图像目标提取及特征计算

图像目标提取及特征计算
图像目标提取及特征计算

摘要

对图像进行研究和应用时,人们往往对图像中的某些部分感兴趣,这些部分常被称为目标或对象

目标或对象特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。

本课设需要解决的问题是,利用阈值分割方法,对该图像进行分割,得到提取那个目标后的二值图像,计算该目标的面积、周长、中心坐标等三个参数。阈值分割采用的是全局阈值分割方法,而面积、周长的计算则是先通过将图像转换成二值图像,在通过计算二值图像像素点的方式求取。

关键词:阈值分割,边缘检测,像素点

1绪论

目标的特征提取是图像处理和自动目标识别(ATR)中的一个重要的研究课题,是解决图像识别问题的难点和关键。

特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。

有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。

由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。

2 设计原理

2.1 常用的特征提取的方法

提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。

本课程设计是采用的第一种方法,即先对该图像进行分割,得到提取那个目标后的二值图像,计算该目标的面积、周长、中心坐标等三个参数。阈值分割采用的是全局阈值分割方法,而面积、周长的计算则是先通过将图像转换成二值图像,在通过计算二值图像像素点的方式求取。其中计算周长时,先需要对二值图像进行边缘检测,然后再统计其像素点。

2.2 阈值分割原理

图像阈值化分割是一种最常用,同时也是最简单的图像分割方法,它特别适用于目标和背景占据不同灰度级范围的图像[1]。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征

提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域布局有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。

2.2.1 阈值分割思想和原理

阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。设原始图像为f (x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:

若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。

设图像为f(x,y),其灰度集范围是[0,L],在0和L之间选择一个合适的灰度阈值T,则图像分割方法可由下式描述

这样得

到的g(x,y)是一幅二值

图像。

图2-1 图像分割算法

T y x f T y x f y x g ≥<),(),(10){,(

2.2.2 全局阈值分割

阈值法有多种类型,主要有:全局阈值,自适应阈值等。所谓全局阈值,如果背景的灰度值在整个图像中可合理的看做恒定,而且所有物体与背景都具有几乎相同的对比度,那么,只要选择了正确的阈值,使用了一个固定的全局阈值一般会有较好的效果。

给出利用全局阈值分割图像的MATLAB程序如下:

I=imread('tsaml.jpg');

for i=1:width

for j=1:height

if(I(i,j)<60)

BW1(i,j)=0;

else

BW1(i,j)=1;

end

end

end

figure

imshow(BW1)

这里设定了一个常数60,通过比较灰度值与60的大小关系来重新给图像赋值。

2.2.3 自适应阈值

在许多情况下,背景的灰度值并不是常数,物体和背景的对比度在图像中也有变化,这时就要引入自适应阈值,一个在图像中某一区域效果良好的阈值在其他区域却可能效果很差。在这种情况下,需要把灰度阈值取成一个随图像中位置缓慢变化的函数值,即为自适应阈值。

这类算法的时间复杂度和空间复杂度比较大,但是抗噪声的能力比较强,对采用全局阈值不容易分割的图像有较好的效果。这种方法的关键问题是如何将图像进行细分和如何为得到子图像估计门限值。由于用于每个像素的门限取决于像

素在子图像中的位置,这类门限处理是自适应的。

2.3 边缘检测原理

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。

图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。

有许多用于边缘检测的方法, 他们大致可分为两类:基于搜索和基于零交叉。

基于搜索的边缘检测方法首先计算边缘强度, 通常用一阶导数表示,例如梯度模,然后,用计算估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值。

基于零交叉的方法找到由图像得到的二阶导数的零交叉点来定位边缘。通常用拉普拉斯算子或非线性微分方程的零交叉点。

滤波做为边缘检测的预处理通常是必要的,通常采用高斯滤波。

已发表的边缘检测方法应用计算边界强度的度量,这与平滑滤波有本质的不同。正如许多边缘检测方法依赖于图像梯度的计算,他们用不同种类的滤波器来估计x-方向和y-方向的梯度。

一旦我们计算出导数之后,下一步要做的就是给出一个阈值来确定哪里是边缘位置。阈值越低,能够检测出的边线越多,结果也就越容易受到图片噪声的影响,并且越容易从图像中挑出不相关的特性。与此相反,一个高的阈值将会遗失细的或者短的线段。一个常用的这种方法是带有滞后作用的阈值选择。这个方法

使用不同的阈值去寻找边缘。首先使用一个阈值上限去寻找边线开始的地方。一旦找到了一个开始点,我们在图像上逐点跟踪边缘路径,当大于门槛下限时一直纪录边缘位置,直到数值小于下限之后才停止纪录。这种方法假设边缘是连续的界线,并且我们能够跟踪前面所看到的边缘的模糊部分,而不会将图像中的噪声点标记为边缘

2.4 图像物体中心位置的确定

物体的中心即物体内到四周距离相等的位置。根据此定义,很容易就能找到,求取物体内部所有像素点的X,Y坐标的平均值即可确定物体的中心坐标,然后将这个坐标所表示的像素点用一个特定符号进行标记,就能明显地找到该物体的中心。至于如何用特定符号标记这个中心点,可以使用matlab中已经定义的一个用于画函数图形的plot函数即可,我们在这里只需要利用其进行标记即可,基本函数形式可以表示为:plot(x,y,'*'),意思即为用*号标定(X,Y)。

如何标定出中心点的任务解决了,剩下的工作就是对相应的图形坐标的处理,进而准确地找到中心点位置了。

此时,可以编写一段循环语句,由于第一个物体由1组成,第二个物体由2组成,第n个物体由n组成。可以定义一个k,从1到n连续变化,然后与物体内所包含的数值进行比较,若与此时的k值相等,则可以确定是一个物体,然后再将物体内部像素点的横纵坐标分别求平均值,这样就可以求出物体中心点的坐标,将此坐标储存。同样的原理对第二个物体进行操作,如此往复直至第n个物体,,循环结束所有物体标定完成,最后通过plot函数对这些坐标对应的点进行标记,即可找出个物体的中心,本课设只有一个物体,故只需要执行一次操作。

3 设计程序与仿真结果

3.1 提取目标的二值图像

对应matlab程序代码为:

I=imread('rgb.jpg');

I=rgb2gray(I);

figure(1);

imshow(I);

imwrite(I,'gray.jpg');

[width,height]=size(I);

%è????D?μ

BW=zeros(width,height);

for i=1:width

for j=1:height

if(I(i,j)<80)

BW(i,j)=1;

end

end

end

figure(2);

imshow(BW);

对应的运行结果如下图:

图3-1 灰度图像与转换后的二值图像3.2 计算目标的面积

对应matlab程序代码为:

I=imread('rgb.jpg');

I=rgb2gray(I);

figure(1);

imshow(I);

[width,height]=size(I);

area=0;

for i=1:width

for j=1:height

if(BW(i,j)==1)

area=area+1;

end

end

end

area

对应的运行结果为:area=

7416 3.3 计算目标的周长

对应matlab程序代码为:

I=imread('bw.jpg');

BW1=edge(I, 'Roberts');

figure;

imshow(BW1);

imwrite(BW1,'by.jpg');

[width,height]=size(BW1);

circum=0;

for i=1:width

for j=1:height

if(BW(i,j)==0)

circum=circum+1;

end

end

end

circum

对应的运行结果为:circum =

7099

3.4 计算目标的中心坐标

对应matlab程序代码为:

clc; clear all;

I =imread('bw.jpg ');%加载图像

I1 = im2bw(I);

L = bwlabel(I1);

stats = regionprops(L, 'Centroid');

hold on

fori= 1 :length(stats)

temp = stats(i).Centroid; %计算中心坐标

plot(temp(1), temp(2),'+r'); %得到中心坐标后用+标出

end

对应的运行结果为:

图3-2计算目标的中心坐标

4 心得体会

课程设计初期,由于对图片的处理不够熟练,直接对彩色图像进行二值化,导致最后程序运行的结果中出现了三张图。后来分析得知,出现三张图的原因应该是真彩图像的三原色对应三个变量分别进行了二值化。于是对图像进行了灰度变换,然后再进行二值化就不会出现上述问题。

通过本次专业综合课程设计,我进一步熟悉了如何使用matlab软件岁图像进行处理,加深了《数字图像处理》这门课程的认识。课程设计过程中遇到了很多困难,通过广泛地查阅相关资料最终解决了这些问题,提高了独立思考和解决问题的能力。

同时,通过此次课程设计,我也有了不少新的认识。首先,很多知识其实书上都已经讲的很透彻了,只要把课本上的内容看懂就完全能完成题目要求。参考文献是对课本以外的知识的拓展,在完成要求的基础上多翻看一些相关书籍对题目的理解会更深入一些。

其次,数字图像处理在现实生活中有着非常广泛的应用,在心理学、生理学、

计算机科学等诸多领域内都发挥着作用。同时,图像处理在军事、遥感、气象等大型应用中有不断增长的需求。我想,经过这次课程设计我不但对数字图像处理有了更深入的了解,对MATLAB编程变得更加熟练,更重要的是激发了我在数字图像处理方面的兴趣。相信这份兴趣会成为以后继续深入学习数字图像处理方面知识的动力。

参考文献

[1] 夏得深傅德胜《现代图像处理技术与应用》东南大学出版 2001

[2] 杨杰黄朝兵《数字图像处理及MATLAB实现》电子工业出版社2010

[3] 冈萨雷斯《数字图像处理(MATLAB版)》电子工业出版社 2005

[4] 胡学龙许开宇《数字图像处理》电子工业出版社 2006

[5]刘直芳王运琼《数字图像处理分析》清华大学出版社 2006

--

关于图像特征提取

关于图像特征提取 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 至今为止特征没有万能和精确的定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。 由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。 边缘 边缘是组成两个图像区域之间边界(或边缘)的像素。一般一个边缘的形状可以是任意的,还可能包括交叉点。在实践中边缘一般被定义为图像中拥有大的梯度的点组成的子集。一些常用的算法还会把梯度高的点联系起来来构成一个更完善的边缘的描写。这些算法也可能对边缘提出一些限制。 局部地看边缘是一维结构。 角 角是图像中点似的特征,在局部它有两维结构。早期的算法首先进行边缘检测,然后分析边缘的走向来寻找边缘突然转向(角)。后来发展的算法不再需要边缘检测这个步骤,而是可以直接在图像梯度中寻找高度曲率。后来发现这样有时可以在图像中本来没有角的地方发现具有同角一样的特征的区域。 区域 与角不同的是区域描写一个图像中的一个区域性的结构,但是区域也可能仅由一个像素组成,因此许多区域检测也可以用来监测角。一个区域监测器检测图像中一个对于角监测器来说太平滑的区域。区域检测可以被想象为把一张图像缩小,然后在缩小的图像上进行角检测。 脊 长条形的物体被称为脊。在实践中脊可以被看作是代表对称轴的一维曲线,此外局部针对于每个脊像素有一个脊宽度。从灰梯度图像中提取脊要比提取边缘、角和区域困难。在空中摄影中往往使用脊检测来分辨道路,在医学图像中它被用来分辨血管。 特征抽取 特征被检测后它可以从图像中被抽取出来。这个过程可能需要许多图像处理的计算机。其结果被称为特征描述或者特征向量。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特

特征选择与特征提取

模式类别的可分性判据 在讨论特征选择和特征压缩之前,我们先要确定一个选择和提取的原则。对一个原始特征来说,特征选择的方案很多,从N 维特征种 选择出M 个特征共有()!!! M N N C M N M = -中选法,其中哪一种方案最佳, 则需要有一个原则来进行指导。同样,特征的压缩实际上是要找到M 个N 元函数,N 元函数的数量是不可数的,这也要有一个原则来指导找出M 个最佳的N 元函数。 我们进行特征选择和特征提取的最终目的还是要进行识别,因此应该是以对识别最有利原则,这样的原则我们称为是类别的可分性判据。用这样的可分性判据可以度量当前特征维数下类别样本的可分性。可分性越大,对识别越有利,可分性越小,对识别越不利。 人们对的特征的可分性判据研究很多,然而到目前为止还没有取得一个完全满意的结果,没有哪一个判据能够完全度量出类别的可分性。下面介绍几种常用的判据,我们需要根据实际问题,从中选择出一种。 一般来说,我们希望可分性判据满足以下几个条件: 1. 与识别的错误率由直接的联系,当判据取最大值时,识别的错误率最小; 2. 当特征独立时有可加性,即: ()()121 ,,,N ij N ij k k J x x x J x ==∑

ij J 是第i 类和第j 类的可分性判据,ij J 越大,两类的可分程度 越大,()12,,,N x x x 为N 维特征; 3. 应具有某种距离的特点: 0ij J >,当i j ≠时; 0 ij J =,当i j =时; ij ji J J =; 4. 单调性,加入新的特征后,判据不减小: ()()12121,,,,,,,ij N ij N N J x x x J x x x x +≤ 。 但是遗憾的是现在所经常使用的各种判据很难满足上述全部条件,只能满足一个或几个条件。 基于矩阵形式的可分性判据 1. 类内散度矩阵 设有M 个类别,1,,M ΩΩ ,i Ω类样本集()()(){}12,,,i i i i N X X X ,i Ω类 的散度矩阵定义为: () ()() ( )()() ( ) 1 1i N T i i i i i w k k k i S N == --∑X m X m 总的类内散度矩阵为: ()() ()() () ()() () () 1 1 1 1 i N M M T i i i i i w i w i k k i i k i S P S P N ==== Ω= Ω--∑∑∑X m X m 2. 类间散度矩阵 第i 个类别和第j 个类别之间的散度矩阵定义为: () () () ( )() () ( ) T ij i j i j B S =--m m m m 总的类间散度矩阵可以定义为:

图象视觉特征的提取与表示

第1章图像视觉特征的提取和表示 1.1引言 图像视觉特征的提取和表示是将图像的视觉信息转化成计算机能够识别和处理的定量形式的过程,是基于视觉内容的图像分类与检索的关键技术,因此,图像视觉特征的提取和表示一直是图像内容分析领域中一个非常活跃的课题。 图像底层视觉特征一定程度上能够反映图像的内容,可以描述图像所表达的意义,因此,研究图像底层视觉特征是实现图像分类与检索的第一步。一般来说,随着具体应用的不同,选用的底层特征也应有所不同,在特定的具体应用中,不同底层视觉特征的选取及不同的描述方式,对图像分类与检索的性能有很大的影响。通常认为,一种良好的图像视觉特征的提取和表示应满足以下几个要求: (1)提取简单,时间和空间复杂度低。 (2)区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。 (3)与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。 (4)抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,旋转不变性。 本章重点讨论当前比较成熟的特征提取方法,在此基础上选取合适的特征提取方法,用于图像分类与检索系统的特征提取模块。接下来,将依次介绍颜色,纹理,形状等特征的提取和表示方法,最后对各种特征的特点加以比较。 1.2颜色特征的提取和表示 颜色是图像视觉信息的一个重要特征,是图像分类与检索中最为广泛应用的特征之一。一般来说同一类别的图像之间颜色信息具有一定的相似性,不同类别的图像,其颜色信息具有一定的差异。相对几何特征而言,颜色特征稳定性好,有对大小、方向不敏感等特点。因此,颜色特征的提取受到极大重视并得到深入研究。本章首先介绍几种常用的颜色空间模型,然后介绍各种颜色特征提取和表示方法。 1.2.1颜色空间模型 为了正确地使用颜色这一特征,需要建立颜色空间模型,通常的颜色空间模型可用三个基本量来描述,所以建立颜色空间模型就是建立一个3-D坐标系,其中每个空间点都代表某一种颜色。通常来说,对于不同的应用,应该选取不同的颜色空间模型。常用的颜色空间模型主要有:RGB、HIS、HSV、YUV、YIQ、Munsell、Lu*v*和La*b*等。颜色空间模型的选取需要符合一定的标准,下面就这一标准和最常用的颜色空间模型作一些介绍。 文献[错误!未找到引用源。]中介绍了选择颜色空间模型的标准主要有以下几个: (1)观察角度的鲁棒性

数字图像目标分割与提取研究背景意义目的与现状

数字图像目标分割与提取研究背景意义目的与现状 1 背景 数字图像目标分割与提取是数字图像处理和计算机视觉领域中一个备受关注的研究分支。因为在目标分割与提取过程中可以利用大量的数字图像处理的方法,加上其在计算机视觉、模式识别等领域中的广泛应用,都吸引了众多研究者的注意。相信对这一问题的深入研究不仅会不断完善对这一问题的解决,而且必将推动模式识别、计算机视觉、人工智能等计算机科学分支的发展。图像分割和边缘检测的问题在近二十年中得到了广泛的关注和长足的发展,国内外很多研究人士提出了很多方法,在不同的领域取得了一定的成果。但是对于寻找一种能够普遍适用于各种复杂情况的准确率很高的分割和检测算法,还有很大的探索空间。边缘提取和分割是图像分析的经典研究课题之一,目前的理论和方法仍存在许多不足之处,仍在不断改进和发展。 由于图像的多义性和复杂性,许多分割的工作无法依靠计算机自动完成,而手工分割又存在工作量大,定位不准确的难题,因此,人们提出了一些人工交互和计算机自动定位相结合的方法,利用各自的优势,实现目标轮廓的快速定位。相信这些交互式方法的应用,必将推动图像目标分割与提取这一既具有广阔的应用前景又具有重要的学术价值的课题的进一步研究,也必将成为一个更为独立和活跃的研究领域[1]。近年来,DSP技术的发展不断将数字信号处理领域的理论研究成果应用到实际系统中,并且推动了新的理论和应用领域的发展,对图像处理等领域的技术发展也起到了十分重要的推动作用。基于DSP的图像处理系统也被广泛的应用于各种领域。 从图像处理技术的发展来看,实时性在实际中有着广泛的应用。实时图像处理系统设计的难点是如何在有限的时间内完成大量图像数据的处理。因为要对图像进行实时处理,所以为了实现实时和快速,高效的处理,在这个系统中要求我们的图像处理速度要达到一定的速度,而图像处理的速度是由算法的执行时间、视频输入输出延迟以及外部数据存储器与DSP的数据交换效率等因素决定。算法执行时间与CPU 速度有关;图像处理的速度既图像处理所要用的时间,它主要是由算法决定的。算法执行的指令的多少决定了处理速度。而图像的处理的算法包含有大量的算法指令,为了快速的处理大数据量的多媒体信息,特别是活动图像信息,同时又能灵活的支持多种不同的应用,DSP的应用势在必行。相比于通用的DSP,用于多媒体应用的专用DSP集成了许多专用模块,这些模块用硬件加速很多通用的多媒体方面的大量算法明晰的处理、实时性强等要求.由于图像处理的数据量大,数据处理相关性高,实时的应用环境决定严格的帧、场时间限制,因此实时图像处理系统必须具有强大的运算能力。各种高性能DSP不仅

图像特征提取总结

图像常见特征提取方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

单目标图像的目标区域提取

西安理工大学 研究生课程论文 课程名称:数字图像分析 课程代号: 任课教师: 论文题目:单目标图像的目标区域提取完成日期:2015 年 1 月13 日学科: 姓名:

单目标图像的目标区域提取 摘要:图像分割的目的是将图像划分为不同的区域,区域增长是一种根据事先定义的准则将像素或子区域聚合成为更大的区域的过程,分裂合并是根据一致性准则处理目标和背景之间灰度渐变图像的典型算法。本文以单目标图像为对象,通过区域增长和分裂合并的方法实现了对目标区域的提取,并对实验结果进行了分析。 关键字:图像分割;区域增长;分裂合并;二值化 Abstract:The purpose of image segmentation is to divide the image into different areas, regional growth is a kind of according to predefined criteria will become more pixels or subdomain polymerization process of large area, split the merger is processed according to the consistency criterion between target and background gray gradient image of typical algorithm. Based on the single target image as the object, through regional growth and division merge method to extract the target area is achieved, and the experiment results are analyzed. Key words:Image segmentation;Regional growth;Split the merger;binarization 1引言 数字图像处理的目的之一是图像识别, 而图像分割与测量是图像识别工作的基础。图像分割是将图像分成一些有意义的区域, 然后对这些区域进行描述, 相当于提取出某些目标区域图像的特征, 判断图像中是否有感兴趣的目标。图像分割是图像处理到图像分析的关键步骤,在图像工程中占据重要的位置。一方面,它是目标表达的基础,对特征测量有重要的影响。另一方面,因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。 2技术分析 2.1图像分割 图像分割就是将待处理的图像表示为物理上有意义的连通区域的集合,一般是通过对图像的不同特征如纹理、颜色、边缘、亮度等特征的分析,来达到图像

图像特征提取综述

图像特征提取的定位是计算机视觉和图像处理里的一个概念,表征图像的特性。输入是一张图像(二维的数据矩阵),输出是一个值、一个向量、一个分布、一个函数或者是信号。提取特征的方法千差万别,下面是图像特征的一些特性: 边缘 边缘是两个区域边界的像素集合,本质上是图像像素的子集,能将区域分开。边缘形状是任意的,实践中定义为大的梯度的像素点的集合,同时为了平滑,还需要一些算法进行处理。角 顾名思义,有个突然较大的弧度。早起算法是在边缘检测的基础上,分析边缘的走向,如果突然转向则被认为是角。后来的算法不再需要边缘检测,直接计算图像梯度的高度曲率(合情合理)。但会出现没有角的地方也检测到角的存在。 区域 区域性的结构,很多区域检测用来检测角。区域检测可以看作是图像缩小后的角检测。 脊 长形的物体,例如道路、血管。脊可以看成是代表对称轴的一维曲线,每个脊像素都有脊宽度,从灰梯度图像中提取要比边缘、角和区域都难。 特征提取 检测到特征后提取出来,表示成特征描述或者特征向量。 常用的图像特征:颜色特征、 纹理特征 形状特征 空间关系特征。 1.颜色特征 1.1特点:颜色特征是全局特征,对区域的方向、大小不敏感,但是不能很好捕捉局部特征。 优点:不受旋转和平移变化的影响,如果归一化不受尺度变化的影响。 缺点:不能表达颜色空间分布的信息。 1.2特征提取与匹配方法 (1)颜色直方图 适用于难以自动分割的图像,最常用的颜色空间:RGB和HSV。 匹配方法:直方图相交法(相交即交集)、距离法、中心距法、参考颜色表法、累加颜色直方图法。 对颜色特征的表达方式有许多种,我们采用直方图进行特征描述。常见的直方图有两种:统计直方图,累积直方图。我们将分别实验两种直方图在图像聚类和检索中的性能。 统计直方图 为利用图像的特征描述图像,可借助特征的统计直方图。图像特征的统计直方图实际是一个1-D的离散函数,即: 上式中k代表图像的特征取值,L是特征可取值个数,是图像中具有特征值为k的像素的个数,N是图像像素的总数,一个示例如下图:其中有8个直方条,对应图像中的8种灰度像素在总像素中的比例。

图像颜色特征提取原理

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。 1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法 颜色直方图是最基本的颜色特征表示方法,它反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率。其函数表达式如下: H(k)= n k/N (k=0,1,…,L-1) (1) 其中,k 代表图像的特征取值,L 是特征可取值的个数,n k是图像中具有特征值为 k 的象素的个数,N 是图像象素的总数。由上式可见,颜色直方图所描述的是不同色彩在整幅图像中所占的比例,无法描述图像中的对象或物体,但是由于直方图相对于图像以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,而且对于图像质量的变化也不甚敏感,所以它特别适合描述那些难以进行自动分割的图像和不需要考虑物体空间位置的图像。 由于计算机本身固有的量化缺陷,这种直方图法忽略了颜色的相似性,人们对这种算法进行改进,产生了全局累加直方图法和局部累加直方图法。 2.2 全局累加直方图法 全局累加直方图是以颜色值作为横坐标,纵坐标为颜色累加出现的频数,因此图像的累加直方空间 H 定义为:

图像目标提取及特征计算

摘要 对图像进行研究和应用时,人们往往对图像中的某些部分感兴趣,这些部分常被称为目标或对象 目标或对象特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 本课设需要解决的问题是,利用阈值分割方法,对该图像进行分割,得到提取那个目标后的二值图像,计算该目标的面积、周长、中心坐标等三个参数。阈值分割采用的是全局阈值分割方法,而面积、周长的计算则是先通过将图像转换成二值图像,在通过计算二值图像像素点的方式求取。 关键词:阈值分割,边缘检测,像素点

1 绪论 目标的特征提取是图像处理和自动目标识别(ATR)中的一个重要的研究课题,是解决图像识别问题的难点和关键。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。 由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。

2 设计原理 2.1 常用的特征提取的方法 提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。 本课程设计是采用的第一种方法,即先对该图像进行分割,得到提取那个目标后的二值图像,计算该目标的面积、周长、中心坐标等三个参数。阈值分割采用的是全局阈值分割方法,而面积、周长的计算则是先通过将图像转换成二值图像,在通过计算二值图像像素点的方式求取。其中计算周长时,先需要对二值图像进行边缘检测,然后再统计其像素点。 2.2 阈值分割原理 图像阈值化分割是一种最常用,同时也是最简单的图像分割方法,它特别适用于目标和背景占据不同灰度级范围的图像[1]。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域布局有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。 2.2.1 阈值分割思想和原理 阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图

图像特征提取matlab程序

%直接帧间差分,计算阈值并进行二值化处理(效果不好) clc; clear; Im1 = double(imread('lena.TIF')); %读取背景图片 Im2 = double(imread('lena.TIF'); %读取当前图片 [X Y Z] = size(Im2); %当前图片的各维度值 DIma = zeros(X,Y); for i = 1:X for j = 1:Y DIma(i,j) =Im1(i,j) - Im2(i,j); %计算过帧间差分值 end end figure,imshow(uint8(DIma)) %显示差分图像 title('DIma') med = median(DIma); %计算二值化阈值:差值图像中值 mad = abs(mean(DIma) - med); %中值绝对差 T = mean(med + 3*1.4826*mad) %初始阈值 Th =5*T; %调整阈值 BW = DIma <= Th; %根据阈值对图像进行二值化处理 figure,imshow(BW) %se = strel('disk',2); %膨胀处理 %BW = imopen(BW,se); %figure,imshow(BW) %title('BW') [XX YY] = find(BW==0); %寻找有效像素点的最大边框 handle = rectangle('Position',[min(YY),min(XX) ,max(YY)-min(YY),max(XX)-min(XX)]); set(handle,'EdgeColor',[0 0 0]); hei = max(XX)-min(XX); %边框高度 mark = min(YY)+1; while mark < max(YY)-1 %从边框左边开始到右边物质循环,寻找各个人体边缘 left = 0;right = 0; for j = mark:max(YY)-1 ynum = 0; for i = min(XX)+1 : max(XX)-1 if BW(i,j) == 0; ynum = ynum + 1;

(完整版)图像特征特点及常用的特征提取与匹配方法

图像特征特点及常用的特征提取与匹配方法 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡 的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩

SAR图像自动目标提取方法研究

SAR图像自动目标提取方法研究 合成孔径雷达(Synthetic Aperture Radar,SAR),由于具有全天时、全天候的工作特点,成为目前一种不可或缺的遥感观测手段,在军事和民用领域得到了广泛的发展。SAR图像自动目标提取是其应用的重要方向之一,该技术的研究近年来受到国内外学者的广泛关注。 本论文以发展实用化的SAR图像自动目标提取技术为目的,结合自动目标提取相关理论和应用背景,针对其中的复杂场景SAR图像目标检测、复杂场景SAR 图像目标鉴别和面向鉴别特征提取的目标切片图像分割问题,展开系统的分析和研究,具体内容如下:第一部分,研究了多目标和杂波边界等复杂场景SAR图像中的目标检测问题。对于复杂场景中的目标检测问题,背景参考窗内均匀同质杂波像素的筛选是问题解决的关键,通常采用像素筛选或半窗筛选的策略实现。 通过比较传统像素筛选类和半窗筛选类检测算法的各自优势,在背景杂波服从G~0分布模型假设下,提出了一种基于自动区域筛选的恒虚警率(Constant False Alarm Rate,CFAR)目标检测算法。该算法首先将局部参考窗均匀划分成若干个区域块;然后利用变化指数统计量对局部参考窗内的参考区域进行筛选,以剔除其中具有异质像素干扰的非均匀区域;接着利用均值比统计量对参考窗内的同质均匀区域进行合并,以解决杂波边界处的背景杂波筛选问题;最后利用筛选获得的均匀同质区域内的杂波像素对背景杂波的统计模型进行参数估计,进而实现待检测区域内像素的目标检测。 第二部分,从图像超像素分割角度出发,进一步研究了复杂场景SAR图像中的目标检测问题。随着SAR图像分辨率的逐渐提高,目标在图像上的形状结构越来越清晰。

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.360docs.net/doc/5d14894782.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

图像特征特点及其常用的特征提取与匹配方法

图像特征特点及其常用的特征提取与匹配方法 [ 2006-9-22 15:53:00 | By: 天若有情 ] 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(m ean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。(4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局

数字图像处理matlab目标提取

河北农业大学 数字图像处理课程设计 图像颜色校正 院系:信息科学与技术学院 专业班级:电子0901班 姓名:李文娟 学号:2009234020119 2011年12月9日

1.设计目标 颜色是图像的一种重要特征,对于图像分割、目标检测与识别、图像检索等领域的研究具有重要意义。物体在不同光源下呈现的颜色是不同的。不同的光照环境,将会导致采集的图像的颜色之间存在一定程度的偏差,这种偏差将会影响后续图像分析的准确度。故寻求颜色校正算法来消除或减弱光照环境等对颜色显现的影响。灰度世界算法是以灰度世界假设为基础,假设认为对于一幅有着大量色彩变化的图像R 、G 、B 三个分量的平均值趋于同一个灰度值。改良算法基于图象熵约束的灰度世界算法,利用图像的熵来约束增益系数,从而防止过校正现象。在改良的基础上可以利用灰度阶分层的方法对图像中像素值偏小的进行处理,从而增强图像的亮度。 2.设计原理 2.1灰度世界法 灰度世界算法是以灰度世界假设为基础,假设认为对于一幅有着大量色彩变化的图像R 、G 、B 三个分量的平均值趋于同一个灰度值。 (1)首先利用公式 ,, 计算出R 、G 、B 三个通道的平均值B G R 、、,(N 为图像的像素总数,Bi Gi Ri 、、分别为校正前第i 个像素的红绿蓝三个分量) 令图像的平均灰度值 )(3 1 B G R Grey ++= (2)求R 、G 、B 三个通道的增益系数,用如下公式: ,, 则对于图像中的每一个像素点C ,其校正后的三个通道为' ' ' ,,B G R : kr Ri R *'= ,kg Gi G *'=,kb Bi B *'= (3)将图像各个像素的' ' ' ,,B G R 三个分量调整到可以显示的范围[0,255]之内,首先要求出图像中所有' ' ' ,,B G R 的最大值MAXval,令factor= MAXval/255,如果factor>1则对于图像中每个像素重新调整。其' ' ' ,,B G R 得到新的' '' '' ',,B G R ,用如下公式计算: factor R R '' '=,factor G G '''=,factor B B '' '= 2.2基于图像熵的灰度世界法 原理:利用图像熵来约束增益系数,从而防止过校正现象。 步骤:在完成灰度世界步骤2中kr 、kg 、kb 之后进行。 (1)首先对图像三个颜色通道分别计算一维离散相对熵Hr :

图像特征提取总结

图像常见xx方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点: 颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。 一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。 由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的xx与匹配方法 (1)颜色直方图 其优点在于: 它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于: 它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间: RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:

直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。 在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于: 图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是: 将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点: 纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行

相关文档
最新文档