不锈钢腐蚀的原因

不锈钢腐蚀的原因

德美两国研究人员发现,不锈钢表面微小“锈孔”的迅猛增加,是造成不锈钢受到大规模腐蚀的原因。腐蚀物浓度或温度的微小变化,就能显著加快腐蚀速度。

本来应该能够抗腐蚀的不锈钢,会产生点状的局部腐蚀,这常常使整个建筑构件失效。仅在美国,每年因钢铁腐蚀造成的损失就占国内生产总值的3%,大约三分之一的化学设备因局部腐蚀而停工。

德国马普学会25日发表新闻公报说,该协会下属的弗里茨-哈贝尔研究所与美国弗吉尼亚大学合作,利用特殊的显微镜检查技术观察到,点状腐蚀的迅速出现,是由于金属表面亚稳定状态的微孔迅速增生的缘故。在真正的点蚀发生前,不锈钢表面保护性的氧化层中先形成直径几个微米、呈亚稳定状态的微型凹陷,尽管此前科学家们对这种凹陷形成过程进行了大量的研究,但点蚀的突然出现迄今尚无法解释。

此次,研究人员使用了椭圆显微镜表面成像法(EMSI),它可以观察到扩大中的氧化层腐蚀状况。此外,研究人员通过高分辨率和对比度加强的光学显微镜追踪各个凹陷的形成,终于发现,点蚀突然出现的原因是凹陷数量爆炸式增加、损伤了不锈钢表面的氧化保护层。这与计算机模拟的结果相符。

研究人员认为,钢表面的损伤可以通过改变引发腐蚀的溶

液的成分(如添加抑制剂),或者优化钢的合金成分来阻止。他们在最新一期《科学》杂志上公布的上述研究成果,对于更好地理解、控制和避免钢铁腐蚀,具有重要意义。

工业冷却水对不锈钢换热器腐蚀的研究及对策

编号:AQ-JS-03383 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 工业冷却水对不锈钢换热器腐 蚀的研究及对策 Study on Corrosion of stainless steel heat exchanger by industrial cooling water and Countermeasures

工业冷却水对不锈钢换热器腐蚀的 研究及对策 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 摘要:不锈钢换热器在石化、电力工业的生产中有着广泛的应用。但是,不锈钢管局部腐蚀(主要是孔蚀和应力腐蚀破裂)的发展速度和所造成的破坏也是惊人的。本文简要介绍了不锈钢的腐蚀类型;针对火电厂运行、基建机组凝汽器不锈钢管的防腐蚀工作,阐述了相应的化学处理措施和成功的工作实例。 关键词:不锈钢;凝汽器;孔蚀;应力腐蚀破裂;防腐;化学处理 1不锈钢换热器的应用情况 不锈钢是铁、铬和镍的合金,最早出现在20世纪初。铬镍钢,特别是18Cr-8Ni型奥氏体不锈钢,由于它在许多化学介质中具有高度的稳定性,并且能耐高温气体腐蚀,所以在化学工业中得到最

广泛的应用,在许多有机产品和聚合物的生产过程中(如尿素、醋酸、聚丙烯、聚乙烯醇等),大多数设备都是由铬镍合金钢和奥氏体不锈钢制造的。其中大量与各种工业水接触的列管换热器、冷凝器和夹套反应器多用奥氏体不锈钢(主要类型为AISI304、304L、316、316L)制造。 在电力工业中,不锈钢的应用范围也越来越广泛。在发电厂,不锈钢主要用来制造凝汽器的冷却管。 凝汽器是汽轮发电机组的重要辅机之一,它的性能好坏直接影响机组的运行。而它的主要传热组件—冷却管,是凝汽器的最重要部分,价格占其总价的一半以上。因此,冷却管的选材和选型是凝汽器的设计关键。 早在20世纪90年代初,我国就开始应用螺旋槽管传热理论,研制新型凝汽器。经过反复论证和试验,研制出理想的冷却管凝汽器—高效不锈钢波螺焊管凝汽器。 不锈钢波螺焊管比铜管的总体传热系数提高25~30%,在几家热电厂的实际运行当中,当保持真空度不变的情况下,循环水量比

氯离子对不锈钢的腐蚀

氯离子对不锈钢的腐蚀 问题描述:对于奥氏体不锈钢在氯离子环境下的腐蚀,各种权威的书籍均有严格的要求,氯离子含量要小于25ppm,否则就会发生应力腐蚀、孔蚀、晶间腐蚀。但是事实上在工程应用中我们有很多高浓度的氯离子含量的情况下在使用奥氏体不锈钢,因些分析氯离子对不锈钢的腐蚀,采取预防措施,延长使用寿命,或合理选材。 不锈钢的腐蚀失效分析: 1、应力腐蚀失:不锈钢在含有氧的氯离子的腐蚀介质环境产生应力腐蚀。应力腐蚀失效所占的比例高达45 %左右。常用的防护措施:合理选材,选用耐应力腐蚀材料主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。控制应力:装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。严格遵守操作规程:严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6 以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。 2、孔蚀失效及预防措施 小孔腐蚀一般在静止的介质中容易发生。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,即向深处自动加速。,不锈钢表面的氧化膜在含有氯离子的水溶液中便产生了溶解,结果在基底金属上生成孔径为20μm~30μm小蚀坑这些小蚀坑便是孔蚀核。只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。常见预防措施:在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量。降低氯离子在介质中的含量。加入缓蚀剂,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。采用外加阴极电流保护,抑制孔蚀。 3、点腐蚀:由于任何金属材料都不同程度的存在非金属夹杂物,这些非金属化合物,在Cl 离子的腐蚀作用下将很快形成坑点腐蚀,在闭塞电池的作用,坑外的Cl离子将向坑内迁移,而带正电荷的坑内金属离子将向坑外迁移。在不锈钢材料中,加Mo的材料比不加Mo的材料在耐点腐蚀性能方面要好,Mo含量添加的越多,耐坑点腐蚀的性能越好。 4.缝隙腐蚀 缝隙腐蚀与坑点腐蚀机理一样,是由于缝隙中存在闭塞电池的作用,导致Cl离子富集而出现的腐蚀现象。这类腐蚀一般发生在法兰垫片、搭接缝、螺栓螺帽的缝隙,以及换热管与管板孔的缝隙部位,缝隙腐蚀与缝隙中静止溶液的浓缩有很大关系,一旦有了缝隙腐蚀环境,其诱导应力腐蚀的几率是很高的。 总结 1:几种不锈钢在含氯(Cl—)水溶液中的适用条件 一、板片材料的选用 (1)注:不含气体、PH值为7(即中性)、流动的含氯水溶液。 (2)奥氏体不锈钢对硫化物(SO2 、SO3)腐蚀有一定的抗力。但是,Ni含量越高,耐蚀性将降低(因生成低熔点NiS),可能引起硫化物应力腐蚀开裂。硫化物应力腐蚀开 裂同材料的硬度有关,奥氏体不锈钢的硬度应≤HB228;Ni-Mo或Ni–Mo–Cr合金的 硬度不限;碳素钢的硬度应≤HB225; 3)必须注意板片材料与垫片或胶粘剂的相容性。例如,应避免将含氯的垫片或胶粘剂(如氯丁橡胶或以其为溶质的胶粘剂)与不锈钢板片组配,或者将氟橡胶、聚四氟乙烯(PTFE)垫片与钛板板片组配;

外文文献304不锈钢晶间腐蚀研究

晶间腐蚀在石油石化行业的危害及防护 帕德·马纳班 每一个石油化工企业年度改革、更新和超过6/809的维修费用,都是由于腐蚀和废弃设备、管道及金属非金属结构更新维护造成的,腐蚀易引起恶性破坏事故,不仅会带来巨大的经济损失,而且经常会引起火灾和爆炸、伤害和灾难性的环境污染等的罪恶,并导致严重的社会后果。腐蚀损坏,必须尽力设法避免。因为消除腐蚀是不可能的,成功的方法是控制腐蚀,或进入是为了防止腐蚀。因此,这些腐蚀问题已引起人们的关注来控制。本文主要针对表面产生晶间腐蚀的危害的石油工业,并介绍了如何防止和减缓腐蚀采取 的措施。 1晶间腐蚀的定义 晶间腐蚀是局部腐蚀的一种,是沿着金属晶粒间的分界面向内部扩展的沿着或紧挨着金属的晶粒边界发生的腐蚀。晶间腐蚀(Intergranular corrosion),又叫晶界腐蚀。现在对晶间腐蚀的科技名词定义如下: 沿着或挨着晶粒边界发生的腐蚀。:海洋工程(1级主题);船舶腐蚀与防护(要求等级2的主题)。 由于金属部件中这一媒介溶解率远远高于粮食本体的速度从局部腐蚀溶解。是金属强度、塑性和韧性大大降低危险的大量的腐蚀类型。所属主题:电力(一级学科);核能(要求等级2的话题)。 沿着或挨着金属颗粒边界腐蚀。所属属主题:机械工程(1级主题);腐蚀与防护(二级学科);腐蚀类型(三级学科)。 晶间腐蚀由微电池作用而引起局部破坏,这种局部破坏是从表面开始,沿晶界向内发展,直至整个金属由于晶界破坏而完全丧失强度,这是一种危害很大的局部腐蚀。 2晶间腐蚀发生的条件

金属及其结构在其所处的环境中,许多因素往往和环境化学因素及电化学因素一起, 参与和影响金属腐蚀过程。除化学因素及金属的冶金因素(成分、金相组织和结构等)外,影响金属腐蚀的环境因素还包括:应力、振动、冲刷、摩擦与磨损等力学、机械学因素;生物学因素等。这些因素与化学因素对腐蚀的影响,往往不是各个因素单独作用时所发生影响的简单加和,在多数情况下起着彼此相张的作用,因而,常常使腐蚀加速,造成更大的破坏性后果。 而晶间腐蚀的发生因素主要有内因和外因,如下: ⑴内因:即金属或合金本身晶粒与晶界化学成分差异、晶界结构、元素的固溶特点、 沉淀析出过程、固态扩散等金属学问题,导致电化学不均匀性,使金属具有品间腐蚀倾向。 ⑵外因:在腐蚀介质中能显示晶粒与晶界的电化学不均匀性。 3晶间腐蚀的机理 20世纪30年代以来,对晶间腐蚀进行了大量研究,所提出的贫化理论,特别是对奥 氏体不锈钢的贫铬理论已得到证实,并将贫化理论应用到铝铜合金的贫铜及镍钼合金的贫钼等方面。前者在晶界上析出了CuAl 2,后者在晶界上析出了Mo 2C 。 ⑴ 贫铬理论 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于10~12%。当温度升高 时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的溶解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中 的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe )23C6等。数据表明,铬沿晶界扩 散的活化能力162~252KJ/mol ,而铬由晶粒内扩散活化能约540KJ/mol ,即:铬由晶粒内扩散速度比铬沿晶界扩散速度小,内部的铬来不及向 晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数

不锈钢在各种环境中的耐腐蚀性能

不锈钢在各种环境中的耐腐蚀性能 来源:电源谷作者: 发布时间:2007-09-29 18:04:12 https://www.360docs.net/doc/5d3690528.html,/jiaocheng/jingti/2007-09-29/2590.html 不锈钢的耐腐蚀性能一般随铬含量的增加而提高,其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的致密的氧化膜,它可以防止进一步的氧化或腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 在各种环境中的耐腐蚀性能 ①大气腐蚀 不锈钢耐大气腐蚀基本上是随着大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境1Cr13 、1 Cr 17 和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。 工业环境在没有氯化物污染的工业环境中,1Cr17 和奥氏体型不锈钢能长期工作,基本上保持无锈蚀,可能在表面形成污膜,但当将污膜清除后,还保持着原有的光亮外观。在有氯化物的工业环境中,将造成不锈钢锈蚀。 海洋环境1Cr13 和1 Cr 17 不锈钢在短时期就会形成薄的锈膜,但不会造成明显的尺寸上的改变。奥氏体型不锈钢如1 Cr 17Ni7 、 1 Cr 18Ni9 和0 Cr 18Ni9 ,当暴露于海洋环境时,可能出现一些锈蚀。锈蚀通常是浅薄的,可以很容易地清除。0 Cr 17 Ni 12M 02 含钼不锈钢在海洋环境中基本上是耐腐蚀的。 除了大气条件外,还有另外两个影响不锈钢耐大气腐蚀性能的因素,即表面状态和制作工艺。精加工级别影响不锈钢在有氯化物的环境中的耐腐蚀性能。无光表面(毛面)对腐蚀非常敏感,即正常的工业精加工表面对锈蚀的敏感性较小。表面精加工级别还影响污物和锈蚀的清除。从高精加工的表面上清除污物和锈蚀物很容易,但从无光的表面上清除则很困难。对于无光表面,如果要保持原有的表面状态则需要更经常的清理。 ②淡水 淡水可定义为不分酸性、盐性或微咸,来源于江河、湖泊、池塘或井中的水。 淡水的腐蚀性受水的pH 值、氧含量和成垢倾向性的影响。结垢(硬)水,其腐蚀性主要由在金属表面形成垢的数量和类型来决定。这种垢的形成是存在其中的矿物质和温度的作

不锈钢腐蚀的机理

不锈钢腐蚀的机理 1 氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高[1 ] 。 氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为 2 穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合 ,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子,与金属形成氯化物,氯化物与 法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理[2 ] 在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。③一般在合金、碳钢中易发生应力腐蚀。研究表明,应

不锈钢腐蚀的分析

电化学腐蚀 电化学腐蚀就是金属和电解质组成两个电极,组成腐蚀原电池。例如铁和氧,因为铁的电极电位总比氧的电极电位低,所以铁是阳极,遭到腐蚀。特征是在发生氧腐蚀的表面会形成许多直径不等的小鼓包,次层是黑色粉末 状溃疡腐蚀坑陷。 一、基本介绍: 不纯的金属跟电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀。钢铁在潮湿的空气中所发生的腐蚀是电化学腐蚀最突出的例子。 我们知道,钢铁在干燥的空气里长时间不易腐蚀,但潮湿的空气中却很快就会腐蚀。原来,在潮湿的空气里,钢铁的表面吸附了一层薄薄的水膜,这层水膜里含有少量的氢离子与氢氧根离子,还溶解了氧气等气体,结果在钢铁表面形成了一层电解质溶液,它跟钢铁里的铁和少量的碳恰好形成无数微小的原电池。在这些原电池里,铁是负极,碳是正极。铁失去电子而被氧化.电化学腐蚀是造成钢铁腐蚀的主要原因。 金属材料与电解质溶液接触,通过电极反应产生的腐蚀。电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。 在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显著差别,进行两种反应的表面位置不断地随机变动。如果金属表面有某些区域主

要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。 二、相关原理: 金属的腐蚀原理有多种,其中电化学腐蚀是最为广泛的一种。当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极)。阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用。腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中N5等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(F勺C)以及其它金属和杂质,它们大多数没有铁活泼。这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得腐蚀不断进行。 三、方程式: (1)析氢腐蚀(钢铁表面吸附水膜酸性较强时) 负极(Fe): 蠱-2L fF严 F^+2H2O-^Fe(OH)2 + 2H+ + 2e J H2 正极(杂质): 电池反应: Fe+2H3O = Fe(OH}2 + H3T 由于有氢气放出,所以称之为析氢腐蚀。

不锈钢的腐蚀研究

无机酸对316L不锈钢的腐蚀 1.前言 不锈钢是含铬11%以上或同时含镍的钢种的统称。它在常温氧化性环境(如大气、水、强氧化性酸等)中容易钝化,使表面产生一层氧化铬为主,保护性很强的薄膜,其腐蚀速率极低。但当温度增高或环境的氧化能力减小时,将由钝态变为活态,腐蚀显著增大。各类不锈钢对有机酸、有机化合物、碱、中性溶液和多种气体都有良好耐蚀性。在非氧化性酸(硫酸、盐酸等)中腐蚀严重。不锈钢设备的腐蚀常常为局部腐蚀,当处于钝态和活态边缘,在含有卤素离子的盐溶液中,可能产生孔蚀。在含有对应力腐蚀敏感离子(如Cl-、OH-等)的溶液中,受应力的部分(如焊缝附近)则可能产生危险的应力腐蚀破裂。焊缝两侧的敏化区还易产生晶间腐蚀。 铬镍钢的耐蚀性和机械性能都超过单纯铬钢。镍的加入促进奥氏体结构的生成,可以得到更好的机械性能,特别是使韧性提高,同时又增大了钝化范围,使它更容易钝化。 316L不锈钢和一般的铬镍不锈钢相似,但由于加入了2%的钼,所以在许多方面比铬镍不锈钢更为优越,特别是在非氧化性酸和热的有机酸、氯化物中的耐蚀性要比铬镍不锈钢好得多,抗孔蚀的能力也较好。 2.不锈钢成分牌号对照表 各种不锈钢的成分表 中外不锈钢牌号对照表

3.无机酸对316L 不锈钢的腐蚀 铬镍钢对一切浓度和温度的盐酸都不适用,316L 在盐酸中的溶解度少许降低一些,但也只能用于极稀的酸。如某些氯化物的溶液中,由于水解作用可能产生极微量的盐酸,可使用316L 不锈钢,但一般容易发生孔蚀。 铬镍不锈钢可使用于常温下5%以下的稀硫酸和90%以上的浓硫酸,316L 的耐蚀性比较好,但使用温度也不宜超过50~70 ℃。对于中等浓度的硫酸和发烟酸,所有的铬镍钢腐蚀都很大,不适用。所有的铬钢对一般浓度的不充气的硫酸都不适用。硫酸中如含有其它物质,如铬酸、重铬酸钠、硝酸钠和大多数硫酸盐类,对不锈钢具有缓蚀效果。 各种牌号的铬和铬镍不锈钢对硝酸都有良好的耐蚀性。对70%以下的稀硝酸,适用温度可到沸点上下。 浓度更高的硝酸,常温下还是适用,但超过50℃则腐蚀很快,特别是90~99%的高浓酸。一般不锈钢只用于常温的浓硝酸。 无机酸对304不锈钢的腐蚀

不锈钢腐蚀实验报告

不锈钢腐蚀行为及影响因素的综合评价 洪宇浩 实验一、钝化曲线法评价不同种不锈钢在同一介质中的腐蚀能力 1.实验目的 ●掌握金属腐蚀原理和金属钝化原理 ●掌握不锈钢阳极钝化曲线的测量 ●掌握恒电位仪软件的操作 2.实验原理 3.实验步骤 本实验测试430不锈钢(黑)和304不锈钢(黄)在0.25mol/L H2SO4和含1.0% NaCl 的0.25mol/L H2SO4中钝化曲线. 电位:-0.60 →1.20 V,50 mV/s 4.注意事项 ●电极的处理 ●灵敏度的选择 5.实验结果 1、304钢在0.25mol/L H2SO4的钝化曲线

-800 -600-400-20002004006008001000 -8-6 -4 -2 2 电流(m A ) 电位(mV) -293,1.841 -139,0.635410,0.235 904,0.708 2、304钢在含1.0% NaCl 的0.25mol/L H 2SO 4中的钝化曲线. -800 -600-400-20002004006008001000 -7-6-5-4-3-2-1 01电流(m A ) 电位(mV) (-267, 0.59829) (-69, 0.38967) (398, 0.20901) (799, 0.38485) 3、430钢在0.25mol/L H 2SO 4中的钝化曲线.

-800 -600-400-200020040060080010001200 -4-202468 1012电流( m A ) 电位(mV) (-287, 11.133) (930, 1.7327) (174, 1.1011) (-21, 1.5724) 4、430钢在含1.0% NaCl 的0.25mol/L H 2SO 4中的钝化曲线. -600 -400 -200 200 400 -10 -5 5 10 15 20 电流(m A ) 电位(mV) (-221, 15.914) (180, 1.1999) (328, 1.9463) (-84, 4.9479)

不锈钢腐蚀牌制作方法

不锈钢腐蚀牌制作方法 金属腐蚀标牌大体分为凹字标牌.凸字标牌和凸凹字结合标牌这三种。腐蚀标牌的基本要求:图案美观.线条清晰.深度合适.底面平整.色彩饱满.拉丝均匀.表面色泽一致。腐蚀标牌的特点:耐候.耐溶剂性较强;即使油漆脱落仍然具有铭牌的功能。金属标牌怎样才能达到审美要求和客户的要求哪?我们必须抛弃八九十年代甚至六七十年代的落后技术和盆盆罐罐的陈旧设备。学习先进的生产技术,使用便捷的耗材和腐蚀液,更换专用设备。 我们青岛睿智达(标牌)表面装饰研究所是研究标牌生产工艺.设备和耗材的专业单位, 积累了较丰富的经验和技巧。就以上问题谈几点看法供大家参考。 一. 学习先进的生产技术。要想学习先进的技术必须做到以下几点: 1.打破陈旧的生产模式。许多标牌厂家有的已有几十年的历史,但至今仍沿用着建厂时的生产模式和技术,如自己熬骨胶.摔胶.太阳晒版.盆盆罐罐腐蚀.手工注漆等,有些技术在当时是先进的,可现在哪?耗费大量的人力物力,成本高.效率低.质量差.做不出理想的标牌。当然,有些老的技术手段至今还有使用价值,甚至还离不开它。但是,时代在发展,技术在进步,我们有些厂家固守陈规,为什么?值得我们思考。 2.加强与同行和标牌研究单位的交流。我认为改革开放的主要意义在于:走出去,拿进来。走出厂房.走出地域.甚至走出国门。去学习先进的管理模式,先进的生产技术,去借鉴.去筛选.拿来发展自己的企业。当然,有人会说,国门我走不出,同行不愿交流,研究单位找不到等一系列的问题。我想问,你去真诚的交流了吗?标牌的研究单位你真地去努力找了吗? 3.合理定位,切勿“好高骛远” 。合理定位就是以多数客户的市场的需求定位,以自己的生产能力定位。各位老板,请问你们标牌的主打产品是什么?我想多数人的回答应该是设备标牌。因为设备标牌市场广阔,批量大,占标牌总量的80% 以上,且制作相对简单,定 型后几乎长期不变。只要你的质量过关,价格合理,可常年为同一客户生产。这里有两个关键词:质量过关.价格合理,也就是说质量决定价格。标牌不仅是设备的铭牌,同时也有为设备画龙点睛之妙笔。可以想象假如你生产的标牌拿在客户手中爱不释手,他还与你讨价还价吗?他还去找其他厂家吗?我想不会的。但反之则不然。切勿“好高骛远” 。如果基本的设备标牌都没做好,你还想去学所谓高档的标牌吗?即使你学会了,有市场吗?我个人认为,从基础做起,先做好基本的,再寻求所谓高档的。 二. 选用耐腐蚀油墨的问题。金属腐蚀标牌使用的耐蚀刻油墨必须具备以下几点要求:便于丝

不锈钢管道点腐蚀的理论分析

不锈钢管道点腐蚀的理论分析 1 循环水旋转滤网反冲洗系统简介 循环水过滤系统(CFI)的主要设备是旋转海水滤网,在其运行中要不断清除滤出的污物,通过反冲洗系统来实现。反冲洗的水源与主循环水一样引自旋转滤网后的海水水室,后经两级泵加压和中间过滤输至旋转滤网的特定部位冲洗污物,设计流速2.3m/s。反冲洗海水管道设计采用公称直径150mm(壁厚7.11mm)的316L不锈钢管。输送的海水含氯量为17g/L,摩尔浓度为0.48mol/L,为防止回路中海生物滋生,注入次氯酸钠溶液,使循环水入口次氯酸钠的质量分数控制在1×10-6。 2 316L不锈钢管道的使用情况 CFI系统于2000-05-17完成安装交付调试,进行单体调试及系统试运。2001年4月,1号机组管道首次出现泄漏,泄漏部位位于管道竖直段与水平段弯头焊口处,泄漏点表现为穿透性孔,孔的直径很小,但肉眼可见,管道内壁腐蚀处呈扩展状褐色锈迹,判断为典型的不锈钢点腐蚀。当时的处理措施是切除泄漏的管段,更换同材质的新管段,并在新管段底部增加了一个疏水阀,目的是在管道停运期间排空管内积水以防止腐蚀的再次发生。但在2001年9月,1号机管道又发现漏点。2001年10月电厂决定将所有反冲洗管道更换为碳钢衬胶管道。改造后运行至今未发生泄漏。 3 316L不锈钢的抗腐蚀性分析 316L不锈钢属300系列Fe-Cr-Ni合金奥氏体不锈钢,由于铬、镍含量高,是最耐腐蚀的不锈钢之一,并具有很好的机械性能。字母“L”表示低碳(碳含量被控制在0.03%以下),以避免在临界温度范围(430~900℃)内碳化铬的晶界沉淀,在焊后提供特别好的耐蚀性。但316L不锈钢抗氯离子点腐蚀的能力较差。

各种不锈钢的耐腐蚀性能

各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308不锈钢用于制作焊条。 309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性.316和317型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 不锈钢选用需要考虑的因素? 在腐蚀环境中选择不锈钢时,除应对不锈钢的具体使用条件有详细的了解外,还需要考虑的主要因素有:不锈钢的耐蚀性,,强度,韧性和物理性能,加工,成形性能,资源,价格和取得的难易。 1、耐蚀性能 耐蚀性包括不锈性和耐酸,碱,盐等腐蚀介质的性能以及高温下抗氧化,硫化,氯化,氟化等的性能。由于选用不同不锈钢主要是为了解决实际工程中所遇到的各种腐蚀问题,为此在腐蚀环境中不锈钢的耐蚀性如何是选材人员首先需要考虑的。 腐蚀是金属与介质间由于化学或电化学作用而引起的破坏,而耐蚀性指不锈钢抵抗介质腐蚀破坏的能力,故当选材中涉及耐蚀性时,需要注意以下几点。 1、耐蚀性的标准是人为确定的,既要承认它,使用它,又不能受它的约束,要根据具体使用要求来确定是否耐蚀的具体标准。 目前对不锈钢的耐蚀性多采用10级标准,选择哪一级做为耐腐蚀的要求,要考虑设备,部个的特点(薄厚,大小),使用寿命长短,产品质量(如杂质,颜色,纯度)等的要求。 一般说来,对使用过程中要求光洁镜面或尺寸精密的设备仪表和部件,可选择1~3级标准;对要求密切配合,长期不漏或要求使用限长的设备,部件选2~5级,对要求不高检修方便或要求寿命不很长的设备,部件则可选用4~7级,除特殊例外,不锈钢在使用条件下年腐蚀率超过1mm者一般多不选用,需要指出,10级标准对于产生局部腐蚀时是不适用的。 2、耐蚀性是相对的,有条件的,常说的不锈钢的不锈性,耐蚀性系指指相对于生锈和不耐蚀而言,是指在一定条件下(介质,浓度,温度,杂质,压力,流速等一定时)。

不锈钢的腐蚀汇总

第三部分 不锈钢的腐蚀 一、概述 1、不锈钢的定义 不锈钢是一系列在空气,水,盐的水溶液,酸以及其它腐蚀介质中具有高度化学稳定性的钢种。在空气中耐腐蚀的钢称为“不锈钢”,在各种腐蚀性较强的介质中耐腐蚀的钢种称为“耐酸钢”。 通常,我们把不锈钢与耐酸钢统称为不锈耐酸钢,或简称为不锈钢。根据习惯用法,不锈钢一词常包括耐酸钢在内。 现有的不锈钢从化学成分来看,都是高铬钢。由于在大气中,当钢中的铬含量超过大约12%时,就基本上不会生锈。钢的这种不锈性一般认为与钢在氧化性介质中的钝化现象有关。 2、不锈钢的分类 不锈钢分类主要有以下几种方式: 1)按化学成分分有----铬钢(及铬钼钢),铬镍钢,铬锰钢(或铬锰氮钢),铬锰镍钢等。 2)按显微组织分有----奥氏体钢,铁素体钢,马氏体钢,奥氏体+铁素体双相钢,铁素体+马氏体双相钢奥氏体钢等 3)按用途分有----耐海水不锈钢,耐点蚀不锈钢(统一在某一钢种上),耐应力腐蚀破裂不锈钢,耐浓硝酸腐蚀不锈钢,耐硫酸腐蚀不锈钢,深冲用不锈钢,高强度不锈钢,易切削不锈钢,耐热不锈钢等。 二、不锈钢的点蚀 1、点蚀现象和识别 点蚀是在不锈钢表面上局部形成的具有一定深度的小孔或锈斑。由于点蚀常常被锈层,腐蚀产物等覆盖,因而难以发现。在金相显微镜下观察点蚀,其断面有多种形貌。 点蚀一般系在特定腐蚀介质中,特别是在含有Clˉ(包括Brˉ,Iˉ)离子的介质中产生。使不锈钢产生点蚀的常见介质有:大气,水介质及水蒸气,海水,漂白液,各种有机和无机氯化物等。 点蚀可在室温下出现并随腐蚀介质温度升高而更易产生并更趋严重。点蚀不仅可导致设备,管线等穿孔而破坏,而且常常诱发晶间腐蚀,应力腐蚀和疲劳腐蚀。虽然,不锈钢的点蚀事故仅占化工,石油等系统腐蚀破坏的~20%,但在大气中使用的不锈钢,却有近80%是由于点蚀和锈斑而损坏。见图1(a)、(b)。 2、机理 一般认为,不锈钢的点蚀是在金属表面非金属夹杂物,析出相,晶界,位错露头等缺

不锈钢腐蚀的知识点

不锈钢耐腐蚀知识点 不锈钢的耐腐蚀原因:不锈钢的重要因素在于其保护性氧化膜是自愈性的,合金必须含有足够量的铬以形成基本上有Cr2O3组成的表皮,以便当薄膜弄破时有足够数目的铬(Cr3+)阳离子重新形成薄膜。 氯离子对不锈钢钝化膜的破坏:处于钝态的金属仍有一定的反应能力,即钝化膜的溶解和修复(再钝化)处于动平衡状态。当介质中含有活性阴离子时,平衡便受到破坏,溶解占优势。其原因是氯离子能优先地有选择地吸附在钝化膜上,把氧原子排挤掉,然后和钝化膜中的阳离子结合成可溶性氧化物,结果在新露出的基底金属的特定点上生成小蚀坑(孔径多在20—30um)这些小蚀坑称为孔蚀核。 影响点腐蚀的因素:金属和合金的性质、表面状态、介质的性质、PH值、温度、流速和时间等。 不锈钢在焊接等过程中加热到一定温度之后而产生碳化铬在晶界上的沉积,因此,紧靠近碳化铬的区域就消耗掉铬,从而相对于晶内的铬更为活泼。如果存在水溶液条件,就形成了以裸露的铬为阳极,以不锈钢为阴极的原电池,大的阴极面积产生了阳极控制,因而腐蚀作用很严重,采用低碳的

奥氏不锈钢可以减轻这个问题。焊后表面不平整度增加这些都是为孔蚀核的形成提供了条件。 虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2种观点,成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论的观点认为氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力他们优先金属吸附,并从金属表面把氧排掉,因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物于金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。 在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量,可获得性能良好的钢种。

不锈钢腐蚀试验介绍

不锈钢腐蚀试验介绍 一、实验目的 1、观察与分析不锈钢焊接接头的显微组织。 2、了解不锈钢焊接接头产生晶间腐蚀的机理及晶间腐蚀区显微组织特征。 二、实验装置及实验材料 (一)C法电解浸蚀装置 (二)金相显微镜 (三)吹风机 (四)腐蚀液稀释为10%的草酸(C2H4O4·2H2O分析纯)水溶液1000ml (五)实验材料1Cr18Ni9Ti(或1Cr18Ni9)钢手弧焊或TIG焊试片40×20×1.5~3mm 6对(六)秒表 (七)乙醇、丙酮、棉花、各号金相砂纸等。 三、实验原理 1、焊接18-8型奥氏体不锈钢的接头产生晶间腐蚀的类型及控制18-8型不锈钢焊接接头出现三个部位的晶间腐蚀现象,即,焊缝腐蚀区,刀状腐蚀区,敏化腐蚀区。但在同一个接头中不会出现这三种晶间腐蚀区,其取决于钢的成分。 1)焊缝腐蚀区焊缝腐蚀区主要与焊接材料有关,同时也受焊接工艺的影响。 (a)、防治措施: ①控制焊缝金属化学成分,主要是尽量降低含碳量和添加足够量的Ti和Nb。焊缝中Ti和Nb 的量应大于钢板的量 (b)控制焊缝的组织状态,使之含有适当数量的一次铁素体δ(δ=5%为最宜,适宜量为4~?12%)。 δ相的有利作用: ⑴打乱单一奥氏体柱状晶的方向性,从而避免贫Cr层贯穿于晶粒之间构成腐蚀介质的集中通道。 ②δ相富Cr,且Cr在δ相中易扩散,碳化铬可优先在δ相内部边缘沉淀,并由于供Cr条件好,不会在奥氏体晶粒表层形成贫Cr层。 δ相的害处: ①相脆化(一种硬脆而无磁性的金属间化合物)。 ②②δ相选择性腐蚀。 2)敏化区腐蚀在焊接热影响区中峰值温度处于敏化温度区间的部位所发生的腐蚀(敏化温度为450℃~850℃;实际区为600℃~1000℃)。敏化区腐蚀只发生在不含Ti或Nb的18-8不锈钢中。防治措施:①采用含Ti或Nb的18-8或超低碳00Cr18Ni11不锈钢。②在工艺方面,应尽可能减少热影响取处于敏化温度区间的时间。产生敏化腐蚀区后的处理措施:采用稳定化处理,将处理件进行850~900℃短时加热后空冷。 3)刀状腐蚀区:产生的条件:①只出现于含Ti和Nb的18-8不锈钢接头中。②发生在近缝区的过热区中(加热超过1200℃)产生的特征:①沿晶破坏,呈现深而窄的形状,类似刀口形状。②腐蚀区宽度初期为3~5个晶粒,逐步扩展到1.0~1.5mm。 产生机理:18-8Ti不锈钢的供货状态一般为固溶处理状态(即一般经1050~1150℃水淬固溶)这时钢中少部分碳和很少量Ti溶入固溶体,大部分C与Ti结合成为TiC(游态)。原因是在1150℃以下时TiC在钢中的溶解度是不大的,而在固溶处理时,Cr23C6将可能全部溶入固溶体。但是,在焊接时,温度超过1200℃的过热区中首先出现的变化是TiC不断地分解并且向奥氏体中溶解而形成固溶体。峰值温度越高,TiC的固溶量越多,这时,在过热区中只有少量大块的Ti(CN)和TiN不能发生固溶。TiC高温分解后,分离出来的碳原子将插入到奥氏体

不锈钢在大气中的腐蚀研究

不锈钢在大气中的腐蚀研究 摘要:本文主要叙述了不锈钢的大气腐蚀机理,不锈钢在大气中是耐蚀的,当含Cr 量达到18 %以上时耐蚀性很好,钼能明显提高不锈钢的耐蚀性,超低碳也能提高其耐蚀性,二氧化硫的影响很小。还讨论了防止大气腐蚀的主要措施。 关键词:大气腐蚀,不锈钢,防护措施 1.引言 金属材料暴露在空气中,由于空气中的水和氧的化学和电化学作用而引起的腐蚀称为大气腐蚀。大气腐蚀是最为常见的腐蚀现象[1]。 钢的大气腐蚀是一个普遍而严重的问题,每年造成巨大的损失。1995 年的统计表明,我国每年因腐蚀而损失的钢材达1×107 t,由于大气腐蚀而造成的损失约占一半[2]。又如美国因各种腐蚀导致的损失达人均1 000 美元,其中大部分是大气腐蚀引起的。因此,自20 世纪初钢的大气腐蚀便成为一个重要的研究领域。钢在自然环境中的大气腐蚀是钢与其周围的大气环境相互作用的结果,由于自然环境的复杂性,其腐蚀过程也是相当复杂的[3]。钢的自然环境腐蚀暴露试验可使人们对钢材在各种自然环境中的腐蚀行为进行评价,抑或对各种钢材的腐蚀性能进行对比,同时亦可能建立起钢的腐蚀速率与多种环境因素数据之间的某种关联。暴露腐蚀试验结果对于研究钢在实际服役条件下的腐蚀情况具有重要参考价值。因此,研究钢在自然环境中大气腐蚀具有重要意义。世界各国以及一些大型钢铁企业都非常重视该项研究,投入了大量的财力、物力进行钢在自然环境下的腐蚀研究工作。 不锈钢具有良好的抗蚀性,一些成熟的不锈钢品种已在大气中获得广泛的应用。铁素体不锈钢430 ( Cr17 ) 在一般大气中通常能成功地使用,304 ( 0Cr18Ni9 ) 及316(0Cr18Ni10Mo2) 奥氏体不锈钢可用在腐蚀性强的大气环境中,如广泛使用于表壳、餐具等各种日常用品及建筑物的柱面等结构中。而马氏体不锈钢410 ( 0~2Cr13) ,由于价格便宜,大量用于要求较低的场合。人们对不锈钢的关注

不锈钢的耐腐蚀性及其种类

不锈钢的耐腐蚀性及其种类 1.腐蚀的种类和定义: 在众多的工业用途中,不锈钢都能提供今人满意的耐蚀性能。根据使用的经验来看,除[wiki]机械[/wiki]失效外,不锈钢的腐蚀主要表现在:不锈钢的一种严重的腐蚀形式是局部腐蚀(亦即应力腐蚀开裂、点腐蚀、晶间腐蚀、腐蚀疲劳以及缝隙腐蚀)。这些局部腐蚀所导致的失效事例几乎占失效事例的一半以上。事实上,很多失效事故是可以通过合理的选材而予以避免的。 应力腐蚀开裂(SCC):是指承受应力的合金在腐蚀性[wiki]环境[/wiki]中由于烈纹的扩展而互生失效的一种通用术语。应力腐蚀开裂具有脆性断口形貌,但它也可能发生于韧性高的材料中。发生应力腐蚀开裂的必要条件是要有拉应力(不论是残余应力还是外加应力,或者两者兼而有之)和特定的腐蚀介质存在。型纹的形成和扩展大致与拉应力方向垂直。这个导致应力腐蚀开裂的应力值,要比没有腐蚀介质存在时材料断裂所需要的应力值小得多。在微观上,穿过晶粒的裂纹称为穿晶裂纹,而沿晶界扩图的裂纹称为沿晶裂纹,当应力腐蚀开裂扩展至其一深度时(此处,承受载荷的材料断面上的应力达到它在空气中的断裂应力),则材料就按正常的裂纹(在韧性材料中,通常是通过显微缺陷的聚合)而断开。因此,由于应力腐蚀开裂而失效的零件的断面,将包含有应力腐蚀开裂的特征区域以及与已微缺陷的聚合相联系的“韧窝”区域。 点腐蚀:是一种导致腐蚀的局部腐蚀形式。 晶间腐蚀:晶粒间界是结晶学取向不同的晶粒间紊乱错合的界城,因而,它们是钢中各种溶质元素偏析或金属化合物(如碳化物和δ相)沉淀析出的有利区城。因此,在某些腐蚀介质中,晶粒间界可能先行被腐蚀乃是不足为奇的。这种类型的腐蚀被称为晶间腐蚀,大多数的金属和合金在特定的腐蚀介质中都可能呈现晶间腐蚀。 缝隙腐蚀:是局部腐蚀的一种形式,它可能发全于溶液停滞的缝隙之中或屏蔽的表面内。这样的缝隙可以在金属与金属或金属与非金属的接合处形成,例如,在与铆钉、螺栓、垫片、阀座、松动的表面沉积物以及海生物相接烛之处形成。 全面腐蚀:是用来描述在整个合金表面上以比较均勺的方式所发生的腐蚀现象的术语。当发生全面腐蚀时,村料由于腐蚀而逐渐变薄,甚至材料腐蚀失效。不锈钢在强酸和强碱中可能呈现全面腐蚀。全面腐蚀所引起的失效问题并不怎么令人担心,因为,这种腐蚀通常可以通过简单的浸泡试验或查阅腐蚀方面的文献资料而预测它。 2.各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的[wiki]设备[/wiki]和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度

各种不锈钢的耐腐蚀性能

型号 301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号 302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号 303—通过添加少量的硫、磷使其较304更易切削加工。 型号 304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号 309—较之304有更好的耐温性。 型号 316—继304之后,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号 321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。 400 系列—铁素体和马氏体不锈钢 型号 408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。 型号 409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。 型号 410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。 型号 416—添加了硫改善了材料的加工性能。 型号 420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。 型号 430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。 型号 440—高强度刃具钢,含碳稍高,经过适当的热处理后可以获得较高屈服强度,硬度可以达到58HRC,属于最硬的不锈钢之列。最常见的应用例子就是“剃须刀片”。常用型号有三种:440A、440B、440C,另外还有440F(易加工型)。500 系列—耐热铬合金钢。 600 系列—马氏体沉淀硬化不锈钢。 型号 630—最常用的沉淀硬化不锈钢型号,通常也叫17-4;17%Cr,4%Ni。 各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。

相关文档
最新文档