单元10超静定结构的计算

单元10超静定结构的计算
单元10超静定结构的计算

单元10 超静定结构的计算

【学习目标】

1、掌握力法、位移法的基本原理,能用这些方法计算常用的简单超静定结构的内力;

2、熟练应用力矩分配法计算连续梁和无侧位移刚架;了解超静定结构的特征。

【知识点】

1、超静定结构的概念、超静定次数及确定;力法的基本原理、基本结构;典型方程;用力法计算简单的超静定梁和刚架;支座移动时单跨超静定梁的内力。

2、力矩分配法的基本原理;转动刚度、分配系数、传递系数、分配弯矩、传递弯矩;用力矩分配法计算连续梁和无侧移刚架。

【工作任务】

任务1 用力法计算超静定结构

任务2 用力矩分配法计算超静定结构

【教学设计】通过对力法和力矩分配法的学习让学生理解这两种方法在解决超静定结构各有何特点,通过例题的讲解能使学生能更好地理解两种方法在解超静定结构的特点。

10.1 用力法计算超静定结构

10.1.1 超静定次数的确定

我们知道,超静定结构由于有多余约束存在,约束反力未知量的数目多于平衡方程数目,仅靠平衡方程不能确定结构的支座反力。从几何组成方面来说,结构的超静定次数就是多余约束的个数;从静力平衡看,超静定次数就是运用平衡方程分析计算结构未知力时所缺少的方程个数,即多余未知力的个数。所以,要确定超静定次数,可以把原结构中的多余约束去掉,使之变成几何不变的静定结构,而去掉的约束个数就是结构的超静定次数。

超静定结构去掉多余约束有以下几种方法:

(1)去掉支座处的一根链杆或者切断一根链杆,相当于去掉一个约束。图10-1

(2)去掉一个铰支座或者去掉一个单铰,相当于去掉两个约束。图10-2

图10-1

图10-2

(3)去掉一个固定端支座或者切断一根梁式杆,相当于去掉三个约束。图10-3

(4)将一个固定端支座改为铰支座或者将一刚性连接改为单铰连接,相当于去掉一个约束。图图10-4用去掉多余约束的方法可以确定任何超静定结构的次数,去掉多余约束后的静定结构,称为原超静定结构的基本结构。对于同一个超静定结构来说,去掉多余约束可以有多种方法,所以基本结构也有多种形式。但不论是采用哪种形式,所去掉的多余约束的数目必然是相同的。图10-5 (b)、(c)为去掉多余约束的基本结构,一个是悬臂梁,一个是简支梁,都是原结构的基本结构,它们去掉的多余约束都是三个。

这里要强调的是,基本结构必须是几何不变的静定结构,如图所示的刚架,如果去掉一个支座处的链杆的瞬变体系,是不允许的。

图10-3

图10-4

图10-5

10.1.2 力法的基本原理

这里通过对图10-6所示一次超静定梁的分析,来说明力法的基本原理。

图10-6

把支座B链杆当多余约束去掉,选取图所示的静定悬臂梁为基本结构。为保持基本结构受力状态和原结构的一致,B支座处的支座反力用x1代替,称为基本未知量。同时,基本结构B支座处的几何变形要保持和原来状态一致,即竖向位移为零:△=0

基本结构和原结构的受力状况是完全一致的,如果能够求出基本结构上的基本未知量,再利用静力平衡方程求出其余的支座反力,则结构的内力也就可以全部求解出,这就是力法分析的基本思路。

下面先介绍求解基本未知量的方法。

利用叠加方法,把基本结构中的竖向位移△分为两部分位移,即

其中△1P表示基本结构在荷载作用下B点沿x1方向的位移,△11表示基本结构在X1作用下B点沿X1方向的位移,如上图10-6(c)(d)所示。

由于结构的变形在弹性变形范围内,设为基本结构在X1=1作用下B点沿X1

方向的位移,则△1l可以表示为:△1l=.X1代入公式得到:

由于基本结构为静定结构,根据前面静定结构求位移的方法,可以利用图乘法求

出上式中的△1P和,下图10-7所示为基本结构在荷载P及单位荷载X1=1分别作用下的

弯矩图,称为Mp,,则:

所得结果为正,说明X1的实际方向与基本结构中假设的方向相同。

求得X1后,原超静定结构的弯矩图M可利用已经绘出的MP图和图,按叠加原理绘出,即M=MP+X1

原结构弯矩图如图。

图10-7

综上所述,力法的基本原理就是以多余约束的约束反力作为基本未知量,以去掉多余约束的基本结构为研究对象,根据多余约束处的几何位移条件建立力法基本方程,求解出多余约束反力,然后求解出整个超静定结构的内力。用这一方法可以求解任何超静定结构。

10.1.3 力法典型方程

上面讨论了一次超静定结构的力法原理,下面以一个三次超静定结构来说明力法解超静定结构的典型方程。

下图10-8所示为一个三次超静定刚架,荷载作用下结构的变形如图中虚线所示。这里我们取基本结构如图(b)所示,去掉固定支座C处的多余约束,用基本未知量X1、X2、

X3代替。

图10-8

由于原结构C为固定支座,其线位移和转角位移都为零。所以,基本结构在荷载及X 1、X2、X3共同作用下,C点沿X 1、X2、X3方向的位移都等于零,即基本结构的几何位移条件为:

(10.1)

第一式中△1P、△1x1、△1x2、△1x3分别为荷载P及多余未知力X 1、X2、X3分别作用在基本结构上沿X1方向产生的位移,如果用δ11、δ12、δ13表示单位力X 1=1、X2=1、X3=1分别作用于基本结构上产生的沿X1方向的相应位移,如图(c)(d)(e)(f)所示。上面几何条件中的第一式可以写为:

另外两式以次类推,则可以由(10.1)式得到以下求解多余未知力X 1、X2、X3的方程为

(10.2)

对于n次超静定结构,用力法分析时,去掉n个多余约束,代之以n个基本未知量,用上面同样的分析方法,可以得到相应的n个力法方程,我们称之为力法典型方程,具体如下:

(10.3)

力法典型方程的物理意义是:基本结构在荷载和多余约束反力共同作用下的位移和原结构的位移相等。力法典型方程中的△1P项不包含未知量,称为自由项,是基本结构在荷载单独作用下沿Xi方向产生的位移。从左上方的δ11到右下方δnn主对角线上的系数项δii,称为主系数,是基本结构在xi=1作用下xi方向的位移,其值恒为正。其余系数δij 称为副系数,是基本结构在Xj=1作用下沿Xi方向的位移,根据互等定理可知δij=δji。其值可能为正,可能为负,也可能为零。

求得基本未知量后,原结构的弯矩可按下面叠加公式求出:

(10.4)

10.1.4 用力法计算超静定结构

根据以上力法原理,用力法求解超静定结构的一般步骤为:

(1)去掉多余约束,选取基本结构。,

(2)建立力法典型方程。

(3)分别作出基本结构在荷载P及单位未知力Xi作用下的弯矩图Mp、

(4)利用图乘求方程中的自由项△ip和系数项δij。

(5)解力法方程,求出多余未知力Xi。

(6)用叠加方法画出弯矩图,进而得到剪力图和轴力图。

【例10-1】

用力法求图10-9(a)图所示超静定刚架,作出弯矩图、剪力图、轴力图。刚度EI为常数。

图10-9

【解】(1)选取基本结构如图10-9(b)所示。

(2)建立力法典型方程

(3)作出Mp、图,如图10-10(a)(b)(c),用图乘法求出方程中的各系数项和自由项

(4)代入力法典型方程化简得:

解得

做出弯矩图、剪力图如图10-10(d)(e)(f)所示

图10-10

10.2 用力矩分配法计算超静定结构

10.2.1 力矩分配法的基本原理及基本概念

力矩分配法是在位移法基础上发展起来的一种渐进方法,它不必计算节点位移,也无须求解联立方程,可以直接通过代数运算得到杆端弯矩。与力法、位移法相比,计算过程较为简单直观,计算过程不容易出错,适用于求解连续梁和无节点线位移刚架。在力矩分配法中,内力正负号的规定与位移法的规定一致。

10.2.1.1 力矩分配法的基本原理

这里我们以下图10-11所示刚架为例,来说明力矩分配法的基本思路。

图10-11

根据位移法的分析,在荷载作用下,刚节点1产生一个转角位移θ。假设我们在1点增加一个刚臂约束,这时候结构被附加约束固定,不能发生转动,我们把这一状态称为固定状态,如上图10-11(b)所示。固定状态下,由于各杆段被约束隔离,可以独立的分离出

来研究,其内力可以直接查表得到,称为固端弯矩,用表示。同时,节点1满足平衡条

件,如上图10-11(d),据此可以求得附加刚臂的约束力矩

上式表明,约束力矩等于各杆端固端弯矩之和。以顺时针转向为正。

为了保持结构受力状态不改变,我们在节点1施加一个和转向相反、大小相等

的力矩并把这个状态称为放松状态,如上图10-11(C)所示。这样,固定状态和放松状态两种情况的叠加就是结构的原始状态,分别对固定状态和放松状态进行计算,并将算得的各杆端弯矩值对应叠加,即得到原结构的杆端弯矩,这就是力矩分配法的基本原理。

10.2.1.2 力矩分配法的基本概念

(1)、转动刚度

为了使杆件AB某一端(例如A端)转动单位角度(不移动),A端所需要施加的力矩称

为该杆的转动刚度,以表示。其中产生转角的一端(A端)称为近端,另一端(B端)称为远端,如图10-12所示:

图10-12

远端固定:=4

远端铰支:=3

远端定向支座:=

远端自由(或轴向支杆)=0

(2).分配系数

在图10-11所示刚架的放松状态,刚节点发生转角位移θ,相当于1点各杆都发生转角位移θ,各杆端弯矩可以用转动刚度来表示:

(a)

根据放松状态下1节点平衡,如上图10-12(e)

将式(a)代入:

式中表示相交刚接点1的所有杆端转动刚度之和,代回式(a)得到:

从上式可以看出,在放松下,1点各杆端的转动刚度在所有1点转动刚度之和中占有一

个比例,1点各杆端正是按这个比例来分配附加力矩。我们把这个比例称为分配系数,分用

表示,上面1节点各杆端所分配到的弯矩改用表示,称为分配弯矩,上式可写为:

==

==

==

对于任意刚接点,以次类推,可以得到其分配系数和分配弯矩的表示为:

(10.5)

(10.6)

表示杆件的转动端(近端),表示远端

显然,对于同一个刚接点,各杆分配系数的和为1 1

利用上式(10.6)计算分配弯矩的过程,就称为力矩分配。

(3).传递系数

图10-12所示为远端不同约束的直杆。当近端转动产生弯矩,远端也会产生弯矩,

远端弯矩和近端弯矩的比就称为传递系数,用表示。

传递系数可以理解为是近端分配弯矩传递到远端的一个系数,近端弯矩乘以这个系

数就是远端弯矩。正因为这种传递特性,远端弯矩也称为传递弯矩,用

=

(10.7)

那么得出图10-12远端不同约束杆件的传递系数为:

远端固定: C=0.5

远端铰支: C=0

远端定向支座: C=-1

10.2.2 用力矩分配法计算连续梁和无侧移刚架

10.2.2.1 单节点的力矩分配法

单节点力矩分配法的计算步骤如下:

(1)根据式(10.5)确定刚节点处各杆的分配系数,并用验算。

(2)以附加刚臂固定刚节点,得到固定状态,查表得到各杆端的固端弯矩。

(3)利用式(10.6)计算各杆分配弯矩。

(4)根据式(10.7)计算传递弯矩。

(5)叠加计算出最后的杆端弯矩。对于近端,用固端弯矩叠加分配弯矩;对于远端,固端弯矩叠加传递弯矩。

【例10-2】

用力矩分配法计算图10-13(a)所示无节点线位移刚架的弯矩图,EI为常数。

【解】(1)确定刚接点处各杆的分配系数,令

图10-13

(2)计算固端弯矩:

(3)力矩分配计算见下表

显然,刚接点B满足节点平衡条件:。弯矩图见图10-13(b)

10.2.2.2 多节点的力矩分配法

对于多节点的情况,需要在多个刚节点处分配传递计算,由于节点之间相互有传递弯矩的影响,一次分配计算就不能保证所有节点的平衡,而需要多次重复计算,将相互间的传递弯矩再进行分配计算。在多次力矩分配计算中,传递弯矩会越来越小,最后趋近于零,此时节点就接近于平衡,如果把此时各杆端每次分配计算得到的分配弯矩、传递弯矩叠加,再加上原先的固端弯矩,就是最后的杆端弯矩。这一分配传递计算过程,就是多节点力矩分配法。

我们以一个三跨连续梁为例来说明这个过程,如图10-14(a)所示,图中虚线为梁的变形线。

(1)我们先分析梁的固定状态,如图10-14(b)在节点B、C分别增加刚臂将节点锁住,在

刚臂上必有附加约束力矩。

(2)先放松节点B,在B点施加,C仍然固定。分配后传递弯矩到C,因此

C节点约束力矩增加了。如图10-14(c)。

(3)放松C点,在C点施加-(+),B重新被固定。分配后传递弯矩到B,节

点B重新增加了附加约束,如图10-14(d)。

(4)再次放松节点B,在B点施加-,C固定,-分配后传递弯矩到C,C节点约

束力矩重新增加了,如图10-14(e)。

(5)再次放松节点C,在C点施加-,B固定,-分配后传递弯矩到B,B节点约

束力矩又增加,如图10-14(f)。

图10-14

重复以上步骤,轮流放松B、C节点,我们发现节点B、C相互间的传递弯矩会越来越小,最后趋近于零。此时停止分配计算,把以上固定状态和所有放松状态叠加起来,就是梁原始的受力状态,所以把以上固定状态和各放松状态的弯矩叠加,就可以得到原结构的杆端弯矩。

这种不需要解联立方程,直接从开始的近似状态逐步计算修正,最后收敛于真实解的方法就称为渐进法,力矩分配法是一种渐进解法。

用力矩分配法计算图10-15(a)所示三跨连续梁的弯矩图、剪力图。EI为常数

图10-15

【解】(1)确定刚接点处各杆的分配系数,为了计算简便,可令 B:

C:

(2)计算固端弯矩

(3)分配弯矩、传递弯矩计算及最后弯矩的叠加见下

显然,刚节点B满足节点平衡条件:,刚接点C满足节点平衡条件:。弯矩图、剪力图如图10-15(b)(c)。

超静定结构的计算

单元10 超静定结构的计算 【学习目标】 1、掌握力法、位移法的基本原理,能用这些方法计算常用的简单超静定结构的内力; 2、熟练应用力矩分配法计算连续梁和无侧位移刚架;了解超静定结构的特征。 【知识点】 1、超静定结构的概念、超静定次数及确定;力法的基本原理、基本结构;典型方程;用力法计算简单的超静定梁和刚架;支座移动时单跨超静定梁的内力。 2、力矩分配法的基本原理;转动刚度、分配系数、传递系数、分配弯矩、传递弯矩;用力矩分配法计算连续梁和无侧移刚架。 【工作任务】 任务1 用力法计算超静定结构 任务2 用力矩分配法计算超静定结构 【教学设计】通过对力法和力矩分配法的学习让学生理解这两种方法在解决超静定结构各有何特点,通过例题的讲解能使学生能更好地理解两种方法在解超静定结构的特点。 10.1 用力法计算超静定结构 10.1.1 超静定次数的确定 我们知道,超静定结构由于有多余约束存在,约束反力未知量的数目多于平衡方程数目,仅靠平衡方程不能确定结构的支座反力。从几何组成方面来说,结构的超静定次数就是多余约束的个数;从静力平衡看,超静定次数就是运用平衡方程分析计算结构未知力时所缺少的方程个数,即多余未知力的个数。所以,要确定超静定次数,可以把原结构中的多余约束去掉,使之变成几何不变的静定结构,而去掉的约束个数就是结构的超静定次数。 超静定结构去掉多余约束有以下几种方法: (1)去掉支座处的一根链杆或者切断一根链杆,相当于去掉一个约束。图10-1 (2)去掉一个铰支座或者去掉一个单铰,相当于去掉两个约束。图10-2 图10-1

图10-2 (3)去掉一个固定端支座或者切断一根梁式杆,相当于去掉三个约束。图10-3 (4)将一个固定端支座改为铰支座或者将一刚性连接改为单铰连接,相当于去掉一个约束。图图10-4用去掉多余约束的方法可以确定任何超静定结构的次数,去掉多余约束后的静定结构,称为原超静定结构的基本结构。对于同一个超静定结构来说,去掉多余约束可以有多种方法,所以基本结构也有多种形式。但不论是采用哪种形式,所去掉的多余约束的数目必然是相同的。图10-5 (b)、(c)为去掉多余约束的基本结构,一个是悬臂梁,一个是简支梁,都是原结构的基本结构,它们去掉的多余约束都是三个。 这里要强调的是,基本结构必须是几何不变的静定结构,如图所示的刚架,如果去掉一个支座处的链杆的瞬变体系,是不允许的。 图10-3 图10-4

超静定结构的计算

§1.3超静定结构的计算 超静定结构是具有多余约束的几何不变体系,仅根据静力平衡条件 不能求出其全部支座反力和内力,还须考虑变形协调条件。 计算超静定结构的基本方法是力法和位移法。这两种基本方法的解 题思路,都是设法将未知的超静定结构计算问题转换成已知的结构计算 问题。转换的桥梁就是基本体系,转换的条件就是基本方程,转换后要 解决的关键问题就是求解基本未知量。 1.3.1力法 力法是以多余未知力为基本未知量、一般用静定结构作为基本结构,以变形协调条件建立基本方程来求解超静定结构内力的计算方法。 (一)超静定次数的确定一 超静定结构多余约束(或多余未知力)的数目称为超静定次数,用 n表示。 确定超静定次数的方法是:取消多余约束法,即去掉超静定结构中 的多余约束,使原结构变成静定结构,所去掉的多余约束的数目即为原 结构的超静定次数。 在结构上去掉多余约束的方法,通常有如下几种: ●切断一根链杆,或者移去一个支座链杆,相当于去掉一个约束; ●将一个固定支座改成固定铰支座,或将受弯杆件某处改成铰接,相当于去掉一个抗转动约束; ●去掉一个联结两刚片的铰,或者撤去一个固定铰支座,相当于 去掉两个约束; ●将一梁式杆切断,或者撤去一个固定支座,相当于去掉三个约束。 (二)力法的基本原理法 现以图1-26a所示一次超静定结构为例,说明力法的基本原理。其中,要特别重视力法的三个基本概念。

图1-26 1、力法的基本未知量:取超静定结构中的多余未知力(如图1-26a 中的X1)作为力法的基本未知量,以X i表示。多余未知力在超静定结构内力分析中处于关键的地位,因此,有必要将其突出出来,作为主攻目标。力法这个名称也因此而得。 2、力法的基本体系:将原结构中的多余约束(如图1-26a中的支 座B)去掉,所得到的无任何外加因素的结构,称为力法的基本结构(图1-26b);基本结构在荷载和多余未知力共同作用下的体系,称为力法的基本体系(图1-26c)。在基本体系中,仍然保留原结构的多余约束反力X1,只是把它由被动力改为主动力,因此基本体系的受力状态与 原结构完全相同。由此看出,基本体系本身既是静定结构(可方便计算),又可用它代表原来的超静定结构。因此,它是由静定结构过渡到超静定结构的一座桥梁。 3、力法的基本方程:为求多余未知力,除平衡条件外,还须补充 新的条件,即利用原结构的已知变形条件。在本例中,基本体系沿多余未知力X1方向的位移Δ1应与原结构支座B处的竖向位移相同,即 Δ1=0 (a) 由图1-26d和e可知,变形条件(a)可表示如下: (b) 根据叠加原理,,于是可进一步将变形条件写成显含多余未知力X1的展开形式为

静定结构内力计算

静定结构内力计算 一、判断题: 1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。 2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。 3、静定结构的几何特征是几何不变且无多余约束。 4、图(a)所示结构||M C =0。 a a (a) B C a a A ? 2a 2 (b) 5、图(b)所示结构支座A 转动?角,M AB = 0, R C = 0。 6、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。 7、图(c)所示静定结构,在竖向荷载作用下,AB 是基本部分,BC 是附属部分。 A B C (c) 8、图(d)所示结构B 支座反力等于P /2() ↑。 (d) 9、图(e)所示结构中,当改变B 点链杆的方向(不通过A 铰)时,对该梁的影响是轴力有变化。 A B (e) 10、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。

11、图(f)所示桁架有9根零杆。 (f) a a a a (g) 12、图(g)所示桁架有:N 1=N 2=N 3= 0。 13、图(h)所示桁架DE 杆的内力为零。 a a (h) (i) 14、图(i)所示对称桁架在对称荷载作用下,其零杆共有三根。 15、图(j)所示桁架共有三根零杆。 (j) (k) 16、图(k)所示结构的零杆有7根。 17、图(l)所示结构中,CD 杆的内力N 1 = P 。 a 4(l) 4a (m) 18、图(m)所示桁架中,杆1的轴力为0。

二、作图题:作出下列结构的弯矩图(组合结构要计算链杆轴力)。 19、 20、 2 a /a 34/a 34/2a / 2m 2m 35、 36、 4m 4m 37、 38、 l q q 39、 40、 a 2a

3静定结构的内力分析习题解答

第3章 静定结构的力分析习题解答 习题3.1 是非判断题 (1) 在使用力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。( ) (2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的力。( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。( ) 习题3.1(4)图 (5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。 ( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。 ( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。 ( ) 【解】(1)正确; (2)错误; (3)正确; (4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分; (5)错误。从公式0 H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关; (6)错误。荷载发生改变时,合理拱轴线将发生变化; (7)错误。合理拱轴线与荷载大小无关; (8)错误。一般从仅包含两个未知轴力的结点开始。 习题3.2 填空 (1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。 P 习题3.2(1)图 (2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。 习题3.2(2)图 (3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。 习题3.2(3)图 (4) 习题3.2(4)图所示桁架中有 根零杆。 习题3.2(4)图

超静定计算

一. 用力法计算超静定结构 (一)复习重点 1. 理解超静定结构及多余约束的概念,学会确定超静定次数 2. 理解力法原理 3. 掌握用力法计算超静定梁和刚架(一次及二次超静定结构) 4. 掌握用力法计算超静定桁架和组合结构(一次及二次超静定结构) 5. 了解温度变化、支座移动时超静定结构的计算(一次超静定结构) (二)小结 1. 超静定结构、多余约束、超静定次数 (1)超静定结构 从几何组成角度,结构分为静定结构和超静定结构。 静定结构:几何不变,无多余约束。 超静定结构:几何不变,有多余约束。 (2)多余约束 多余约束的选取方案不唯一,但是多余约束的总数目是不变的。 (3)超静定次数 多余约束的个数是超静定次数。 判断方法:去掉多余约束使原结构变成静定结构。

2. 力法原理 力法是计算超静定结构最基本的方法 (1)将原结构变为基本结构 (2)位移条件: (3)建立力法方程

3.用力法求解超静定梁和刚架例:二次超静定结构 (1)原结构变为基本结构 (2)位移条件 (3)力法方程

(3)绘弯矩图 4. 用力法计算超静定桁架和组合结构 注意各杆的受力特点:二力杆只有轴力,受弯杆的内力有弯矩、剪力和轴力。 例:超静定组合结构 (1)原结构变为基本结构 (2)位移条件

(3)力法方程 (4)绘弯矩图 5. 了解温度变化、支座移动时超静定结构的内力计算 (1)温度变化时,超静定结构的内力计算 原结构变为基本结构 位移条件 力法方程

(2)支座移动时,超静定结构的内力计算 原结构变为基本结构 位移条件 二. 用位移法计算超静定结构 (一)复习重点 1. 了解位移法基本概念及位移法与力法的区别 2. 掌握用位移法计算超静定结构(具有一个及两个结点位移) 3. 掌握计算对称结构的简化方法 (二)小结 1. 了解位移法基本概念及位移法与力法的区别 位移法是求解超静定结构的又一基本方法,适用于求解超静定次数较高的连续梁和刚架。 位移法的前提假设:对于受弯的杆件,可略去轴向变形和剪切变形的影响,且弯曲变形是微 2. 掌握用位移法求解超静定结构(具有一个及两个结点位移的结构) 例:求连续梁的内力 解:(1)确定基本未知量及基本体系

结构力学课后解答:第9章__超静定结构的实用计算方法与概念分析

习 题 9-2 解:设EI=6,则5.1,1==BC AB i i 53 .05 .13145 .1347 .05 .13141 4=?+??==?+??=BC BA μμ 结点 A B C 杆端 AB BA BC 分配系数 固端 0.47 0.53 绞支 固端弯矩 -60 60 -30 0 分配传递 -7.05 -14.1 -15.9 0 最后弯矩 -67.05 45.9 -45.9 ()()() 逆时针方向215.216005.6721609.4522131m KN EI EI m M m M i AB AB BA BA B ?-=?? ? ???+---= ? ?????---=θ (b)解:设EI=9,则 3 ,31,1====BE BD BC AB i i i i 12 .01 41333331 316.01 41333331 436 .0141333333 3=?+?+?+??==?+?+?+??==?+?+?+??= =BC BA BE BD μμμμ 结点 A B C 杆端 AB BA BC BD BE 分配系数 固端 0.16 0.12 0.36 0.36 绞支 固端弯矩 0 45 -90 0 分配传递 3.6 7.2 5.4 16.2 16.2 0 最后弯矩 3.6 7.2 5.4 61.2 -73.8 ()()()顺时针方向22.1606.32102.732131m KN EI EI m M m M i AB AB BA BA B ?=?? ????---= ?? ? ???---= θ 9-3 (a) 解:B为角位移节点 设EI=8,则1==BC AB i i ,5.0==BC BA μμ 固端弯矩()m KN l b l Pab M BA ?=????=+=488212 443222 2 m KN l M BC ?-=?+- =58262 1 892 结点力偶直接分配时不变号 结点 A B C 杆端 AB BA BC 分配系数 铰接 0.5 0.5 固端弯矩 0 48 -58 12 分配传递 0 50 50 5 5 12 最后弯矩 103 -3 12

静定结构内力计算

第二章 静定结构内力计算 一、是非题(正确的打√,错误的打×) 1、图示体系是一个静定结构。( ) 2、某刚架的弯矩图如图所示,则由此可以判断出此刚架在E 处必作用了一个水平向右的集中荷载,其大小为10kN 。( ) 30 5 M 图(KN m ×?) 3、已知某简支直梁的M 图如图(a )所示,其中AB 段为二次抛物线,BC 段为水平线,且在B 处M 图数值无突变,则其剪力图如图(b )所示。( ) (a ) (b ) 4、图示三种结构中,ABC 杆的内力是相同的。( ) (a ) (b ) (c ) 5、图(a )是从某结构中取出的一段杆AB 的隔离体受力图,则图(b )为该段杆的弯矩图,这是可能的。( )

(a ) (b) 6、图示结构的M 图的形状是正确的。( ) 7、对图示结构中的BC 段杆作弯矩图时,叠加法是不适用的。( ) 8、在图示结构中,支座A 处的竖向反力0=RA F 。 ( ) 9、图示结构中CA BA M M =。 ( )

10、图示结构中0BA CA M M ==。 ( ) 题10图 题11图 11、图示结构中AB 杆的弯矩为零。( ) 12、图示三铰拱,轴线方程为(x l x l f y ?=2 4),受均布竖向荷载q 作用,则拱内任一截面的弯矩等于零。( ) 题12图 题13图 13、图示桁架,因对称结构受反对称荷载,故AB 杆的轴力为零。( ) 14 、不受外力作用的任何结构,内力一定为零。( ) 15、对于图中所示同一结构受两种不同荷载的情况,其对应的支座反力相等,且内力图也相同。( ) (a) (b) 16、比较图a 和b 所示同一结构受两种不同的荷载可知,除CD 段弯矩不同外,其余各部分弯矩完全相同。( )

力法求解超静定结构的步骤:

第八章力法 本章主要内容 1)超静定结构的超静定次数 2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分)) 3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架) 4)力法的对称性利用问题,对称结构的有关概念四点结论 5)超静定结构的位移计算和最后内力图的校核 6) §8-1超静定结构概述 一、静力解答特征: 静定结构:由平衡条件求出支反力及内力; 超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。 二、几何组成特征:(结合例题说明) 静定结构:无多余联系的几何不变体 超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。 多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。 多余求知力:多余联系中产生的力称为 三、超静定结构的类型(五种) 超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构 四、超静定结构的解法 综合考虑三个方面的条件: 1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程; 2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。即结构的变形必须 符合支承约束条件(边界条件)和各部分之间的变形连续条件。 3、物理条件:即变形或位移与内力之间的物理关系。 精确方法: 力法(柔度法):以多余未知力为基本未知量 位移法(刚度法):以位移为基本未知量。 力法与位移法的联合应用: 力法与位移法的混合使用:混合法 近似方法:

1、静定结构与超静定结构静力计算公式

静定结构与超静定结构静力常用计算公式 一、短柱、长柱压应力极限荷载计算公式 1、短柱压应力计算公式 荷载作用点 轴方向荷载 A F = σ bh F = σ 偏心荷载 ) 1(2 1x Y i ye A F W M A F - = -= σ )1(2 2 x Y i ye A F W M A F + =+ =σ )61(2,1h e bh F ± = σ 偏心荷载 ) 1(2 2x y y x x x y Y i ye i xe A F I x M I x M A F ± ±= ?± ?± = σ ) 661(b e h e bh F y x ± ± = σ 长短柱分界点如何界定? 2、长柱方程式及极限荷载计算公式 支座形式 图 示 方 程 式 极限荷载 一般式 n=1 两端铰支 β=1 y a dx y d ?=2 2 2 ax B ax A y sin cos += y F M EI F a ?== ,2 EI l n 2 2 2 π EI l 2 2π 一端自由他端固定 β=2 y a dx y d ?=2 2 2 ax B ax A y sin cos += EI l n 2 2 24)12(π - EI l 2 24π

y F M EI F a ?== ,2 两端固定 β=0.5 )(2 2 =- +F M y a dx y d A F M ax B ax A y A + +=sin cos A M y F M EI F a +?-== ,2 EI l 2 2 4π EI l 2 2 4π 一端铰支他端固定 β=0.75 )(2 2 2 x l EI Q y a dx y d -= ?+ ) (sin cos x l F Q ax B ax A y -+ +=水平荷载 -= Q EI F a ,2 —— EI l 2 2 7778.1π 注:压杆稳定临界承载能力计算公式:EI l P cr 2 2) (βπ = 二、单跨梁的反力、剪力、弯矩、挠度计算公式 1、简支梁的反力、剪力、弯矩、挠度计算公式 荷载形式 M 图 V 图 反力 2 F R R B A = = L Fb R A = L Fa R B = 2 qL R R B A = = 4 qL R R B A = = 剪力 V A =R A V B =-R B V A =R A V B =-R B V A =R A V B =-R B V A =R A V B =-R B

3静定结构的内力分析习题解答

第3章 静定结构的内力分析习题解答 习题3.1 是非判断题 (1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。( ) (2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。( ) 习题3.1(4)图 (5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。 ( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。 ( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。 ( ) 【解】(1)正确; (2)错误; (3)正确; (4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分; (5)错误。从公式0 H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关; (6)错误。荷载发生改变时,合理拱轴线将发生变化; (7)错误。合理拱轴线与荷载大小无关; (8)错误。一般从仅包含两个未知轴力的结点开始。 习题3.2 填空 (1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。 P 习题3.2(1)图 (2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。

建筑力学问题简答(七)超静定结构内力计算

建筑力学问题简答(七)超静定结构内 力计算 194.什么是超静定结构?它和静定结构有何区别? 答:单靠静力平衡条件不能确定全部反力和內力的结构为超静定结构。 从几何组成的角度看,静定结构是没有多余约束的几何不变体系。若去掉其中任何一个约束,静定结构即成为几何可变体系。也就是说,静定结构的任何一个约束,对维持其几何不变性都是必要的,称为必要约束。对于超静定结构,若去掉其中一个甚至多个约束后,结构仍可能是几何不变的。 195.什么是超静定结构的超静定次数? 答:超静定结构多余约束的数目,或者多余约束力的数目,称为结构的超静定次数。 196.超静定结构的基本结构是否必须是静定结构? 答:超静定结构的基本结构必须是静定结构。 197.如何确定超静定结构的超静定次数? 答:确定结构超静定次数的方法是:去掉超静定结构的多余约束,使之变为静定结构,则去掉多余约束的个数,即为结构的超静定次数。 198.撤除多余约束的方法有哪几种? 答:撤除多余约束常用方法如下: (1)去掉一根支座链杆或切断一根链杆,等于去掉一个约束。 (2)去掉一个固定铰支座或拆去一个单铰,等于去掉两个约束。 (3)去掉一个固定端支座或把刚性连接切开,等于去掉三个约束。 199.用力法计算超静定结构的基本思路是什么? 答:用力法计算超静定结构的基本思路是: 去掉超静定结构的多于约束,代之以多余未知力,形成静定的基本结构;取多余未知力作为基本未知量,通过基本结构的位移谐调条件建立力法方程,利用这一变形条件求解多余约束力;将已知外荷载和多余约束力所引起的基本结构的内力叠加,即为原超静定结构在荷载作用下产生的内力。 200.什么是力法的基本结构和基本未知量? 答:力法的基本结构是:超静定结构去掉多余约束后得到的静定结构。力法的基本未知量是对应于多余约束的约束反力。 201.简述n 次超静定结构的力法方程,及求原结构的全部反力和內力的方法。 答:(1)n 次超静定结构的力法方程 对于n 次超静定结构,撤去n 个多余约束后可得到静定的基本结构,在去掉的n 个多余约束处代以相应的多余未知力。当原结构在去掉的多余约束处的位移为零时,相应地也就有n 个已知的位移谐调条件:Δi =0(i =1,2,…,n )。由此可以建立n 个关于求解多余未知力的方程: 00 22112222212111212111=?++++=?++++=?++++nP n nn n n P n n P n n X X X X X X X X X δδδδδδδδδ 式中: δii 称为主系数,表示当X i =1作用在基本结构上时,X i 作用点沿X i 方向的位移。由于δ

二建考试必备-建筑结构与设备(8)静定结构的内力分析

第五节静定结构的内力分析 静定结构按其受力特性,可以分为静定梁、静定刚架、三铰拱、静定析架和静定组合结构。 一、静定梁 1 .截面内力分量及正负号规定 平面杆件的任一截面上一般有三个内力分量:轴力N ,剪力Q 和弯矩M 。内力的正负号一般规定为: ( 1 )轴力以受拉为正; ( 2 )剪力以绕隔离体顺时针方向为正; ( 3 )弯矩一般不规定正负号(对水平梁通常以使梁的下侧受拉为正)。 内力图一般以杆轴为基线绘制。弯矩图规定画在杆件的受拉侧,无需标明正负号;剪力图和轴力图则可画在杆件的任一侧(对水平杆件通常将正的剪力和轴力绘于杆件上侧), 但需标明正负号。 2 .截面法 截面法是结构内力分析的基本方法。截面法计算结构内力的基本步骤为: ( l )将结构沿拟求内力的截面切开。 ( 2 )取截面任一侧的部分为隔离体,作出隔离体的受力图;受力图中的力包括两部分:外荷载和截断约束处的约束力(截面内力或支座反力),未知截面内力一般假设为正号方向。 ( 3 )利用静力平衡条件计算所求内力。对于平面结构,一般情况下隔离体上的各力组成一平面任意力系,故有三个独立的平衡方程(投影方程或力矩方程): 特殊情况下,例如截取的是一个铰节点,则各丸组成一平面汇交力系,故有两个独立的投影平衡方程: 【例3 -9 】计算简支斜梁(图 3 -32 )在均布荷载作用下1 / 3 跨处的内力

( l )求支座反力 将梁(图3 -32a )沿三根支座链杆处截开,取梁整体为隔离体,作出隔离体的受力图如图3 -32 ( b )所示。由整体平衡条件,可得: ( 2 )求截面内力 在 1 / 3 跨截面 C 处截开,取AC 部分为隔离体,作出受力图如图 3 -32 (c)所示。由隔离体AC 的平衡条件(x、y方向分别沿截面的轴向和切向),可得: 注:计算截面C 内力时,也可先求出截面上的水平和竖向分力Xc 、Yc ( Xc =0 ) ,再将其沿切向和轴向分解得到截面的剪力和轴力。 3.梁式直杆的内力图特征

2006典型例题解析--第2章 静定结构内力计算

第2章 静定结构内力计算 §2 – 1 基本概念 2-1-1 支座反力(联系力)计算方法 ●两刚片组成结构(单截面法) 满足两刚片规则的体系,两个刚片之间只有三个联系,可取出一个刚片作隔离体( 如图2-1c 或 如图2-1d ),联系力个数与独立平衡条件个数相等,利用平衡条件: 0x F =∑ 0y F =∑ 0M =∑ 即可计算出两个刚片之间的三个联系力。 ●三刚片组成结构(双截面法) 先求一个铰(或虚铰)的两个联系力。切断两个铰(或虚铰)得到一个隔离体,有两种情况的隔离体。 首先,切断A 、B 铰得到第一个隔离体(如图2-2c),求B 铰的联系力,对A 铰取矩列平衡方程。 0A M =∑ 然后,切断C 、B 铰得到第二个隔离 体(如图2-2d),求B 铰的联系力,对C 铰取矩列平衡方程。 0C M =∑ 将上述两个平衡方程联立,即可求出B 铰的联系力。 (d)隔离体 2 图2-1 二刚片隔离体示意图 Bx (c)隔离体 (b)三链杆情况 (a)一链杆一铰情况 图2-2 三刚片隔离体示意图 Ax (c)部分隔离体 (a)三刚片取1-1截面 (d)整体隔离体 (b)三刚片取2-2截面

2结构力学典型例题解析 ●基附型结构(先附后基) 所谓基本部分就是直接与地基构成几何不变体系的部分;而不能与地基直接构成几何不变体系的部分称为附属部分,这类型结构称为基附型结构。 由于基本部分除了具备和地基构成几何不变所需要的联系外,还与附属部分有联系,若先取基本部分作隔离体,未知力的个数将很多。而附属部分的联系就比较少,因此,先选取附属部分作为隔离体进行求解,最后求解基本部分。 对于基附结构求解顺序是:先附后基。 2-1-2 快速弯矩图方法 ●利用微分关系 (1)无外荷载的直杆段,剪力为常数,弯矩图为直线; (2)无外荷载的直杆段,若剪力为零,则弯矩图为常数; (3)铰(或自由端)附近无外力偶作用时,铰(或自由端)附近弯矩为零; 有外力偶作用时,铰(或自由端)附近弯矩等于外力偶; (4)直杆段上有荷载时,弯矩图的凸向与荷载方向一致; (5)直杆段上仅有集中力偶作用时,剪力不变,弯矩图有突变但斜率相同。 ●悬臂梁法作弯矩图 一端自由的直杆件,当将刚结点当作固定端时,如果得到悬臂梁,那么该杆件可以当作悬臂梁作弯矩图。将这种作弯矩图的方法称为悬臂梁法。 ●简支梁法(区段叠加法)作弯矩图 从结构中任意取出的一个直杆段,若直杆段两端的弯矩已知,将两端弯矩当作外荷载(力偶),可以将该直杆段及其上作用的荷载一起放到简支梁上,得到一个简支梁,该直杆段可以按照简支梁方法作弯矩图。将这种作弯矩图的方法称为简支梁法。 ●利用刚结点力矩平衡 取刚结点作隔离体,利用力矩平衡条件可得到如下结论: (1)当刚结点连接两个杆件,无外力偶作用时,两个杆端弯矩一定等值同侧。 (2)连接刚结点的杆件只有一个杆端弯矩未知时,利用力矩平衡条件可以求出。 ●几种结点的内力特点 (1)铰结点传递剪力但不传递弯矩; (2)与杆轴线一致的定向结点传递弯矩但不传递剪力; (3)与杆轴线垂直的定向结点传递弯矩但不传递轴力; (4)与杆轴线一致的链杆结点传递轴力,但不传递弯矩和剪力; (5)与杆轴线垂直的链杆结点传递剪力,但不传递弯矩和轴力。 2-1-3 桁架特殊内力的计算 ●桁架零杆判断 如图2-3所示的两种杆件轴力为零的情况(可利用平衡条件证明)。

超静定结构内力计算

六超静定结构內力计算 1.什么是超静定结构?它和静定结构有何区别? 答:单靠静力平衡条件不能确定全部反力和內力的结构为超静定结构。 从几何组成的角度看,静定结构是没有多余约束的几何不变体系。若去掉其中任何一个约束,静定结构即成为几何可变体系。也就是说,静定结构的任何一个约束,对维持其几何不变性都是必要的,称为必要约束。对于超静定结构,若去掉其中一个甚至多个约束后,结构仍可能是几何不变的。 2.什么是超静定结构的超静定次数? 答:超静定结构多余约束的数目,或者多余约束力的数目,称为结构的超静定次数。3.超静定结构的基本结构是否必须是静定结构? 答:超静定结构的基本结构必须是静定结构。 4.如何确定超静定结构的超静定次数? 答:确定结构超静定次数的方法是:去掉超静定结构的多余约束,使之变为静定结构,则去掉多余约束的个数,即为结构的超静定次数。 5.撤除多余约束的方法有哪几种? 答:撤除多余约束常用方法如下: (1)去掉一根支座链杆或切断一根链杆,等于去掉一个约束。 (2)去掉一个固定铰支座或拆去一个单铰,等于去掉两个约束。 (3)去掉一个固定端支座或把刚性连接切开,等于去掉三个约束。 6.用力法计算超静定结构的基本思路是什么? 答:用力法计算超静定结构的基本思路是: 去掉超静定结构的多于约束,代之以多余未知力,形成静定的基本结构;取多余未知力作为基本未知量,通过基本结构的位移谐调条件建立力法方程,利用这一变形条件求解

多余约束力;将已知外荷载和多余约束力所引起的基本结构的内力叠加,即为原超静定结构在荷载作 用下产生的内力。 7.什么是力法的基本结构和基本未知量? 答:力法的基本结构是:超静定结构去掉多余约束后得到的静定结构。力法的基本未知量是对应于多余约束的约束反力。 8.简述n次超静定结构的力法方程,及求原结构的全部反力和內力的方法。 答:(1)n次超静定结构的力法方程 对于n次超静定结构,撤去n个多余约束后可得到静定的基本结构,在去掉的n个多余约束处代以相应的多余未知力。当原结构在去掉的多余约束处的位移为零时,相应地也就有n个已知的位移谐调条件:Δi=0(i=1,2,…,n)。由此可以建立n个关于求解多余未知力的方程: (6-5) 式中: δii称为主系数,表示当Xi=1作用在基本结构上时,Xi作用点沿Xi方向的位移。由于δii是Xi=1引起的自身方向上的位移,故恒大于零。可由自身图乘得出。 δij称为副系数,表示当Xj=1作用在基本结构上时,Xi作用点沿Xi方向的位移。可正可负也可等于零。由位移计算公式:

第二章 静定结构内力计算

第二章静定结构内力计算 一、是非题(正确的打√,错误的打×) 1、图示体系是一个静定结构。() 2、某刚架的弯矩图如图所示,则由此可以判断出此刚架在E处必作用了一个水平向右的集中荷载,其大小为10kN。() M图() 3、已知某简支直梁的M图如图(a)所示,其中AB段为二次抛物线,BC 段为水平线,且在B处M图数值无突变,则其剪力图如图(b)所示。() (a)(b) 4、图示三种结构中,ABC杆的内力是相同的。() (a)(b)(c) 5、图(a)是从某结构中取出的一段杆AB的隔离体受力图,则图(b)为该段杆的弯矩图,这是可能的。()

(a) (b) 6、图示结构的M图的形状是正确的。() 7、对图示结构中的BC段杆作弯矩图时,叠加法是不适用的。() 8、在图示结构中,支座A处的竖向反力。() 9、图示结构中。()

10、图示结构中。() 题10图题11图 11、图示结构中AB杆的弯矩为零。() 12、图示三铰拱,轴线方程为,受均布竖向荷载作用,则拱内任一截面的弯矩等于零。() 题12图题13图 13、图示桁架,因对称结构受反对称荷载,故AB杆的轴力为零。( ) 14、不受外力作用的任何结构,内力一定为零。() 15、对于图中所示同一结构受两种不同荷载的情况,其对应的支座反力相等,且内力图也相同。()

(a) (b) 16、比较图a和b所示同一结构受两种不同的荷载可知,除CD段弯矩不同外,其余各部分弯矩完全相同。() (a) (b) 17、简支的斜梁,在竖向荷载作用下,其内力与等跨度且同荷载的水平简支梁相同。() 18、实际工程中的桁架结构,只有轴力,没有弯矩和剪力。() 19、图示结构在温度改变作用下,所有的约束力(支座反力、杆件之间的相互约束力、杆截面内力)为零的这组答案满足平衡条件,故为其唯一确定解。() 20、对于图(a)(b)(c)所示三种结构,其梁式杆的最大弯矩(绝对值)排序为:(a)>(b)>(c).( )

结构力学考试样题库2-静定结构内力

第二章 静定结构内力计算 一、是非题 1、 静定结构的全部内力及反力,只根据平衡条 件求得,且解答是唯一的。 2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。 3、静定结构的几何特征是几何不变且无多余约束。 4、图示结构||M C =0。 a a 5、图示结构支座A 转动?角,M AB = 0, R C = 0。 B C a a A ? 2a 2 6、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。 7、图示静定结构,在竖向荷载作用下, AB 是基本部分,BC 是附属部分。 A B C 8、图示结构B 支座反力等于P /2() ↑。 9、图示结构中,当改变B 点链杆的方向(不通过A 铰)时,对该梁的影响是轴力有变化。 A B 10、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。 11、图示桁架有9根零杆。 12、图示桁架有:N 1=N 2=N 3= 0。 a a a a 13、图示桁架DE 杆的内力为零。 a a 14、图示对称桁架在对称荷载作用下,其零杆共有三根。 15、图示桁架共有三根零杆。

16、图示结构的零杆有7根。 3m 3m 3m 17、图示结构中,CD 杆的内力 N 1=-P 。 a 4 18、图示桁架中,杆1的轴力为0。 4a 19、图示为一杆段的M 、Q 图,若Q 图是正确的,则M 图一定是错误的。 图 M Q 图 二、选择题 1、对图示的AB 段,采用叠加法作弯矩图是: A. 可以; B. 在一定条件下可以; C. 不可以; D. 在一定条件下不可以。 2、图示两结构及其受载状态,它们的内力符合: A. 弯矩相同,剪力不同; B. 弯矩相同,轴力不同; C. 弯矩不同,剪力相同; D. 弯矩不同,轴力不同。 P P P 2 l l l l 3、图示结构M K (设下面受拉为正)为: A. qa 22; B. -qa 2 2; C. 3qa 2 2; D. 2qa 2 。 2 a 4、图示结构M DC (设下侧受拉为正)为: A. -Pa ; B. Pa ; C. -Pa ; D. Pa 2。

相关文档
最新文档