高考物理解题方法例话7割补法(新)

高考物理解题方法例话7割补法(新)

1 7割补法

就是对研究对象进行适当的分割、补充来处理问题的一种方法。下面举例说明。

[例题1]如果将质量为m 的铅球放于地心处,再在地球内部距地心R/2(R 为地球半径)处挖去质量为M 的球体,如图所示,则铅

球受到地球引力的大小为多少?

解析:如果将挖去质量为M 的球体补上,

这一个完整的球体,一个完整的质量均匀

的球体放入其中心处的铅球的引力为0,

由此可见挖去的质量为M 球体对铅球的力与剩下部分对铅球的力相平衡,即224)

2(R GMm

R Mm

G F F =

==挖去剩下

方向为沿挖去小球与地球球心连线向左。

[例题2]现有半球形导体材料,接成如图所示的两种形式,则两种接法的电阻之比为多

少?

解析:如果将

a 、

b 图中的两半球平分,如图所示,设1/4球形材料的电阻为R ,a 是两个1/4球形材料的并联,所以2R

R a =而b 是两个1/4球形材料的串联,所以R R b 2=,所以4:1:=b a R R

[例题3]一带电粒子以速度V 沿半径为a 的圆形磁场的半径方向射入磁场,穿越磁场的时间为1t ;该粒子又以相同的速度V 从边长为a 的正方形磁场一边的中点垂直于该边射入磁场,穿越磁场的时间为2t ,则1t 2t 的大小关系为( )

A 、1t =2t

B 、1t ?2t

C 、1t ?2t

D 、都有可能

解析:如果将b 图

中正方形磁场挖

去一个半径为a 的

圆形磁场,再将a

图中的半径为a 的

圆形磁场补上,如

图c 所示,假设电

荷带负电,如果从

切点射出,则时间

相同1t =2t ,如果不从切点射出,则时间相同1t ?2t ,正确的选项为A 、C

最新高考物理直线运动真题汇编(含答案)

最新高考物理直线运动真题汇编(含答案) 一、高中物理精讲专题测试直线运动 1.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。求: (1)车在加速过程中木箱运动的加速度的大小 (2)木箱做加速运动的时间和位移的大小 (3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。 【答案】(1)(2)4s;18m(3)1.8m 【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律 解得 则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为 (2)设木箱的加速时间为,加速位移为。 (3)设平板车做匀加速直线运动的时间为,则 达共同速度平板车的位移为则 要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足 考点:牛顿第二定律的综合应用. 2.某汽车在高速公路上行驶的速度为108km/h,司机发现前方有障碍物时,立即采取紧急刹车,其制动过程中的加速度大小为5m/s2,假设司机的反应时间为0.50s,汽车制动过程中做匀变速直线运动。求: (1)汽车制动8s后的速度是多少 (2)汽车至少要前行多远才能停下来? 【答案】(1)0(2)105m

【解析】 【详解】 (1)选取初速度方向为正方向,有:v 0=108km/h=30m/s ,由v t =v 0+at 得汽车的制动时间为:003065t v v t s s a ---= ==,则汽车制动8s 后的速度是0; (2)在反应时间内汽车的位移:x 1=v 0t 0=15m ; 汽车的制动距离为:023******* t v v x t m m ++?= == . 则汽车至少要前行15m+90m=105m 才能停下来. 【点睛】 解决本题的关键掌握匀变速直线运动的运动学公式和推论,并能灵活运用,注意汽车在反应时间内做匀速直线运动. 3.某人驾驶一辆小型客车以v 0=10m/s 的速度在平直道路上行驶,发现前方s =15m 处有减速带,为了让客车平稳通过减速带,他立刻刹车匀减速前进,到达减速带时速度v =5.0 m/s .已知客车的总质量m =2.0×103 kg.求: (1)客车到达减速带时的动能E k ; (2)客车从开始刹车直至到达减速带过程所用的时间t ; (3)客车减速过程中受到的阻力大小f . 【答案】(1)E k =2.5×104J (2)t =2s (3)f =5.0×103N 【解析】 【详解】 (1) 客车到达减速带时的功能E k = 12mv 2,解得E k =2.5×104 J (2) 客车减速运动的位移02 v v s t +=,解得t =2s (3) 设客车减速运动的加速度大小为a ,则v =v 0-at ,f =ma 解得f =5.0×103 N 4.如图,AB 是固定在竖直平面内半径R =1.25m 的1/4光滑圆弧轨道,OA 为其水平半径,圆弧轨道的最低处B 无缝对接足够长的水平轨道,将可视为质点的小球从轨道内表面最高点A 由静止释放.已知小球进入水平轨道后所受阻力为其重力的0.2倍,g 取 10m/s 2.求: (1)小球经过B 点时的速率;

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

高考物理数学物理法解题技巧讲解及练习题

高考物理数学物理法解题技巧讲解及练习题 一、数学物理法 1.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为 37?,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的 拉力如何变化?(孩子:你可能需要用到的三角函数有: 3375 sin ?=,4cos375?=,3374tan ?=,4 373cot ?=) 【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】 试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解. 把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示 由平衡条件得:AO 绳上受到的拉力为21000sin 37 OA G F F N == = BO 绳上受到的拉力为1cot 37800OB F F G N === 若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示: 由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.

2.[选修模块3-5]如图所示,玻璃砖的折射率2 3 n = ,一细光束从玻璃砖左端以入射角i 射入,光线进入玻璃砖后在上表面恰好发生全反射.求光速在玻璃砖中传播的速度v 及入射角i .(已知光在真空中传播速度c =3.0×108 m/s ,计算结果可用三角函数表示). 【答案】83310/v m s =?;3 sin i = 【解析】 【分析】 【详解】 根据c n v = ,83310/v m s =? 全反射条件1 sin C n =,解得C=600,r =300, 根据sin sin i n r = ,3 sin 3 i = 3.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止). (1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1 sin 42 mg θ 【解析】 【分析】 (1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解. (2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】 木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:

数列综合应用(放缩法)教案资料

数列综合应用(1) ————用放缩法证明与数列和有关的不等式 一、备考要点 数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和. 二、典例讲解 1.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1 1+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21

③.放缩后为差比数列,再求和 例4.已知数列{}n a 满足:11=a , )3,2,1()21(1Λ=+=+n a n a n n n .求证: 112 13-++-≥>n n n n a a ④.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的 总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明: 32221+<++

极限法(特殊值法)在物理高考中的应用Word版

极限法(特殊值法)在物理高考中的应用 “极限法”是一种特殊的方法,它的特点是运用题中的隐含条件,或已有的概念,性质,对选项中的干扰项进行逐个排除,最终达到选出正确答案的目的。 极限法在物理解题中有比较广泛的应用,将貌似复杂的问题推到极端状态或极限值条件下进行分析,问题往往变得十分简单。利用极限法可以将倾角变化的斜面转化成平面或竖直面。可将复杂电路变成简单电路,可将运动物体视为静止物体,可将变量转化成特殊的恒定值,可将非理想物理模型转化成理想物理模型,从而避免了不必要的详尽的物理过程分析和繁琐的数学推导运算,使问题的隐含条件暴露,陌生结果变得熟悉,难以判断的结论变得一目了然。 1.(12安徽)如图1所示,半径为R 均匀带电圆形平板,单位面积带电量为σ,其轴线上任意一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加原理求出: E =2πκσ()????????+-21221x r x ,方向沿x 轴。现考虑单位面积带电量为0σ的无限大均匀带电平板,从其中间挖去一半径为r 的圆板,如图2所示。则圆孔轴线上任意一点Q (坐标为x )的电场强度为 ( ) A. 2πκ0σ()2122x r x + B. 2πκ0σ()2122x r r + C. 2πκ0 σr x D. 2πκ0σx r 【解析】当→∝R 时,22x R x +=0,则0k 2E δπ=,当挖去半径为r 的圆孔时,应在E 中减掉该圆孔对应的场强)(220r x r x - 12E +=πκδ,即21220x r x 2E )(+='πκδ。选项A 正确。 2.(11福建)如图,一不可伸长的轻质细绳跨过滑轮后,两端分别悬挂质 量为m 1和m 2的物体A 和B 。若滑轮有一定大小,质量为m 且分布均匀,滑 轮转动时与绳之间无相对滑动,不计滑轮与轴之间的磨擦。设细绳对A 和B 的拉力大小分别为T 1和T 2,已知下列四个关于T 1的表达式中有一个是正确 的,请你根据所学的物理知识,通过一定的分析判断正确的表达式是( ) O R ● x P 图1 O r ● x Q 图2

立体几何割补法

立体几何割补法 立体几何中的割补法解题技巧 邹启文 ※ 高考提示 立体几何中常用割补法解题.特别是高考中的立体几何题很多可用割补法解,有时解起来 还比较容易. ※ 解题钥匙 例1 (2005湖南高考,理5)如图,正方体ABCD—ABCD的棱长为1,O是底面ABCD11111111 的中心,则O到平面ACD的距离为( ) 11 2231A、 B、 C、 D、 4222 分析:求点到面的距离通常是过点做面的垂线,而由于该图的局限性显然不太好做垂线,考虑O为AC的中点,故将要求的距离 11 与A到面ACD的距离挂钩,从而与棱锥知识挂钩,所以可在该 111 图中割出一个三棱锥A—ACD而进行解题。 111 解:连AC,可得到三棱锥A—ACD,我们把这个正方体的其 1111

它部分都割去就只剩下这个三棱锥,可以知道所求的距离正好为这个三棱锥的高的一半。这个三棱锥底面为直角边为1与的直 2角三角形。这个三棱维又可视为三棱锥C—AAC,后者高为1,底为腰是1的等腰直角三角111 2形,利用体积相等,立即可求得原三棱锥的高为,故应选B。 2 例2 (2007湖南高考,理8)棱长为1的正方体ABCD—ABCD1111 的8个顶点都在球O的表面上,E,F分别是棱AA、DD的中点, 11则直线EF被球O截得的线段长为( ) 22A、 B、1 C、1+ D、 222 分析:在该题中我们若再在正方体上加上一个球,则该图形变得复杂而烦琐,而又考虑到面AADD截得的球的截面为圆,且EF 11 在截面内,故可连接球心抽出一个圆锥来。 解:如图,正方体ABCD—ABCD,依题O亦为此正方体的中心,补侧面 1111 可得圆锥0—AD(如下图), AD为平面AD,球0截平面A D1111 其底面圆心正为线段AD之中点,亦为线段EF之中点,割去正方体和球 1 的其它部分,只看这个圆锥,容易看出球O截直线EF所得线段长就等于这个圆锥底面圆的直径AD之长,故选D。 1

高考物理二轮复习专题一直线运动

专题一直线运动 『经典特训题组』 1.如图所示,一汽车在某一时刻,从A点开始刹车做匀减速直线运动,途经B、C两点,已知AB=3.2 m,BC=1.6 m,汽车从A到B及从B到C所用时间均为t=1.0 s,以下判断正确的是() A.汽车加速度大小为0.8 m/s2 B.汽车恰好停在C点 C.汽车在B点的瞬时速度为2.4 m/s D.汽车在A点的瞬时速度为3.2 m/s 答案C 解析根据Δs=at2,得a=BC-AB t2=-1.6 m/s 2,A错误;由于汽车做匀减速 直线运动,根据匀变速直线运动规律可知,中间时刻的速度等于这段时间内的平 均速度,所以汽车经过B点时的速度为v B=AC 2t=2.4 m/s,C正确;根据v C=v B+ at得,汽车经过C点时的速度为v C=0.8 m/s,B错误;同理得v A=v B-at=4 m/s,D错误。 2.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线。由图可知() A.在t1时刻,b车追上a车 B.在t1到t2这段时间内,b车的平均速度比a车的大 C.在t2时刻,a、b两车运动方向相同 D.在t1到t2这段时间内,b车的速率一直比a车的大 答案A

解析在t1时刻之前,a车在b车的前方,在t1时刻,a、b两车的位置坐标相同,两者相遇,说明在t1时刻,b车追上a车,A正确;根据x-t图线纵坐标的变化量表示位移,可知在t1到t2这段时间内两车的位移相等,则两车的平均速度相等,B错误;由x-t图线切线的斜率表示速度可知,在t2时刻,a、b两车运动方向相反,C错误;在t1到t2这段时间内,b车图线斜率不是一直比a车的大,所以b车的速率不是一直比a车的大,D错误。 3.甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。在这段时间内() A.汽车甲的平均速度比乙的大 B.汽车乙的平均速度等于v1+v2 2 C.甲、乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案A 解析根据v-t图象中图线与时间轴围成的面积表示位移,可知甲的位移大于乙的位移,而运动时间相同,故甲的平均速度比乙的大,A正确,C错误;匀变速 直线运动的平均速度可以用v1+v2 2来表示,由图象可知乙的位移小于初速度为v2、 末速度为v1的匀变速直线运动的位移,故汽车乙的平均速度小于v1+v2 2,B错误; 图象的斜率的绝对值表示加速度的大小,甲、乙的加速度均逐渐减小,D错误。 4. 如图所示是某物体做直线运动的v2-x图象(其中v为速度,x为位置坐标),下列关于物体从x=0处运动至x=x0处的过程分析,其中正确的是()

中考复习数学思想方法之二:割补法“补形”在初中几何问题中的应用

中考复习数学思想方法之一:割补法“补形”在初中几何问题中的应用 平面几何中的“补形”就是根据题设条件,通过添加辅助线,将原题中的图形补成某种熟悉的,较规则的,或者较为简单的几何基本图形,使原题转化为新的易解的问题.从“补形”的角度思考问题,常能得到巧妙的辅助线,而使解题方向明朗化,所以,补形是添加辅助线的重要方法.下面举例加以说明,供参考. 例1 如图1,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于. 解析题中六边形是不规则的图形,现将它补形为较规则的正三角形,分别向两方延长AB、CD、EF相交于G、H、I (如图2). ∵六边形ABCDEF的六个内角都相等, ∴六边形的各角为120°, ∴△AFI、△BCG、△DEH均是正三角形,从而△GHI为正三角形,则有 GC=BC=3,DH=EH=DE=2, IF=AF, IH=GH=GC+CD+DH =3+3+2=8, ∴IE=IH-EH=8-2=6. ∴六边形的周长等于: AB+BC+CD+DE+EF+F A =AB+BC+CD+DE+IE =1+3+3+2+6=15. 注:本题亦可补成平行四边形求解,如图3. 例2 如图4,在Rt△ABC中,AC=BC,AD是∠A的平分线,过点B作AD的垂线交AD的延长线于点E,求证:AD=2BE. 解析从等腰三角形的性质得到启示:顶角平分线垂直底边且平分底边.结合AE平分∠CAB,B E⊥AE,启发我们补全一个等腰三角形.所以延长BE交AC的延长线于点F(如

图5),易证△ABF 为等腰三角形,∴ BF =2BE ,再证△ACD ≌△BCF ,全等的条件显然满足,故结论成立. 例3 某片绿地的形状如图6所示,其中∠A =60°,A B ⊥BC ,C D ⊥AD ,AB =200m ,CD =100m ,求AD ,BC 的长. 解析 由题设∠A=60°,A B ⊥BC ,可将四边形补成图7所示的直角三角形. 易得∠E =30°,AE =400,CE =200,然后再由勾股定理或三角函数求出BE , DE 由此得到AD =400-200。 例4 如图8,在平面直角坐标系中直线y =x -2与y 轴相交于点A ,与反比例函数在第一象限内的图像相交于点B (m ,2). (1) 求反比例函数的关系式; (2) 将直线y =x -2向上平移后与反比例函数图像在第一象限内交于点C ,且△ABC 的面积为18,求平移后的直线的函数关系式. 解析 (1) 所求解析式为y =8 x ; (2) 本题方法不一,下面着重对此题进行分析解答.

高考物理知识专题整理大全二:直线运动

二、直线运动 1、质点: ⑴定义:用来代替物体的只有质量、没有形状和大小的点,它是一个理想化的物理模型。 ⑵物体简化为质点的条件:只考虑平动或物体的形状大小在所研究的问题中可以忽略不计这两种情况。 2、位置、位移和路程 ⑴位置:质点在空间所处的确定的点,可用坐标来表示。 ⑵位移:描述质点位置改变的物理量,是矢量。方向由初位置指向末位置。大小则是从初位置到末位置的直线距离 ⑶路程:质点实际运动轨迹的长度,是标量。只有在单方向的直线运动中,位移的大小才等于路程。 3、时间与时刻 ⑴时刻:在时间轴上可用一个确定的点来表示。如“第3秒末”、“第5秒初”等 ⑵时间:指两时刻之间的一段间隔。在时间轴上用一段线段来表示。如:“第2秒内”、“1小时”等 4、速度和速率 ⑴平均速度:①v=Δs/Δt ,对应于某一时间(或某一段位移)的速度。 ②平均速度是矢量,方向与位移Δs 的方向相同。 ③公式2 0t v v v += ,只对匀变速直线运动才适用。 ⑵瞬时速度:①对应于某一时刻(或某一位置)的速度。 ②当Δt 0时,平均速度的极限为瞬时速度。 ③瞬时速度的方向就是质点在那一时刻(或位置)的运动方向。 ④简称速度 ⑶平均速率:①质点在某一段时间内通过的路程和所用的时间的比值叫做这段时间内的平 均速率。 ②平均速率是标量。 一、知识网络 概念

③只有在单方向的直线运动中,平均速度的大小才等于平均速率。 ④平均速率是表示质点平均快慢的物理量 ⑷瞬时速率:①瞬时速度的大小。 ②是标量。 ③简称为速率。 5、加速度 ⑴速度的变化:Δv =v t -v 0,描述速度变化的大小和方向,是矢量。 ⑵加速度:①是描述速度变化快慢的物理量。 ②公式:a =Δv/Δt 。 ③是矢量。 ④在直线运动中,若a 的方向与初速度v 0的方向相同,质点做匀加速运动;若a 的方向与初速度v 0的方向相反,质点做匀减速运动 6、匀速直线运动: ⑴定义:物体在一条直线上运动,如果在任何相等的时间内通过的位移都相等,则称物体 在做匀速直线运动 ⑵匀速直线运动只能是单向运动。定义中的“相等时间”应理解为所要求达到的精度范围内的任意相等时间。 ⑶在匀速直线运动中,位移跟发生这段位移所用时间的比值叫做匀速直线运动的速度。它是描述质点运动快慢和方向的物理量。速度的大小叫做速率。 ⑷匀速直线运动的规律:①t s v = ,速度不随时间变化。 ②s=vt ,位移跟时间成正比关系。 ⑸匀速直线运动的规律还可以用图象直观描述。 ①s-t 图象(位移图象):依据S = vt 不同时间对应不同的位移, 位移S 与时间t 成正比。所以匀速直线运动的位移图象是过原点的一条倾斜的直线, 这条直线是表示正比例函数。而直线的斜率即匀速 直线运动的速度。(有tg α= =S t v )所以由位移图象不仅可以求出速度, 还可直接读出任意时间内的位移(t 1时间内的位移S 1)以及可直接读出发生任一位移S 2所需的时间t 2。 ②v-t 图象,由于匀速直线运动的速度不随时间而改变, 所以它的 速度图象是平行时间轴的直线。直线与横轴所围的面积表示质点的位移。 例题: 关于质点,下述说法中正确的是: (A)只要体积小就可以视为质点 (B)在研究物体运动时,其大小与形状可以不考虑时,可以视为质点 (C)物体各部分运动情况相同,在研究其运动规律时,可以视为质点 (D)上述说法都不正确 解析:用来代替物体的有质量的点叫做质点。用一个有质量的点代表整个物体,以确定物体的位置、研究物体的运动,这是物理学研究问题时采用的理想化模型的方法。 把物体视为质点是有条件的,条件正如选项(B)和(C)所说明的。 答:此题应选(B)、(C)。 例题: 小球从3m 高处落下,被地板弹回,在1m 高处被接住,则小球通过的路程和位移的大小分别是: (A)4m,4m (B)3m,1m (C)3m,2m (D)4m,2m

最新高考物理常用解题方法汇总

最新高考物理常用解题方法汇总 高考物理常用解题方法 一、观察的几种方法 1.顺序观察法:按一定的顺序进行观察。 2.特征观察法:根据现象的特征进行观察。 3.对比观察法:对前后几次实验现象或实验数据的观察进行比较。 4.全面观察法:对现象进行全面的观察,了解观察对象的全貌。 二、过程的分析方法 1.化解过程层次:一般说来,复杂的物理过程都是由若干个简单的"子过程"构成的。因此,分析物理过程的最基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的"子过程"来研究。 2.探明中间状态:有时阶段的划分并非易事,还必需探明决定物理现象从量变到质变的中间状态(或过程)正确分析物理过程的关键

环节。 3.理顺制约关系:有些综合题所述物理现象的发生、发展和变化过程,是诸多因素互相依存,互相制约的"综合效应"。要正确分析,就要全方位、多角度的进行观察和分析,从内在联系上把握规律、理顺关系,寻求解决方法。 4.区分变化条件:物理现象都是在一定条件下发生发展的。条件变化了,物理过程也会随之而发生变化。在分析问题时,要特别注意区分由于条件变化而引起的物理过程的变化,避免把形同质异的问题混为一谈。 三、因果分析法 1.分清因果地位:物理学中有许多物理量是通过比值来定义的。如R=U/R、E=F/q等。在这种定义方法中,物理量之间并非都互为比例关系的。 但学生在运用物理公式处理物理习题和问题时,常常不理解公式中物理量本身意义,分不清哪些量之间有因果联系,哪些量之间没有因果联系。

2.注意因果对应:任何结果由一定的原因引起,一定的原因产生一定的结果。因果常是一一对应的,不能混淆。 3.循因导果,执果索因:在物理习题的训练中,从不同的方向用不同的思维方式去进行因果分析,有利于发展多向性思维。 四、原型启发法 原型启发就是通过与假设的事物具有相似性的东西,来启发人们解决新问题的途径。能够起到启发作用的事物叫做原型。原型可来源于生活、生产和实验。 如鱼的体型是创造船体的原型。原型启发能否实现取决于头脑中是否存在原型,原型又与头脑中的表象储备有关,增加原型主要有以下三种途径: 1.注意观察生活中的各种现象,并争取用学到的知识予以初步解释; 2.通过课外书、电视、科教电影的观看来得到; 3.要重视实验。

第一轮复习放缩法技巧全总结

放缩法在数列不等式中的应用 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。 (Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? (111111562216412) n ??=+-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如:),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数 (Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈; (Ⅱ)设103 c <<,证明:1*1(3),n n a c n N -≥-∈; 分析:(Ⅰ)数学归纳法证明(Ⅱ)结论可变形为1)3(1-≤-n n c a ,即不等式右边为一等比数列通项形式,化归思路为对 n a -1用放缩法构造等比型递推数列, 即)1(3)1)(1(112 111-----≤++-=-n n n n n a c a a a c a

高考数学讲义微专题83特殊值法解决二项式展开系数问题(含详细解析)

微专题83 特殊值法解决二项式展开系数问题 一、基础知识: 1、含变量的恒等式:是指无论变量在已知范围内取何值,均可使等式成立。所以通常可对变量赋予特殊值得到一些特殊的等式或性质 2、二项式展开式与原二项式呈恒等关系,所以可通过对变量赋特殊值得到有关系数(或二项式系数)的等式 3、常用赋值举例: (1)设()011222n n n n r n r r n n n n n n n a b C a C a b C a b C a b C b ---+=++++++L L , ①令1a b ==,可得:012n n n n n C C C =+++L ②令1,1a b ==-,可得: ()0 1 2 3 01n n n n n n n C C C C C =-+-+-L ,即: 02131n n n n n n n n C C C C C C -+++=+++L L (假设n 为偶数),再结合①可得: 0213112n n n n n n n n n C C C C C C --+++=+++=L L (2)设()()2 01221n n n f x x a a x a x a x =+=++++L ① 令1x =,则有:()()0122111n n a a a a f ++++=?+=L ,即展开式系数和 ② 令0x =,则有:()()02010n a f =?+=,即常数项 ③ 令1x =-,设n 为偶数,则有:()()01231211n n a a a a a f -+-++=-?+=-L ()()()021311n n a a a a a a f -?+++-+++=-L L ,即偶次项系数和与奇次项系数和的差 由①③即可求出()02n a a a +++L 和()131n a a a -+++L 的值 二、典型例题: 例1:已知()8 28 012831x a a x a x a x -=++++L ,则1357a a a a +++的值为________ 思路:观察发现展开式中奇数项对应的x 指数幂为奇数,所以考虑令1,1x x ==-,则偶数项相同,奇数项相反,两式相减即可得到1357a a a a +++的值 解:令1x =可得:8 0182a a a =+++L ①

立体几何巧思妙解之割补法

立体几何巧思妙解之割补法 在立体几何解题中,对于一些不规则几何体,若能采用割补法,往往能起到化繁为简、一目了然的作用。 一 、求异面直线所成的角 例1、如图1,正三棱锥S-ABC 的侧棱与底面边长相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于( ) 000090604530A B C D 分析:平移直线法是求解异面直线所成角最基本的方法。如图1,只要AC 的中点G ,连EG ,FG ,解△EFG 即可.应该是情理之中的事。若把三棱锥巧妙补形特殊的正方体,定会叫人惊喜不已。 巧思妙解:如图2,把正三棱锥S-ABC 补成一个正方体11AGBH A CB S -, 1//,EF AA ∴Q 异面直线EF 与SA 所成的角为0145A AS ∠=。故选C 。 二、体积问题 例2、如图3,已知三棱锥子P —ABC ,234,10,241PA BC PB AC PC AB ======,则三棱锥子P —ABC 的体积为( )。 4080160240A B C D 分析:若按常规方法利用体积公式求解,底面积可用海伦公式求出,但顶 点到底面的高无法作出,自然无法求出。若能换个角度来思考,注意到三 棱锥的有三对边两两相等,若能把它放在一个特定的长方体中,则问题不 难解决。 巧思妙解:如图4所示,把三棱锥P —ABC 补成一个长方体AEBG —FPDC ,易 知三棱锥P —ABC 的各边分别是长方体的面对角线。 PE=x,EB=y,EA=z 不妨令,则由已知有: 2222221001366,8,10164x y x z x y z y z ?+=?+=?===??+=? ,从而知 416810468101606 P ABC AEBG FPDC P AEB C ABG B PDC A FPC AEBG FPDC P AEB V V V V V V V V --------=----=-=??-????= 例3、如图5,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形, 且BCF ADE ??、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) (A ) 32 (B )33 (C )34 (D )23

高考物理专题:运动学

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= 反向时2202/14/1 4 10s m s m t v v a t -=--=-= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此 时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向的运 动,因此运动员做的是竖直上抛运动,由g v h 22 0=可求出刚离开台面时的速度s m gh v /320==, 由题意知整个过程运动员的位移为-10m (以向上为正方向),由202 1 at t v s +=得: -10=3t -5t 2 解得:t ≈1.7s 思考:把整个过程分为上升阶段和下降阶段来解,可以吗? 例题4.如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

数列放缩法高考专题

高考专题—数列求和放缩法 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 n n n n a a 4.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明32221+<++

浅谈2013全国各省高考数学用特值法在选择题中的应用(杨清水)

浅谈2013全国各省高考数学用特值法在选择题中的应用 金太阳教育数字教育数学研究员:杨清水 2013高考结束了,盘点13年全国各地的高考数学试题的选择题,发现不少省份的选择题甚至是压轴题可采用特值法求解,比正面求解快捷简便的多,所谓特值法就是指从题干和选项出发,通过取特殊值代替题干的一般条件或构造满足题干条件的特殊函数或特殊图形等,利用问题在某一特殊情况不真,则它在一般情况也不真这一原理,逐个排除干扰选项,最终达到肯定一个选项或否定三个选项的目的,从而得出正确答案.运用特殊值排除法解数学选择题有两方面的好处:一方面是节省时间,提高解题的速度和效率,增强学生的解题信心和勇气;另一方面是能够在缩短时间的同时增强解题的准确度,下面我们就来盘点一下全国各地的高考数学选择题能用特制法求解得试题及其分析 一、各省市选择压轴题 (13新课标全国卷一理科12题)设n n n A B C 的三边长分别为n a ,n b ,n c , n n n A B C 的面积为n S ,n=1,2,3……,若11b c >,1112b c a +=,1n n a a +=,12 n n n c a b ++=,12 n n n b a c ++=,则() A.{}n S 为递减数列 B.{}n S 为递增数列 C.{}21n S -为递增数列,{}2n S 为递减数列 D.{}21n S -为递减数列,{}2n S 为递增数列 剖析:这道题是新课标全国卷一理科数学选择题的压轴题,常规解法繁杂,计算 量很大,用特值法做比较简便,设1114,5,3a b c ===,则222794,,22 a b c ===;33317154,,44 a b c ===,可以发现随着n 的增大,三角形的周长不变恒为12,其中一条边固定为4,形状越来越接近边长为4的等边三角形,结合图形易发现三角形面积越来越大,答案选B (13新课标广东卷理科8题)设整数4n ≥,集合{}1,2,3X =……,n ,令集合{}(,,)|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立。若(x,y,z )和(z,ω,x )都在S 中,则下列选项正确的是() A.(y ,z,ω)S ∈,(x ,y ,ω)S ? B..(y ,z ,ω)S ∈,(x ,y ,ω)S ∈ C.(y ,z ,ω)S ?,(x ,y ,ω)S ∈ D.(y ,z ,ω)S ?,(x ,y ,ω)S ?

高中物理运用割补法解电场强度问题

高中物理运用割补法解电场强度问题 所谓割补法,就是在求解电场强度时根据给出的条件建立起物理模型,如果这个模型是一个完整的标准模型,则容易解决,但有时由题给的条件建立起的模型不是一个完整的标准模型,比如说A不是一个标准的、完整的模型,可设法补上一个B,补偿的原则是使A+B成为一个完整的模型,从而使A+B变得易于求解,而且补上的B也必须容易求解,那样待求的A便可从两者的差中获得,这种转换思维角度的方法常常使一些难题的求解变得简单明了。我们只学到有关点电荷的电场强度、匀强电场的电场强度的计算公式,但不能看成点电荷的带电体产生的电场强度,没有现成公式能用,这时我们就可用割补法使带电体变成标准模型来求解。例、如图所示,用金属AB弯成半径r=1m的圆弧,但在A、B之间留出宽度d=2cm的间隙,将Q=3.13×10-9C的正电荷分布于金属丝上,求圆心处的电场强度。分析:我们可以应用割补思维,假设将图中圆环缺口补上,并且它的电荷密度与缺了口的环体原有电荷密度一样,这样就形成了一个电荷均匀分布的完整带电环,环上处于同一直径两端的微小部分可视为两个相对应的点电荷,它们产生的电场在圆心O处叠加后合电场强度为零,根据对称性可知,带电圆环在圆心O处的总电场强度E=0。至于补上的带电小段,由题给条件

可视作点电荷,它在圆心O处的电场强度E1是可求的,设题中待求电场强度为E2,则E1+E2=E=0,便可求得E2。本题中如果在A、B之间留出宽度比较大的间隙,则不能运用上面的方法求圆心处的电场强度,因为此时AB段带电体不能当作点电荷来处理,库仑定律不能直接使用。解析:设原缺口环所带电荷的线密度为,,则补上的金属小段的带电荷量,求出它在O处的电场强度。设待求的电场强度为E2,因为E1+E2=0,可得E2=-E1=-9×10-2N/C负号表示E2与E1反向,背向球心向左。

相关文档
最新文档