的材料情况以及当地的施工技术条件。 1,当储罐直径小于等于6米时,可采用整板基础,采用此基础的优点是基础整体性好,沉降均匀,由于没有了环墙内夯土,所以施工进度快且质量易得到保证,缺点是混凝土和钢筋用量较大,施工时要采取减小大体积混凝土带来不利影响的措施 2,当储罐直径大于6米时可采用环墙基础,外环墙式和护坡式基础,优点是混凝土和钢筋用量较省,缺点是由于储罐底部夯土较深,施工时间较长且需采取冲水试压等措施,基础沉降量大,环墙的宽度必须和地基以及罐底压强相协调,否则会照成环墙和罐底沉降差过大,以致罐底钢板拉裂或顶破。 3,存储低温介质的钢储罐基础必须采用深基础,其罐底做架空板,板底与地面留有空隙(约800mm)以防止罐内低温介质作用于土壤,形成冻土。 4,存储高温介质钢储罐要根据介质温度的不同采用不同的隔热措施,当介质温度高于95度时,与罐底接触的罐基础表面应采取隔热措施,一般可采用平铺三层浸渍沥青砖,罐底面和砖顶面应刷冷底子油两遍。 5,存储剧毒,酸,碱腐蚀介质的钢储罐应做成实体架空基础(自地面300mm 以下做成整板基础,其上部做架空基础),目的是若罐内介质泄露,介质会顺着架空基础的槽内流出,容易被及时发现,且介质不会流入土壤中,对其产生腐蚀,影响地基承载力。 钢储罐基础应设置沉降观测点,具体要求详见《石油化工企业钢储罐地基与基础设计规范》SHT3068-2007.在基础施工完成后要进行充水试压,目的是对基础及储罐进行检测,同时对地基进行预压,充水预压时要注意控制充水速度及预压时间,以免认为的对基础和罐体照成破坏。 基础可以根据具体的地基情况而比较常见的采用环墙基础、筏板基础、桩基础和地基处理,地基处理在钢储罐基础设计中是经常遇见的,下面介绍一个工程实例:

固井工程技术基础

目录前言 第一章固井概论 第一节固井概念 第二节固井的目的和要求 第二章套管、固井工具、附件和材料第一节API套管标准和规范 第二节固井工具、附件 第三节固井材料 第三章固井工程技术基础 第一节固井工艺 第二节固井水泥浆 第三节注水泥施工程序

第一章固井概述 一、固井概念 为了达到加固井壁,保证继续安全钻进,封隔油、气和水层,保证勘探期间的封层测试及整个开采过程中合理的油气生产等目的而下入优质钢管,并在井筒于钢管环空充填好水泥的作业,称为固井工程。因此固井包括了两部分:下入套管的工艺和注入水泥浆的工艺叫做固井工艺。 固井作业 固井作业是通过固井设计,应用配套的固井设备、辅助设备及工具,将油井水泥、水和添加剂按一定的比例混合后,通过固井泵泵注入井,并顶替到预定深度的井壁与套管、(套管与套管)的环形空间内,使套管与井壁、(套管与套管)之间形成牢固粘结。

固井设备总体示意图 二、固井目的和要求 1、固井的目的 一口油井深达数千米,在钻井过程中常常遇到井漏、井塌、井喷等复杂情况,影响正常钻进,严重时甚至导致井眼报废。遇到上述情况就应下套管固井,封隔好复杂地层后,再继续钻进,直到建立稳定的油气通道为止。因此,为了优质快速钻达目的层,保证油气田的开采,就要采用固井,固井工程的主要目的为: 1)、在钻进过程中封隔易坍塌、易漏失等复杂地层,巩固所钻过的井眼保证钻井顺利进行。

(如图1-1所示),当从A 点钻进至B 点,如果在A 点井深处没下套管固井,那么随着井深的变化,钻达B 点所用泥浆密度在A 点产生的压力就会大于A 点地层破裂压力,造成A 点地层破裂,发生井漏。同理,当从B 点钻进至C 点,如果在B 点井深处没下套管固井,那么随着井深的变化,钻达C 点所用泥浆密度在B 点产生的压力就会大于B 点地层破裂压力,造成B 点地层破裂,发生井漏。 2)、封隔油、气、水层,防止层间互窜。 固井工程不仅关系到钻进的速度和成本,还影响到油气田的开发。(如图1-2所示),如果油、气层与水层间水泥固结不好,层间互相窜通,那么会给油气田开发带来很大困难。当油、气层压力大于水层压力时,油、气便会窜入水层内,既污染了水层又影响到油气的产 量;当水层压力大于油、气层压力时,水便会 图1-1 下套管固井原理示意图 图1-2 固井防止层间流体互窜示意图

RQ-1 压力容器基础知识

压力容器基础知识 第一节压力容器的定义与管辖边界 一、弄清“压力容器”的概念需要区分 >>容器 盛装、容纳物品的器皿或设备。一般具有固定形状。 如:箱、罐、坛,油轮、原油储罐 各种常压容器、压力容器等 >>压力容器 承受一定压力的封闭设备。 此处压力是容器内部的绝对压力与所处环境或外部绝对压力的压力差。 如:压力锅,汽车轮胎,压缩机气缸,深海潜水器,以及各种需要强制安全管理的压力容器(即“法规意义的压力容器”) >>法规意义的压力容器 压力差的存在会造成危险性,失效后会带来人员伤亡和/或财产损失。因此,危险性较大的压力容器需要进行强制安全管理,由此国家出台了系列法律法规和安全技术规范、标准。按照特种设备安全法的规定,采用目录管理。 目前执行: 质检总局2014.10.30公布的《特种设备目录》(2014年第114号) 压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力。 大于或者等于0.1MPa(表压)的气体、液化气体和最高工作温度高于或者等于标准沸点的液体、容积大于或者等于30L且内直径(非圆形截面指截面内边界最大几何尺寸)大于或者等于150mm的固定式容器和移动式容器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力与容积的乘积大于或者等于1.0MPa·L的气体、液化气体和标准沸点等于或者低于60℃液体的气瓶;氧舱。 二、五个要点 ·要点1:涵盖的种类(均具有单独的安全技术监察规程) 固定式压力容器示例 移动式压力容器示例

气瓶示例 氧舱示例

·要点2:压力限定 固定式容器:最高工作压力大于或者等于0.1MPa(表压) 移动式容器:最高工作压力大于或者等于0.1MPa(表压) 气瓶:公称工作压力大于或者等于0.2MPa(表压) 氧舱:未限定 所述“压力”指内压力。 ·要点3:尺寸/体积限定 固定式容器:容积大于或者等于30L且内直径大于或者等于150mm(非圆形截面指截面内边界最大几何尺寸) 移动式容器:(同上) 气瓶:压力与容积的乘积大于或者等于1.0MPa·L 氧舱:未限定 ·要点4:盛装介质限定 固定式容器:气体、液化气体和最高工作温度高于或者等于标准沸点的液体 移动式容器:(同上) 气瓶:气体、液化气体和标准沸点等于或者低于60℃液体 氧舱:未限定 要点5:同时满足 同时满足压力、介质、几何尺寸要求的固定式压力容器、移动式压力容器和气瓶,才属于“法规意义的压力容器”范畴。 未对氧舱的压力、介质、几何尺寸进行限定。 “法规意义的压力容器”通常简称为“压力容器” 三、几个概念 最高工作压力:在正常工作情况下,容器顶部可能达到的最高压力。(表压力) 最高工作温度:在正常工作情况下,容器介质的最高温度。 公称工作压力:对压缩气体,是指在基准温度(20 ℃)下,气瓶内压缩气体达到完全均匀状态时的限定压力(表压力)。对高(低)压液化气体、溶解气体、低温液化气体、混合气体的公称工作压力在“瓶规”中均有界定。 标准沸点:在一个标准大气压下(101325Pa)的沸点称为该液体的“标准沸点”,例如水的标准沸点为100℃。 液化气体:指临界温度高于等于-50 ℃的高(低)压液化气体(常温),临界温度低于-50 ℃的低温液化气体。 四、《特种设备安全监察条例》对压力容器的界定 (一)从压力、介质、几何尺寸等方面对压力容器管辖边界的界定 压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压),且压力与容积的乘积大于或者等于2.5MPa·L的气体、液化气体和最高工作温度高于或者等于标准沸点的液体的固定式容器和移动式容器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力与容积的乘积大于或者等于1.0MPa·L 的气体、液化气体和标准沸点等于或者低于60℃液体的气瓶;氧舱等。 1.TSG21-2016 大固容规对固定式压力容器的界定 固定式压力容器是指安装在固定位置使用的压力容器。 本规程适用于特种设备目录所定义的、同时具备以下条件的压力容器: (1)工作压力大于或者等于0.1 MPa; (2)容积大于或者等于0.03 m3并且内直径(非圆形截面指截面内边界最大几何尺寸)

固井工程技术基础复习过程

固井工程技术基础

目录前言 第一章固井概论 第一节固井概念 第二节固井的目的和要求 第二章套管、固井工具、附件和材料第一节API套管标准和规范 第二节固井工具、附件 第三节固井材料 第三章固井工程技术基础 第一节固井工艺 第二节固井水泥浆 第三节注水泥施工程序

第一章固井概述 一、固井概念 为了达到加固井壁,保证继续安全钻进,封隔油、气和水层,保证勘探期间的封层测试及整个开采过程中合理的油气生产等目的而下入优质钢管,并在井筒于钢管环空充填好水泥的作业,称为固井工程。因此固井包括了两部分:下入套管的工艺和注入水泥浆的工艺叫做固井工艺。 固井作业 固井作业是通过固井设计,应用配套的固井设备、辅助设备及工具,将油井水泥、水和添加剂按一定的比例混合后,通过固井泵泵注入井,并顶替到预定深度的井壁与套管、(套管与套管)的环形空间内,使套管与井壁、(套管与套管)之间形成牢固粘结。

固井设备总体示意图 二、固井目的和要求 1、固井的目的 一口油井深达数千米,在钻井过程中常常遇到井漏、井塌、井喷等复杂情况,影响正常钻进,严重时甚至导致井眼报废。遇到上述情况就应下套管固井,封隔好复杂地层后,再继续钻进,直到建立稳定的油气通道为止。因此,为了优质快速钻达目的层,保证油气田的开采,就要采用固井,固井工程的主要目的为: 1)、在钻进过程中封隔易坍塌、易漏失等复杂地层,巩固所钻过的井眼保证钻井顺利进行。

(如图1-1所示),当从A点钻进至B点,如果在A点井深处没下套管固井,那么随着井深的变化,钻达B点所用泥浆密度在A点产生的压力就会大于A点地层破裂压力,造成A点地层破裂,发生井漏。同理,当从B点钻进至C点,如果在B点井深处没下套管固井,那么随着井深的变化,钻达C点所用泥浆密度在B点产生的压力就会大于B点地层破裂压力,造成B点地层破裂,发生井漏。 2)、封隔油、气、水层,防止层间互窜。 固井工程不仅关系到钻进的速度和成本, 还影响到油气田的开发。(如图1-2所示), 如果油、气层与水层间水泥固结不好,层间互 相窜通,那么会给油气田开发带来很大困难。 当油、气层压力大于水层压力时,油、气便会 窜入水层内,既污染了水层又影响到油气的产 量;当水层压力大于油、气层压力时,水便会 图1-1 下套管固井原理示意图 图1-2 固井防止层间流体互窜示意图

大型储罐的基础设计及构造研究 丁园

大型储罐的基础设计及构造研究丁园 发表时间:2019-12-09T09:57:41.753Z 来源:《基层建设》2019年第25期作者:丁园 [导读] 摘要:大型储罐在实际应用过程中,由于这种类型储罐的本体大多数都是利用钢板来进行焊接,所以其在外形尺寸方面比较大,荷载比较大,沉降量也比较大。 中国纺织科学研究院有限公司上海聚友化工有限公司北京 100025 摘要:大型储罐在实际应用过程中,由于这种类型储罐的本体大多数都是利用钢板来进行焊接,所以其在外形尺寸方面比较大,荷载比较大,沉降量也比较大。与此同时,这种类型的储罐在实际应用过程中,其整体刚度比较低,同时具有一定柔性特征。储罐基础产生的不均匀沉降要求较高,如果基础有较大的不均匀沉降,就会直接影响到储罐的正常使用。本文对大型储罐的基础设计及构造进行研究。 关键词:大型储罐;基础设计;构造 1 大型储罐的基础设计形式 1.1 护坡式基础 当天然地基承载力特征值大于或等于基底平均压力、地基变形满足规范要求的允许值且场地不收限制时,可采用护坡式基础。护坡式基础是在储罐底面四周用素土或碎石沿着基础砌成护坡。其优点是工程投资少、施工方便;缺点是对调整地基不均匀沉降作用小效果差,且占地面积大。如果基础大量沉降后,周围护坡破裂,罐底各层填料往往在大于后流失,造成基底局部掏空,所以在这种背景下,护坡式基础在设计已经不常见。 1.2 外环墙式基础 外环墙式基础是将钢筋混凝土环墙离开储罐外壁一定距离,罐体坐落在由砂石土构成的基础上。其优点是受力状态较好,具有一定的稳定性,较环墙式基础省钢筋和水泥;缺点是调整不均匀沉降的能力较差,当罐壁下节点处的下沉量低于外环墙顶时易造成两者之间的凹陷。一般用于车间内部生产原料储罐,容积控制在1000m3以内。 1.3 环墙式基础 环墙式基础在设计中使用较多,系将储罐壁板直接安装在钢筋混凝土环墙上,大部分用与软和中软场地的浮顶罐及内浮顶罐。环墙式基础在实际应用过程中,其最明显的优点之一就是在平面抗弯的刚度程度上比较大,这样有利于调整不均匀沉降问题,减少罐壁的变形。罐体自身的荷载在某种程度上可以给地基传递相对较均匀的压力。与此同时,使用时可以调整中心和边缘的沉降,防止环墙内砂垫层或土的侧向变形或流散,整体的稳定性较好,抗震效果较理想,有利于为施工提供便利操作方式。减少罐底潮气对罐底板的腐蚀,并且有利于事故的处理。但是环墙基础在实际应用过程中,还存在一定的缺点。最明显的缺点问题之一就是环墙的竖向抗力刚度比环墙内填料相差较大,受力状态不均匀,导致罐壁和罐底的受力效果受到影响,达不到最理想的状态。除此之外,钢筋及水泥等材料消耗较大,在其中所需要投入的成本也比较高。 1.4 钢筋混凝土桩筏基础 在地基土相对比较软弱,地基处理有困难或不做处理时,宜采用钢筋混凝土桩筏基础,一般是由底部桩基、钢筋混凝土承台板及环墙组合而成的基础形式。桩筏基础承载力相对比较高,整体性也比较良好,具有非常良好的抵抗地基不均匀沉降的优势特征。由于储罐的直径比较大,承台要满足刚性基础的要求的情况下设计的较厚,桩基数量也较多,故其最大的缺点就是对钢筋及水泥等材料的整体消耗比较大,投资规模较大。 2 储罐基础地基处理方法 在不良土质或特殊地基上建造大型储罐时,如果对原有地基不做任何处理,则储罐的安全会经常出现各种问题。这时,必须采取措施改善地基土的力学性能,提高土的抗剪强度,改善土的压缩性能,改善饱和土的渗透性,改善砂土的动力特性等,使其在上部结构荷载作用下不发生破坏或出现过大的变形,保证储罐的正常使用。常用的地基处理方法有换填垫层法、充水预压法、强夯法和强夯置换法、振冲法、砂石桩法、水泥粉煤灰碎石桩法、水泥土搅拌法、绘图挤密桩法、钢筋混凝土桩复核地基法等。储罐地基处理方法的选定应根据储罐对地基的要求,结合地质勘查报告选定几种地基处理方案。对初步选出的方案分别从加固原理、适用范围、处理效果、工程进度、材料来源、设备条件、工程费用等进行反复综合研究对比,选择最合适的地基处理方法。方案确定后,还应根据现有条件进行相应的现场实验及施工,以检验设计参数和处理效果。当岩土工程条件较为复杂时,可由两种或多种地基处理措施组成的综合处理方法将会达到较好的地基处理效果。 3 储罐基础的构造及材料要求 3.1 沥青砂绝缘层 储罐基础顶面应设置沥青砂绝缘层。利用沥青砂绝缘层的根本目的就是为了实现对罐底腐蚀问题的提前预防和有效阻止。与此同时,通过这种基础设计模式在其中科学合理的利用,还可以使其下面的砂石土填料层稳固,尽可能减少透水性,避免出现严重的渗漏现象,避免罐底遭受到严重的腐蚀。除此之外,利用沥青砂绝缘层,有利于对罐底进行方便快捷的铺设和施工操作。沥青砂绝缘层所用的沥青材料,主要是根据储罐内储存介质的温度,按沥青的软化点来选用。当储罐内介质温度低于80℃时,宜采用60号甲、乙道路石油沥青,也可采用30号甲、乙建筑石油沥青;当储罐内介质温度等于或高于80℃时,宜采用30号甲、乙建筑石油沥青。沥青砂绝缘层的配合比一般为(质量比)7::9,即沥青7:中砂93(并掺一部分滑石粉),砂石在其中的整个含泥量不能够超过5%。当储罐内储存介质最高温度高于90℃时,罐基础表面应采取隔热措施。在施工中要注意的一点就是,在针对沥青或者是砂石进行搅拌的时候,应当尽可能将砂石进行加热处理,一般需要加热到100~150℃左右。另外,石油沥青也需要进行加热操作,一般需要加热到160℃~180℃,如果是在冬天的时候,加热温度还需要更高一些。在这一温度的基础上,需要立即将砂石和石油沥青进行拌合,保证拌合的均匀性,紧接着可以对其进行浇筑,提高使用率。 3.2 中粗砂垫层 沥青砂绝缘层下面应设置中粗砂垫层,砂垫层宜采用质地坚硬的中、粗砂,亦可采用最大粒径不超过20mm的砂石混合物,不宜采用细砂,不得采用粉砂和冰结砂。砂中不得含植物残体、垃圾等杂质,应级配良好。砂垫层的作用,主要是使压力分布均匀,调整和减少地基的不均匀沉降;当厚度不小于300mm时,可防止地下毛细管水的渗入,当底板开裂时,可作为漏油显示信号的通道。对于有的储罐基础因

大型储罐的基础设计及构造研究

大型储罐的基础设计及构造研究 摘要:大型储罐在实际应用过程中,由于这种类型储罐的本体大多数都是利用 钢板来进行焊接,所以其在外形尺寸方面比较大,荷载比较大,沉降量也比较大。与此同时,这种类型的储罐在实际应用过程中,其整体刚度比较低,同时具有一 定柔性特征。储罐基础产生的不均匀沉降要求较高,如果基础有较大的不均匀沉降,就会直接影响到储罐的正常使用。本文对大型储罐的基础设计及构造进行研究。 关键词:大型储罐;基础设计;构造 1 大型储罐的基础设计形式 1.1 护坡式基础 当天然地基承载力特征值大于或等于基底平均压力、地基变形满足规范要求 的允许值且场地不收限制时,可采用护坡式基础。护坡式基础是在储罐底面四周 用素土或碎石沿着基础砌成护坡。其优点是工程投资少、施工方便;缺点是对调 整地基不均匀沉降作用小效果差,且占地面积大。如果基础大量沉降后,周围护 坡破裂,罐底各层填料往往在大于后流失,造成基底局部掏空,所以在这种背景下,护坡式基础在设计已经不常见。 1.2 外环墙式基础 外环墙式基础是将钢筋混凝土环墙离开储罐外壁一定距离,罐体坐落在由砂 石土构成的基础上。其优点是受力状态较好,具有一定的稳定性,较环墙式基础 省钢筋和水泥;缺点是调整不均匀沉降的能力较差,当罐壁下节点处的下沉量低 于外环墙顶时易造成两者之间的凹陷。一般用于车间内部生产原料储罐,容积控 制在1000m3以内。 1.3 环墙式基础 环墙式基础在设计中使用较多,系将储罐壁板直接安装在钢筋混凝土环墙上,大部分用与软和中软场地的浮顶罐及内浮顶罐。环墙式基础在实际应用过程中, 其最明显的优点之一就是在平面抗弯的刚度程度上比较大,这样有利于调整不均 匀沉降问题,减少罐壁的变形。罐体自身的荷载在某种程度上可以给地基传递相 对较均匀的压力。与此同时,使用时可以调整中心和边缘的沉降,防止环墙内砂 垫层或土的侧向变形或流散,整体的稳定性较好,抗震效果较理想,有利于为施 工提供便利操作方式。减少罐底潮气对罐底板的腐蚀,并且有利于事故的处理。 但是环墙基础在实际应用过程中,还存在一定的缺点。最明显的缺点问题之一就 是环墙的竖向抗力刚度比环墙内填料相差较大,受力状态不均匀,导致罐壁和罐 底的受力效果受到影响,达不到最理想的状态。除此之外,钢筋及水泥等材料消 耗较大,在其中所需要投入的成本也比较高。 1.4 钢筋混凝土桩筏基础 在地基土相对比较软弱,地基处理有困难或不做处理时,宜采用钢筋混凝土 桩筏基础,一般是由底部桩基、钢筋混凝土承台板及环墙组合而成的基础形式。 桩筏基础承载力相对比较高,整体性也比较良好,具有非常良好的抵抗地基不均 匀沉降的优势特征。由于储罐的直径比较大,承台要满足刚性基础的要求的情况 下设计的较厚,桩基数量也较多,故其最大的缺点就是对钢筋及水泥等材料的整 体消耗比较大,投资规模较大。 2 储罐基础地基处理方法 在不良土质或特殊地基上建造大型储罐时,如果对原有地基不做任何处理,

固井基础知识

第二部分固井基础知识 第一章基本概念 1、什么叫固井? 固井是指向井内下入一定尺寸的套管串,并在其周围注以水泥浆,把套管与井壁紧固起来的工作。 2、什么叫挤水泥? 是水泥浆在压力作用下注入井中某一特定位置的施工方法。 3、固井后套管试压的标准是什么? 5英寸、5 1/2英寸试压15MPa,30分钟降压不超过?,7英寸,9 5/8英寸分别为10MPa 和8MPa,30分钟不超过;10 3/4—13 3/8英寸不超过6MPa,30分钟压降不超。 4、什么叫调整井? 为挽回死油区的储量损失,改善断层遮挡地区的注水开发效果以及调整平面矛盾严重地段的开发效果所补钻井叫调整井。 5、什么叫开发井? 亦属于生产井的一种,是指在发现的储油构造上第一批打的生产井。 6、什么叫探井? 在有储油气的构造上为探明地下岩层生储油气的特征而打的井。 7、简述大庆油田有多少种不同井别的井? 有探井、探气井、资料井、检查井、观察井、标准井、生产井、调整井、更新井、定向井、泄压井等。 8、什么叫表外储层?

是指储量公报表以外的储层(即未计算储量的油层)。包括:含油砂岩和未划含油砂岩的所有含没产状的储层。 9、固井质量要求油气层底界距人工井底不少于多少米?探井不少于多少米? 固井质量要求,调整井、开发井油、气层底界距人工井底不少于25米(探井不少于15米)。 10、调整井(小于等于1500米)按质量标准井斜不大于多少度?探井(小于等于3000米)按质量标准井斜不大于多少度? 调整井按质量标准井斜不大于3度。探井按质量标准井斜不大于5度。 11、调整井(小于等于1500米)井底最大水平位移是多少?探井(小于等于3000米)井底最大水平位移是多少? 调整井井底最大水平位移是40米。探井井底最大水平位移80米。 12、目前大庆油田常用的固井方法有哪几种? (1)常规固井(2)双密度固井(变密度固井)(3)双级注固井(4)低密度固井(5)尾管固井 13、目前大庆油田形成几套固井工艺? (1)多压力层系调整井固井工艺技术。 (2)水平井固井工艺技术。 (3)斜直井固井工艺技术。 (4)小井眼固井工艺技术。 (5)深井及长封井固井工艺技术。 (6)欠平衡固井工艺技术。

压力容器的基本知识

1.2压力容器基本知识 1.2.1 概述 1.2.1.1 压力容器的定义及用途 从广义上说,凡承受流体介质压力的密闭壳体都可称作压力容器。 按GB150-1998《钢制压力容器》的规定,设计压力低于0.1MPa的容器属于常压容器,而设计压力高于0.1MPa的容器属于压力容器。 从安全角度看,单纯以压力高低定义压力容器不够全面,因为压力不是表征安全性能的唯一指标。在相同压力下,容器的容积越大,其积蓄的能量就越多,一旦发生破裂造成的损失和危害也就越大。此外,容器内的介质特性对安全的影响也很大,气体的危害程度大于液体,尤其易燃易爆的气体或液化气体,如果容器发生事故,除了爆炸造成的损失外,由于介质泄漏或扩散而引起的化学爆炸、起火燃烧、中毒污染,导致的后果极其严重。因此,压力、容积、介质特性是与安全相关的三个重要参数。 《压力容器安全技术监察规程》从安全管理角度出发,将同时具备下列三个条件的容器称为压力容器: l.最高工作压力(P w)大于等于0.1MPa(不含液体静压力); 2.内直径(非圆形截面指其最大尺寸)大干等于0.15m,且容积(V)大于等于0.025m3; 3.盛装介质为气体、液化气体或最高工作温度高于等于标准沸点的液体。 《特种设备安全监察条例》附则中规定,压力容器的含义是:盛装气体或液体,承载一定压力的密闭设备,其范围规定为最高工作压力(P w)大于或等于0.1MPa(表压),且压力与容积的乘积大于或等于2.5MPa×L的气体或液化气体和最高工作温度高于或等于标准沸点的液体的固定式容器和移动式容器;盛装公称工作压力大于或等于0.2MPa(表压),且压力与容积的乘积大于或等于1.0MPa×L的气体、液化气体和标准沸点等于或低于60℃的液体的气

卧式储罐设计

摘要关键词:

第一章绪论 1.1 设计任务: 针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图,并便携设计说明书。 1.2设计思想: 综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。在设计过程中综合考虑了经济性,实用性,安全可靠性。各项设计参数都正确参考了行业使用标准或国家标准,这样设计有章可循,并考虑到结构方面的要求,综合的进行设计。 1.3 设计特点: 容器的设计一般由筒体,封头,法兰,支座,接管等组成。常,低压化工设备通用零部件大都有标准,设计师可直接选用。本设计书主要介绍了液罐的筒体,封头的设计计算,低压通用零部件的选用。 各项设计参数都正确参考了行业使用标准或国家使用标准,这样让设计有章可循,并考虑到结构方面的要求,合理的进行设计。

第二章材料及结构的选择与论证 2.1材料选择 纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、 16MnR.这两种钢种。如果纯粹从技术角度看,建议选用20R类的低碳钢板, 16MnR 钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济。所以在此选择16MnR钢板作为制造筒体和封头材料。 2.2结构选择与论证 2.2.1 封头的选择 从受力与制造方面分析来看,球形封头是最理想的结构形式。但缺点是深度大,冲压较为困难;椭圆封头浓度比半球形封头小得多,易于冲压成型,是目前中低压容器中应用较多的封头之一。平板封头因直径各厚度都较大,加工与焊接方面都要遇到不少困难。从钢材耗用量来年:球形封头用材最少,比椭圆开封头节约,平板封头用材最多。因此,从强度、结构和制造方面综合考虑,采用椭圆形封头最为合理。 2.2.2容器支座的选择 容器支座有鞍座,圈座和支腿三种,用来支撑容器的重量。鞍式支座是应用最广泛的一种卧式支座。从应力分析看,承受同样载且具有同样截面几何形状和尺寸的梁采用多个支承比采用两个支承优越,因为多支承在粱内产生的应力较小。所以,从理论上说卧式容器的支座数目越多越好。但在是实际上卧式容器应尽可能设计成双支座,这是因为当支点多于两个时,各支承平面的影响如容器简体的弯曲度和局部不圆度、支座的水平度、各支座基础下沉的不均匀性、容器不同部位抗局部交形的相对刚性等等,均会影响支座反力的分市。因此采用多支座不仅体现不出理论上的优越论反而会造成容器受力不均匀程度的增加,给容器的运行安全带来不利的影响。所以一台卧式容器支座一般情况不宜多于二个。圈座一般对于大直径薄壁容器和真空操作的容器。腿式支座简称支腿,因这种支座在与容器壳壁连接处会造成严重的局部应力,故只适合用于小型设备(DN≤1600,L≤≤5m)。综上考虑在此选择双个鞍式支座作为储罐的支座。

CV2004储罐基础设计规定(送审稿1.0)

中国石化工程建设标准 SDEP-SPT-CV2004-2006 第 修改 储罐基础设计规定 200X 年X 月X 日

目次 前言 (2) 1 范围 (3) 2 规范性引用文件 (3) 3 概述 (3) 3.1 工程地质勘察报告 (3) 3.2 地基基本要求 (4) 3.3 罐基础型式 (4) 4 地基处理 (5) 4.1 确定方案 (5) 4.2 常用处理方案 (5) 5 地基承载力与地基变形 (6) 5.1 地基承载力 (6) 5.2 地基变形 (6) 6 材料 (7) 6.1 碎石和砂垫层 (7) 6.2 混凝土和钢筋 (8) 6.3 沥青砂 (8) 7 罐基础技术要求 (8) 7.1 碎石环墙 (8) 7.2 混凝土环墙 (8) 7.3 钢筋混凝土筏板式基础 (9) 7.4 桩基础 (9) 7.5 其它 (9) 附录A (11)

前言 本规定是根据《中国石化工程建设标准研究与编制项目开工报告》的要求进行编制的。本规定共7章1个附录,其中附录A为规范性附录。 本规定主要内容有: 储罐基础对工程地质报告和地基的要求; 储罐地基处理的常用方法; 储罐地基承载力与地基变形的要求; 储罐基础的常见型式; 材料性能要求; 储罐基础的技术要求。 主编单位:中国石化集团洛阳石油化工工程公司 参编单位:中国石化工程建设公司 中国石化集团上海工程有限公司 中国石化集团宁波工程有限公司 中国石化集团南京设计院 主要起草人:魏晓辉武笑平刘武 本规定(程序)于XXXX年首次发布。

1 范围 本规定规定了石油化工行业立式钢储罐地基与基础的设计原则和常规做法。 本规定适用于储存原油、中间产品油和成品油等石油化工立式圆筒形钢制焊接常压或低压储罐的地基与基础(以下简称“罐基础”)的设计;不适用于储存低温、剧毒、酸、碱腐蚀介质和介质自重大于10kN/m3以及架高储罐的地基与基础的设计,也不适用于高压储罐基础(储罐设计压力大于100kPa)的设计。 2 规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用本规定。凡是不注日期的引用文件,其最新版本适用于本规定。 SDEP-SPT-CV2001 建构筑物荷载及荷载组合规定 SDEP-SPT-CV2002 岩土工程勘察技术规定 SDEP-SPT-CV2003 基础工程技术规定 SDEP-SPT-CV2006 混凝土结构技术规定 GB 50007 建筑地基基础设计规范 GB 50009 建筑结构荷载规范 GB 50010 混凝土结构设计规范 JGJ 94 建筑桩基技术规范 JGJ 79 建筑地基处理技术规范 JGJ 106 建筑基桩检测技术规程 SH 3068 石油化工企业钢储罐地基与基础设计规范 SH/T 3083 石油化工钢储罐地基处理技术规范 SH/T 3123 石油化工钢储罐地基充水预压监测规程 SH/T 3147 石油化工构筑物抗震设计规范 SH/T 3528 石油化工钢储罐地基与基础施工及验收规范 3 概述 3.1 工程地质勘察报告

固井基础知识

固井基础知识 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第二部分固井基础知识 第一章基本概念 1、什么叫固井 固井是指向井内下入一定尺寸的套管串,并在其周围注以水泥浆,把套管与井壁紧固起来的工作。 2、什么叫挤水泥 是水泥浆在压力作用下注入井中某一特定位置的施工方法。 3、固井后套管试压的标准是什么 5英寸、51/2英寸试压15MPa,30分钟降压不超过,7英寸,95/8英寸分别为10MPa和8MPa,30分钟不超过;103/4—133/8英寸不超过6MPa,30分钟压降不超。 4、什么叫调整井 为挽回死油区的储量损失,改善断层遮挡地区的注水开发效果以及调整平面矛盾严重地段的开发效果所补钻井叫调整井。 5、什么叫开发井 亦属于生产井的一种,是指在发现的储油构造上第一批打的生产井。 6、什么叫探井 在有储油气的构造上为探明地下岩层生储油气的特征而打的井。 7、简述大庆油田有多少种不同井别的井 有探井、探气井、资料井、检查井、观察井、标准井、生产井、调整井、更新井、定向井、泄压井等。 8、什么叫表外储层 是指储量公报表以外的储层(即未计算储量的油层)。包括:含油砂岩和未划含油砂岩的所有含没产状的储层。 9、固井质量要求油气层底界距人工井底不少于多少米探井不少于多少米 固井质量要求,调整井、开发井油、气层底界距人工井底不少于25米(探井不少于15米)。 10、调整井(小于等于1500米)按质量标准井斜不大于多少度探井(小于等于3000米)按质量标准井斜不大于多少度

调整井按质量标准井斜不大于3度。探井按质量标准井斜不大于5度。 11、调整井(小于等于1500米)井底最大水平位移是多少探井(小于等于3000米)井底最大水平位移是多少 调整井井底最大水平位移是40米。探井井底最大水平位移80米。 12、目前大庆油田常用的固井方法有哪几种 (1)常规固井(2)双密度固井(变密度固井)(3)双级注固井(4)低密度固井(5)尾管固井 13、目前大庆油田形成几套固井工艺 (1)多压力层系调整井固井工艺技术。 (2)水平井固井工艺技术。 (3)斜直井固井工艺技术。 (4)小井眼固井工艺技术。 (5)深井及长封井固井工艺技术。 (6)欠平衡固井工艺技术。 14、水泥头是用来完成注水泥作业的专业工具,常用的有哪几种(1)简易水泥头;(2)单塞水泥头;(3)双塞水泥头;(4)尾管固井水泥头。 15、51/2″水泥头销子直径为多少毫米 51/2″水泥头销子直径为24mm。 16、常用的套管有哪些规格 5″、51/2″、7″、75/8″、85/8″、95/8″、103/4″、123/4″、133/8″、20″等。 17、简述技术套管及油层套管的作用 技术套管是封隔复杂地层,保证固井顺利进行,安装井口装置,支承油层套管重量,必要时可当油层套管使用。 油层套管是封隔油、气、水层与其它不同压力的地层,如因保护套管形成油气通道,满足开采和增产措施的需要。 18、常用扶正器的规格有哪些 5×51/4,51/2×71/2,51/2×81/2,51/2×93/4,95/8×121/4,133/8×173/4。

卧式储罐设计..

安徽工程大学 课程设计说明书 题目名称:卧式储罐设计 专业班级:食品122班 学生姓名:王飞腾 指导教师:季长路 完成日期: 2015-09-24

目录 摘要 (3) 第一章绪论 (4) 1.1设计任务: (4) 1.2设计思想: (4) 1.3设计特点: (4) 第二章材料及结构的选择与论证 (5) 2.1材料选择 (5) 2.2结构选择与论证 (5) 2.2.1 封头的选择 (5) 2.2.2容器支座的选择 (5) 2.3法兰型式 (6) 2.4液面计的选择 (6) 第三章结构设计 (7) 3.1壁厚的确定 (7) 3.2封头厚度设计 (7) 3.2.1计算封头厚度 (7) 3.2.2水压试验及强度校核 (8) 3.3储罐零部件的选取 (8) 3.3.1储罐支座 (8) 3.3.2 罐体质量 (8) 3.3.3封头质量 (9) 3.3.4液氨质量 (9) 3.3.5附件质量 (9) 第四章接管的选取 (10) 4.1液氨进料管 (10) 4.2平衡口管 (10) 4.3液位指示口管 (10) 4.4放空口管 (10) 4.5液体进口管 (11) 4.6液体出口管 (11) 第五章压力计选择 (12) 符号说明 (13) 总结 (14)

摘要 本说明书为《1.2m3液氨储罐设计说明书》。扼要介绍了卧式储罐的特点及在工业中的广泛应用,详细的阐述了卧式储罐的结构及强度设计计算及制造、检修和维护。 本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。 设计结果满足用户要求,安全性与经济性及环保要求均合格。 关键词:压力容器、卧式储罐、结构设计、强度校核、开孔补强

储罐基础修改

储罐基础设计 摘要:介绍各种形式的储罐基础,并且叙述此类基础工程的设计调整和要点关键词:储罐;基础;设计;地基处理 目前,储罐逐渐趋系向大型化,同时大部分都建设在沿海地区,地质情况比较复杂,储罐基础合理的设计和安全,是设计人员应该尤为关注的问题。根据储罐的容积、样式、工程地质条件等因素,这几年国内石化行业通常采用以下几种基础型式。 一基础类型 1护坡式基础 护坡式基础适用于较好的地基和经过处理的地基,工程地质情况良好,地基承载力满足要求,并且不大于5000m3的罐体。 2钢筋混凝土板式基础 多用于直径不大于15m的罐体,近年来大型污水处理罐的逐渐发展,对地基沉降要求非常严格,也采用直径在35m以下的板式基础。 3钢筋混凝土环墙式基础 环墙式基础由于刚度在其平面内比较大,地基沉降会引起的基础不均匀沉降,常见应用到中软、软土等不能满足承载力设计值要求的地基上。可分为傍下式和直下式(外环墙式)两种。直下式——罐壁直接落在环墙上,大多用于小于10000m3的罐体,环墙目的主要是传递上部荷载,减少和协调罐壁在充水预压过程的变形,保证罐壁安全抵达沉降位置;傍下式(外环墙式)——即罐壁底部直接落在碎石垫层上,并在其外面设置钢筋混凝土环墙。常见于10000m3及其以上的比较大型的罐体。外环墙的主要作用是约束基础材料的变形,同时防止罐壁底部碎石垫层和中间的复合基础滑动流失,类似于起挡土墙. 4承台式储罐基础 采用刚性较大的预制桩、灌注桩和钢筋混凝土承台共同组成承台式储罐基础。该罐基础具有比较高的安全性能,沉降量也很小,适用于各种储罐基础,同时也有一些不足之处,例如,费用较高,在大型罐基础处理中很少采用。5复合地基储罐基础 复合地基式罐基础利用碎石桩、CFG桩等复合地基常用的处理方法,通过置换和挤密等功能增强罐底部地基承载能力,使弹性地基弹性模量增大,同时使罐基础的沉降差减小。在大面积施工时,沉管灌注桩、CFG 桩容易发生缩颈、断桩事故,而碎石桩和预制桩发生缩颈、断桩事故比较少。 二储罐基础设计需要注意的问题 罐基工作性能在很多方面影响罐体的设计,工程设计人员应注意如下的一些特点: (1)柔性性能比较好,能够在地基沉降或上部荷载变化时和罐底板具有同样的变形协调。 (2)因为承受经常变化的水平均布荷载(罐储存内部介质的质量经常变化),所以必须具有足够的平面抗弯刚度和整体稳定性能,保证罐体能够正常的使用。 (3)基础设计的重要组成部分是地基计算和处理措施。因为罐底板受到大面积和高强度液体压力的作用,深层地基也将受到应力扩散作用的影响。如果在储罐罐壁下地基出现较大的沉降差,会导致浮顶罐会出现罐壁形状的改变,浮顶沉降就会受到影响;对于固定顶罐的储罐可能会造成局部失稳或应力集中,储罐失去安全。因此对于岩土勘察探察地质状况,计算地基变行和基础沉降就变得十分重要。 (4)储罐可能存在泄漏的危险,因此应该通过构造措施防范可能产生的危险。例如采用土工织物以避免介质流入地下污染环境并浸润基础:设计检测信号管和检查阀井来导出并检测从罐体泄漏的介质,从而采取补救措施。 (5)储罐底板容易受到腐蚀,其下表面不能通过防腐涂层对其进行保护,所以在设计时要通过沥青绝缘防腐层面,铺设碎石垫层,柔性砂石等措施减少罐底可能受到的腐蚀。

GB50XXX 《钢制储罐基础设计规范》

GB50XXX 《钢制储罐基础设计规范》 中华人民共和国国家标准 P GB 5000××-2008钢制储罐基础设计规范 Code for design of steel tanks foundation (征求意见稿) 2008-××-××公布2008-××-××实施 中华人民共和国建设部 联合公布国家质量监督检验检疫总局

前言 本规范是按照建设部建标[2006]136号文的要求,由中国石化工程建设公司会同有关单位编制而成。 本规范在编制过程中, 总结了多年来在钢制储罐地基与基础设计和施工方面的体会,依据近年来针对大型钢制储罐基础结构的试验研究所取的研究数据和对原型结构开展的有限元分析运算结果,参考了国家和其他行业有关标准规范的内容,广泛征求了有关勘查、设计、施工和使用单位的意见,并在考虑我国的经济条件的基础上,经反复讨论、修改和充实,最后经审查定稿。 本规范共分7章和2个附录,要紧内容包括: 1、总则、术语和差不多规定; 2、储罐基础环墙运算; 3、地基承载力及稳固性运算; 4、储罐基础地基变形运算; 5、储罐基础构造与材料; 本规范以黑体字标志的条文为强制性条文,必须严格执行。 本规范由建设部负责治理和对强制性条文的讲明,中国石油化工集团公司负责日常治理,中国石化工程建设公司负责具体技术内容的讲明。在执行过程中,请各单位结合工程实践,认真总结体会,并请将意见和有关资料寄交北京市朝阳区安慧北里安园21号,中国石化工程建设公司国家标准《钢制储罐基础设计规范》治理组(邮政编码:100101)。 主编单位:中国石化工程建设公司 参编单位: 中国石化集团洛阳石油化工工程公司 中国石油大庆石化工程有限公司

混凝土搅拌站储罐扩大基础设计及承载力检算培训资料

混凝土搅拌站储罐扩大基础设计及承载力 检算

承载力检算 混凝土搅拌站最不利受力主要发生在储罐基础位置,本站设11个储罐,其中HZS180砼搅拌机配6个,HZS60砼搅拌机配5个(见图示),储罐自重按20吨考虑,基础工程拟采用钢筋混凝土扩大基础。 一、HZS180砼搅拌机储罐基础(高1.5米)设计 HZS180砼搅拌机储罐高1.5米的储罐基础的有效受力面积如下(平面投影,标注单位为厘米): 投影面积S=133.857m3。 G罐= 6×20t =120 t (空罐自重)

G水泥=6×100=600 t 共计约:720 t 储罐基础下地面压应力σ=720×10/133.857+25×1.5=91KPa。二、HZS60砼搅拌机储罐基础(高1.5米)设计 HZS60砼搅拌机储罐高 1.5米的储罐基础的有效受力面积如下(平面投影,标注单位为厘米): 投影面积S=120.827m3, G罐=5×20t =100 t (空罐自重) G水泥=5×100=500 t 共计约:600t 储罐基础下地面压应力σ=600×10/120.827+25×1.5=87KPa。 三、建议(高1.5米基础) 1、为方便施工,基础边线进行修整,修整的基础平面投影边线

应在计算采用的储罐基础有效受力面积平面投影边线以外。 2、现场应测试原地面(基坑底)的承载力,在确认大于150KPa 后再进行施工(安全系数n=150/91=1.65>1.5 安全)。 3、在基础底面布置钢筋网片,采用φ16mm螺纹钢筋,横纵间距采用20cm,四周和底面保护层厚度为5cm。 四、HZS180砼搅拌机储罐基础(高1.0米)设计 HZS180砼搅拌机储罐高1.0米的储罐基础的有效受力面积如下(平面投影,标注单位为厘米): 投影面积S=88.428m3。 G罐= 6*20t =120 t (空罐自重) G水泥=6*100=600 t 共计约:720 t 储罐基础下地面压应力σ=720×10/88.428+25×1.0=106KPa。

相关文档
最新文档