HyMap成像光谱仪系统和高光谱数据应用

HyMap成像光谱仪系统和高光谱数据应用
HyMap成像光谱仪系统和高光谱数据应用

HyMap成像光谱仪系统及其应用

1.HyMap成像光谱仪系统简介

HyMap机载成像光谱仪是由澳大利亚集成光电公司(ISPL)研制生产的,投入商业性运营的机载成像光谱仪。经过近5年的发展,它已成为技术较为完善、系统较为配套的新一代使用型航空高光谱成像仪的代表。HyMap于1997年开始应用于商业勘探领域,尤其在地质勘探领域特别是矿物填图方面得到了广泛应用。为了推进成像光谱技术在我国地质找矿中的应用,中国地质调查局于2002年通过租用澳大利亚机载成像光谱仪的方式,开展了新疆东天山地区航空成像光谱飞行、数据获取、数据处理,以及应用研究工作,为澳大利亚机载成像光谱仪引进和成像光谱技术推广应用奠定了基础。并于2012年通过天津中科遥感信息技术有限公司,与澳大利亚集成光电公司(ISPL)签订了HyMap的购买合同。

图1 HyMap成像光谱仪及其获取的影像

2.HyMap成像光谱仪系统的主要组成

HyMap成像光谱仪系统主要有硬件和软件系统组成,其中硬件系统包括:

HyMap-C主机,由4个探测器组织,每个探测器有32个通道;以及备用探测器 集成稳定平台(GSM3000)

POS(IMU/DGPS)系统

主机和稳定平台之间的PAV30的适配环

定标设备

电子部件和备用电子设备

控制部件、数据传输与存储等部件、存储介质(SSD硬盘)

软件系统包括:

飞行管理系统

数据预处理及几何校正软件

无缝拼接软件

大气校正,光谱重建和矿物提取软件

3.HyMap成像光谱仪的成像模式

HyMap的分光器件为色散型成像光谱仪,其扫描方式为光机旋转式。

光栅色散型成像光谱仪其原理为:入射狭缝位于准直系统的前焦面上,入射的辐射经准直光学系统准直后,经棱镜和光栅狭缝色散后由成像光谱系统将光能按波长顺序成像在探测器的不同位置上。具有一个成45°斜面的扫描镜,在电机的带动下进行360°旋转,其旋转水平轴与遥感平台前进方向平行。

线阵列探测器用于探测任一瞬时视场内目标点的光谱分布。扫描镜的作用对目标表面进行横向扫描,一般空间的第二维扫描(纵向或帧方向扫描)由飞机运动产生。

图2. HyMap成像光谱仪的成像方式

图3. HyMap矿物影像

4.HyMap成像光谱仪系统的主要技术参数

图4. HyMap主要技术参数

图5. HyMap成像光谱仪飞行和成像参数

5. 高光谱遥感的应用

5.1 在植被和生态研究中的应用

高光谱遥感能够提供图像每个像元高的光谱分辨率,使一些在常规宽波段遥感中不能探测到的物质,在高光谱遥感中能被探测。高光谱遥感数据能够精确估算关键生态系统过程中的生物物理和生物化学参量,特别是在大尺度上冠层水分、植被干物质和土壤生化参量的精确反演,在生态学研究中有广阔的应用前景。

在生态系统方面,高光谱遥感还应用于生态环境梯度制图、光合作用色素含量提取、植被干物质信息提取、植被生物多样性监测、土壤属性反演、植被和土地覆盖精细制图、土地利用动态监测、矿物分布调查、水体富营养化检测、大气污染物监测、植被覆盖度和生物量调查、地质灾害评估等等。

植被高光谱遥感数据,按获取方式的不同,采用相应的高光谱遥感信息处理技术处理后可用于植被参数估算与分析,植被长势监测及估产等领域。另外,高光谱的出现使植物化学成分的遥感估测成为可能。

图6. 基于高光谱数据的太湖水质监测

图7. 基于高光谱数据的环境对植被生长的压抑程度监测

5.2 在地质矿产中的应用

区域地质制图和矿产勘探是高光谱技术主要的应用领域之一,也是高光谱遥感应用中最成功的一个领域。80年代以来,高光谱遥感被广泛地应用于地质、矿产资源及相关环境的调查中。最近15 年来的研究表明,高光谱遥感可为地质应用的发展做出重大贡献,尤其是在矿物识别与填图、岩性填图、矿产资源勘探、矿业环境监测、矿山生态恢复和评价等方面。

高光谱遥感能成功地应用于地质领域的主要原因是高光谱遥感有许多不同于宽波段遥感的性质,各种矿物和岩石在电磁波谱上显示的诊断性光谱特征可以帮助人们识别不同矿物成分,高光谱数据能反映出这类诊断性光谱特征。

随着高光谱遥感地质应用的不断扩展和日益深入,高光谱遥感技术和方法也在不断改进。近年来在基于高光谱数据的矿物精细识别、高光谱影像地质环境信息反演、基于高光谱遥感的行星地质探测等方面取得了突出的进展。高光谱遥感在地质成因环境探测、蚀变矿物与矿化带的探测、成矿预测、岩性的识别与分类、油气资源及灾害探测、高光谱植被重金属污染探测等方面也有应用。

图8. HyMap影像的岩矿填图

图9. HyMap影像的地质分析和岩矿填图

矿物种类分布矿物相对含量变化矿物化学成分变化

图10. 基于高光谱影像的矿物识别图

图11. 基于高光谱数据的岩芯矿物填图

图12. 基于高光谱数据的矿区植被长势监测

5.3 在海洋研究中的应用

随着科学技术的发展,高光谱遥感已成为当前海洋遥感前沿领域。由于中分辨率成像光谱仪具有光谱覆盖范围广、分辨率高和波段多等许多优点,因此已成为海洋水色、水温的有效探测工具。它不仅可用于海水中叶绿素浓度、悬浮泥沙含量、某些污染物和表层水温探测,也可用于海冰、海岸带等的探测。

国内海洋遥感应用基础研究主要是一些数学模型的构建。关于如何解决水体的低反射率、大气对蓝紫波段光谱的散射影响等难题的研究还未涉足。在海洋水质监测应用方面,只有可见光光谱能够观测水下的状况。另外,陆源污染、海水养殖、滩涂等海岸带典型要素的光谱特性研究工作也在开展,研究人员以航空高光谱图像为数据源,选取陆源污染、海水养殖、滩涂为监测要素,进行上述要素的光谱波段敏感性研究,试图获得其探测的最佳波段,并进一步发展准确、快速识别和探测技术。在海洋表面温度测量、海洋表层悬浮泥沙浓度的定性或半定量的观测、海洋动力现象的研究等方面都开展了相应的研究。

国际上开展的主要研究有:海洋碳通量研究,认识其控制机理和变化规律;海洋生态系

统与混合层物理性质的关系研究;海岸带环境监测与管理。

图12. 基于HyMap的海床覆盖监测

图13. 基于HyMap的近岸海域监测

图14. 基于高光谱影像的水质监测

5.4 在农业方面的应用

高光谱遥感技术的出现拓宽了遥感信息定量获取新领域,逐渐成为农业遥感应用的重要前沿技术手段之一。农业遥感应用中,充分利用高光谱图谱合一的优点,能够精准监测作物长势,为精准农业服务,特别是作物长势评估、灾害监测和农业管理等方面。利用高光谱遥感数据能准确地反映田间作物本身的光谱特征以及作物之间光谱差异,可以更加精准地获取一些农学信息,如作物含水量、叶绿素含量、叶面积指数(LAI)等生态物理参数,从而方便地预测作物长势和产量。

目前,高光谱遥感技术在农业遥感应用中的研究取得了较大进展,主要研究包括以下方面:作物叶片光谱特征研究、作物分类与识别、作物生态物理参数反演与提取、作物养分诊断与监测研究、作物长势监测与产量预测、农业遥感信息模型研究、农业灾害监测。

随着精准农业研究的深入,遥感光谱分辨率和空间分辨率的不断提高,今后高光谱遥感在农业方面的应用从理论走向业务化运作,特别是简单实用的高光谱农学信息提取与农情监测模型的设计与推广,将成为一个主要发展方向。

图15. 小麦生化参量反演图

图6. 日本南牧村地物覆盖类型(2000.8.23)

5.5 在大气科学研究中的应用

高光谱遥感具有非常高的光谱分辨率,它不仅可以探测到常规遥感更精细的地物信息,而且能探侧到更精细的大气吸收特征。大气的分子和粒子成份在反射光谱波段反映强烈,能够被高光谱仪器监测。高光谱遥感技术在大气研究中的突出应用是云盖制图、云顶高度与云层状态参数估算、大气水汽含量与分布估算、气溶胶含量估计以及大气光学特性评价等。利用高光谱数据,在准确探测大气成分的基础上,能提高天气预报、灾害预警等的准确性与可靠性。

5.6 在其他领域的应用

高光谱在其他领域也有广泛应用。如城市下垫面特征和环境,高光谱遥感的发展使得人们有能力对城市地物的光谱特性进行深人研究,人们用实验室光谱、地物光谱、航空和航天的高光谱遥感器对城市的光谱进行了一系列的深人分析。研究的内容包括城市地物的光谱特性及可分性,为城市环境遥感分析及制图提供基础。一些研究人员利用高光谱数据结合光谱检测算法对城市地物分类进行了研究。

在军事领域,最为先进技术,高光谱影像的军事应用主要集中在目标侦察、近海环境监测、伪装与反伪装和打击效果评估。

在土壤质量信息监测方面,高光谱遥感主要用于获取土壤质量信息,如土壤有机质的反射光谱特征、土壤水分与土壤反射光谱关系、土壤氧化铁的光谱反射特性等。通过对土壤理

化性质与土壤精细光谱信息的定量分析,进行土壤的特性参数评价。

图16. 高光谱应用产品

图17. 基于HyMap的森林火灾监测

图18. 基于高光谱影像的城市监测

图19. 基于高光谱影像的城市地物信息提取

5.7 高光谱应用的展望

高光谱遥感以其光谱分辨率高、图谱合一的特点受到了国内外研究者的广泛关注。从二十世纪八十年代开始到现在的三十多年中,无论在成像光谱仪等硬件方面还是在图像处理系统等软件方面都得到了的迅速的发展。高光谱遥感的发展历史虽然只有短短二十年左右的时

间,但在很多国家、许多领域已得到了越来越广泛的应用。目前主要应用于植被生态、大气、地质、海洋、农业等领域。

迄今为止,国内外常用的成像光谱仪还是以航空机载的为主,要进入实用阶段,需要由航空遥感转向卫星遥感。所以,未来携带更高光谱和空间分辨率成像光谱仪的卫星会陆续发射。当前,面向高光谱遥感应用,发展以地物精确分类、地物识别、地物特征信息提取为目标的高光谱遥感信息处理和定量化分析模型,提高高光谱数据处理的自动化和智能化水平,开发专用的高光谱遥感数据处理分析软件系统和地物光谱数据库仍是高光谱遥感研究的主要任务,旨在将高光谱遥感更精确地应用于更多更广的领域。

6. HyMap在新疆地区高光谱填图应用(国内应用实例)

6.1 概况

项目名称:中国国土资源航空物探遥感中心承担完成的《新疆东天山土屋-延东地区航空成像光谱调查项目

测区位置:东经93°12′58″~95°20′00″;

北纬42°02′58″~42°23′08″。

测区面积:3000km2。

6.2 航飞设计

测区地形:平均最高为851m、平均最低为498m , 平均面高为670m

飞行航高:相对航高为2400m ,绝对航高为3070m

飞行速度:扫描率10左右,则飞行速度在220km/h(估计值)

航带幅宽:2771m

航带设计:24航带(旁向重叠率:5%~15%

6.3 航摄实施

飞行时间:2002.9.26,澳大利亚完成光谱仪光谱和辐射定标

2002.10.4-10.7,完成仪器调试和试飞

10月中旬进入测区飞行

飞行平台:Y-12型(运12)

使用机场:乌鲁木齐机场

天气情况:不详,是否同步监测大气状况不知

旁向重叠率:5%~15%

航向飞行旋偏角:<5°

飞行高度符合设计航高

地面分辨率:5.4m

6.4 地面测试

6.4.1 地面光谱测试

目的:获取用于HyMap数据进行光谱辐射校正和准确提取岩矿地质体信息的地面光谱数据

便携式光谱辐射计:ASD - FR Pro

光谱范围:350~2500nm,光谱分辨率优于HyMap

地面同步光谱测量(两种)

人工布标和自然地标测量:共75条

非同步光谱测量

野外日光下岩石矿物标本:112条

实验室灯光下岩石矿物标本:110条

8.4.2 其他测试

岩矿鉴定:50件

样品分析:21件

6.5 数据处理

6.5.1 数据检查

数据获取后,尽快检查数据,收否有漏缺,是否需要补飞

查看每个波段数据,是否有波段无数据或质量很差,需要剔除;

6.5.2 数据预处理

光谱辐射畸变校正

光谱定标,利用实验室和机上定标系统,对高光谱数据进行光谱定标

大气校正,利用大气辐射传输模型对影像进行大气校正

光谱重建,将辐亮度数据转换为反射率数据

6.5.3 数据处理

几何校正

几何粗校正:利用陀螺稳定平台数据,以及POS(DGPS/IMU)系统,生成的IGM文件,以及在此基础上生成输出产品的GLT文件,进行每条航带的几何校正,并对航带进行无缝拼接。

几何精校正:利用1:5万地形图,人机交互几何精校正和地理编码

匀光处理,使航带间亮度,以及同一航带中央与四周的亮度和反差过度自然。

专题图制作

成图比例尺:5.4m分辨率,满足1:2万遥感影像图

制图:全区5种矿物(绿泥石、云母类、碳酸盐、高岭土和蛇纹岩)1:5万蚀变矿物填图

重点区域(300km2)7种矿物(含Fe2+矿物、含Fe3+矿物、含Mn2+矿物、含Al-OH键矿物、含Mg-OH键矿物、碳酸盐类矿物、水合硫酸盐类矿物)1:1万蚀变矿物填图

图20. HyMap新疆东天山地区矿物填图

6.6 思考

单独开展成像光谱遥感飞行成本太大,建议在地形相对平坦地区与航空物探综合站(磁、电磁、放射性)一起进行测量。由于机载成像光谱获取数据量巨大,数据的光谱重建和几何校正是决定该项技术能否实现产业化的主要问题。实践证明,目前应用6S或Modtran模型与成像光谱中水气波段相结合的方法,以及高精度差分GPS数据(DGPS)与IMU姿态参数相结合的方法,是实现光谱重建、几何校正快速、有效的方法。

7. HyMap在滑石矿区植被填图(国外应用实例)

7.1 项目概况

项目名称:属于欧洲MINEO项目的子课题

项目目的:MINEO项目目的是利用对地观测新技术评估欧洲矿业活动区对环境的影响,该子课题主要是研究在Lahnaslampi矿业开采区及其污染区域利用HyMap数据进行植被分类,利用高光谱数据评估采矿对周边植被影响的范围和程度。

矿区环境:Sotkamo municipality,Finland,露采,矿石和围岩的年开采量为2百万吨,开采产生的排放物和渗流水含有超量的重金属元素,如Ni,As,Mg,Na以及S。

7.2 HyMap数据获取和预处理

获取时间:2000.7.28 ,芬兰处于夏季,植被茂盛

飞行高度:2000km

飞行速度:278km/h

航带幅宽:2000m(视场角60°)

地面分辨率:5m

几何精校正:利用MED

几何校正软件:PARGE(瑞士,Zürich大学开发的软件),去除飞行中航线和姿态变化造成的影像畸变

其他校正:航带间和航带周边和中央的影像的亮度平衡和匀色处理·(cross-track illumination and image balancing procedure)——航带拼接——去“光环”效应(在矿区上方瑞利散射造成的)——基于经验的线性改正程序进行大气校正(地面布设了15m*15m的1黑1白的防水布和4个真实地表作为参考标志,利用光谱仪对其进行同步测量测量,用于大气校正)

7.3 HyMap影像的处理

(主要指专题信息提取中的处理)

提取植被指数:利用土壤化学和电导性,以及矿区灰尘和渗漏水系的指示对植被指数进行分级。

在林分水平上,对树种分布、结构和污染物利用最大似然估计法进行分类

利用Hymap高光谱影像生成渗漏水和灰尘污染的植被模式

地面光谱仪在室内分别测量受污染和未受污染的主要树木以及下层植物物种,作为高光谱影像的分类处理的依据。

成像光谱仪及其应用概述

成像光谱仪简介及其应用概述 成像光谱仪:将成像技术和光谱技术结合在一起,在探测物体空间特征的同时并对每个空间像元色散形成几十个到上百个波段带宽为10nm左右的连续光谱覆盖。它以高光谱分辨率获取景物或目标的高光谱图像。在陆地、大气、海洋等领域的研究观测中有广泛的应用。 成像光谱仪–概述 成像光谱仪是20世纪80年代开始在多光谱遥感成像技术的基础上发展起来的,它以高光谱分辨率获取景物或目标的高光谱图像,在航空、航天器上进行陆地、大气、海洋等观测中有广泛的应用,高成像光谱仪可以应用在地物精确分类、地物识别、地物特征信息的提取。建立目标的高光谱遥感信息处理和定量化分析模型后,可提高高光谱数据处理的自动化和智能化水平.。由于成像光谱仪高光谱分辨率的巨大优势,在空间对地观测的同时获取众多连续波段的地物光谱图像,达到从空间直接识别地球表面物质的目的,成为遥感领域的一大热点,正在成为当代空间对地观测的主要技术手段。地面上采用成像光谱仪也取得了很大的成果,如科学研究、工农林业环境保护等方面。 成像光谱仪主要性能参数是:(1)噪声等效反射率差(NE?p),体现为信噪比(SNR);(2)瞬时视场角(IFOV),体现为地面分辨率;(3)光谱分辨率,直观地表现为波段多少和波段谱宽。 高光谱分辨率遥感信息分析处理,集中于光谱维上进行图象信息的展开和定量分析,其图象处理模式的关键技术有:⑴超多维光谱图象信息的显示,如图像立方体(见图一)的生成;⑵光谱重建,即成像光谱数据的定标、定量化和大气纠正模型与算法,依此实现成像光谱信息的图象-光谱转换;⑶光谱编码,尤其指光谱吸收位置、深度、对称性等光谱特征参数的算法;⑷基于光谱数据库的地物光谱匹配识别算法; ⑸混合光谱分解模型;⑹基于光谱模型的地表生物物理化学过程与参数的识别和反演算法。 高光谱分辨率成像光谱遥感起源于地质矿物识别填图研究,逐渐扩展为植被生态、海洋海岸水色、冰雪、土壤以及大气的研究中。 成像光谱仪的基本原理

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 35 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为 21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。

光谱成像技术的分类

光谱成像技术的分类 光谱成像技术,有时又称成像光谱技术,融合了光谱技术和成像技术,交叉涵盖了光谱学、光学、计算机技术、电子技术和精密机械等多种学科,能够同时获得目标的两维空间信息和一维光谱信息。 光谱成像技术发展到今天,出现的光谱成像仪的种类和数量己经具有较大规模,因而可以从光谱分辨率、信息获取方式(扫描方式)、分光原理和重构理论等不同的视角对光谱成像技术进行分类。 1基于光谱分辨率分类 光谱成像技术针对光谱分辨能力的不同,可分为多光谱(Multi-spectral),高光谱(Hyper- spectral)以及超光谱(Ultra-spectral)。多光谱的谱段数一般只有几十个,高光谱的谱段数可达到几百个,而超光谱一般指谱段数上千个。它们的区别如表1所示。 表1多、高、超光谱的比较 分类分辨 率 通道数光谱典型例子 多光谱(Multi-spectral)10-1λ 量级 5—30ETM+ ASTER 高光谱(Hyper-spectral)10-2λ 量级 100— 200 AVIRIS 超光谱(Ultra-spectral)10-3λ 量级 1000— 10000 GIFTS

2 基于信息获取方式分类 光谱成像仪需要对三维“数据立方”进行探测,而现今的探测器最多能进行二维探测。要想获得完整的三维数据,理论上至少需增加一维的空间扫描或光谱扫描。光谱成像技术获取图谱信息的主要方式有:挥扫式(Whiskbroom )、推扫式(Pushbroom)、凝视式(Staring)以及快照式(Snapshot)。 挥扫式成像光谱仪的光谱成像系统只对空间中某点进行光谱探测,通过沿轨和穿轨两个方向扫描获取完整的二维空间信息,其信息获取方式如图1a所示。AVIRIS就是通过挥扫成像[1]。 推扫式光谱成像系统探测空间中一维线视场(图1b中的X方向)的光谱,通过沿轨方向(Y方向)扫描实现二维空间信息的获取,芬兰国立技术研究中心实验室研制的AISA就是典型的推扫式成像光谱仪[2]。 凝视式光谱成像系统可对固定窗口目标成像,采用滤光的方式分离并获取不同波段的图像信息,再将不同波段的图像堆叠成“数据立方”。如图1c中所示,该类成像光谱仪实际上是采用光谱维扫描的方式实现图谱“数据立方”的获取。 图1 典型的光谱成像过程:a挥扫式;b推扫式;c凝视式;d快照式 快照式是一种新兴的图谱信息获取方式,它不需扫描便可获取三维图谱信息。快照式光谱成像技术实现方式主要有三种:一种是视场分割三维成像的方式,利用玻璃堆进视场分割,再利用分光器件将三维信息展开到二维平面进行面探测

高光谱成像检测技术

高光谱成像检测技术 一、高光谱成像技术的简介 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术,其最突出的应用是遥感探测领域,并在越来越多的民用领域有着更大的应用前景。它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进技术,是传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 高光谱成像技术的定义是在多光谱成像的基础上,在从紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。 高光谱成像技术具有超多波段(上百个波段)、高的光谱分辨率(几个nm)、波段窄(≤10-2λ)、光谱范围广(200-2500nm)和图谱合一等特点。优势在于采集到的图像信息量丰富,识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹”效应,不同物不同谱,同物一定同谱的原理来分辨不同的物质信息。 二、高光谱成像系统的组成和成像原理 高光谱成像技术的硬件组成主要包括光源、光谱相机(成像光谱仪+CCD)、装备有图像采集卡的计算机。光谱范围覆盖了200-400nm、400-1000nm、900-1700 nm、1000-2500 nm。 CCD 光源光栅光谱仪成像镜头

光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵CCD。 高光谱成像仪的扫描过程:面阵CCD探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X方向),横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在CCD上得到的数据。它的横向是X方向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。 同时,在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(Y方向)。

利用高光谱图像技术检测水果轻微损伤

高光谱图像技术检测苹果轻微损伤 摘要 传统的近红外光谱分析法和可见光图像技术应用于水果品质无损检测 中存在的检测区域小、检测时间长、仅能检测表面情况等局限性。提出了 利用高光谱图像技术检测水果轻微损伤的方法。试验以苹果为研究对象, 利 用 500~ 900nm范围内的高光谱图像数据, 通过主成分分析提取 547nm 波长 下的特征图像, 然后设计不均匀二次差分消除了苹果图像亮度分布不均匀 的影响, 最后通过合适的数字图像处理方法提取苹果的轻微损伤。 关键词: 无损检测苹果高光谱图像检测轻微损伤 引言 水果在采摘或运输过程中, 因外力的作用使其表皮受到机械损伤, 损伤处 表皮未破损, 伤面有轻微,色稍变暗, 肉眼难于觉察。受水果色泽的影响, 传统的计算机视觉技术不能对轻微损伤加以检测。但是轻微损伤是水果在线检测的主要指标之一, 随着时间的延长, 轻微损伤部位逐渐褐变, 最终导致整个果实腐 烂并影响其他果实。因此, 水果轻微损伤的快速有效检测是目前研究的难点和热点之一。虽然轻微损伤和正常区域在外部特征上呈现出极大的相似性, 但是损伤区域的内部组织发生一定的变化, 这种变化可以通过特定波长下的光谱表现出来。 当前, 一种能集成光谱检测和图像检测优点的新技术。高光谱图像技术正好能满足水果表面轻微损伤检测的需要。高光谱图像技术是光谱分析和图像处理在最低层面上的融合技术, 可以对研究对象的内外部特征进行可视化分析。在国内, 高光谱图像技术在农畜产品品质检测的应用还没有相关的文献报道; 在国外, 近几年来有部分学者将该技术应用于肉类和果蔬类的品质检测上。 本文采用高光谱图像技术对水果表面轻微损伤检测进行研究, 并通过合适 的数据处理方法寻找到最能准确辨别水果表面损伤的特征波长下的图像, 为实 现高光谱图像技术对水果轻微损伤的在线检测提供依据。 1 高光谱图像基本原理 高光谱图像是在特定波长范围内由一系列波长处的光学图像组成的三维图 像块。图 1 为苹果的高光谱图像三维数据块示意图。图中, x 和y 表示二维平面坐标轴, K表示波长信息坐标轴。可以看出,高光谱图像既具有某个特定波长 下的图像信息,并且针对 xy 平面内某个特定像素又具有不同波长下的光谱n

高光谱成像检测技术.

高光谱成像检测技术 、高光谱成像技术的简介 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术, 其最突出的应用是遥感探测领域, 并在越来越多的民用领域有着更大的应用前景。 它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 技术,是高光谱成像 技术的定义是在多光谱成像的基础上,在从紫外到近红外(200-2500nm 的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成 像。在获得物体空间特征成像的同时, 也获得了被测物体的光谱信息。 高光谱成像技术具有超多波段(上百个波段、高的光谱分辨率(几个nm 、波 段窄(<1-2入光谱范围广(200-2500nm和图谱合一等特点。优势在于采集到的图像信息量丰富, 识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹” 效应, 不同物不同谱, 同物一定同谱的原理来分辨不同的物质信息。、高光谱成像系统的组成和成像原理 高光谱成像技术的硬件组成主要包括光源、光谱相机(成像光谱仪+CCD 、装备有图像采集 卡的计算机。光谱范围覆盖了200-400nm 、400-1000nm 、900-1700 nm 、1000-2500 nm。

CC D 朮源「一光栅壯谱以 —a I \、 「维电移台 . 样品 A CCD。 光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵

高光谱成像仪的扫描过程:面阵CCD探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X方向,横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在CCD上得到的数据。它的横向是X方 向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。 同时,在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(丫方向。 1\ 综合横纵扫描信息就可以得到样品的三维高光谱图像数据。

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点 同其他常用的遥感手段相比,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度< 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如A VIRIS在0. 4~214 波段范围内提供了224 个波段。研究表明许多地物的吸收特征在吸收峰深度一半处的宽度为20~40 nm。这是传统的多光谱等

高光谱成像仪市场调研报告

目录 一.高光谱成像仪的简介 (2) 二.高光谱成像仪市场现状 (2) 三.产品类型分类 (4) 四.主要产品供应商 (5) 五.高光谱成像应用实例 (10)

一.高光谱成像仪的简介 高光谱成像(HSI)是光谱技术和成像技术的结合,通常也被成为成像光谱技术。高光谱成像是加入了彩色三维成像的技术,包括目标频谱数据的反射图像,通过数据处理得到电磁光谱图像中每个像素。高光谱成像系统一般包括高光谱成像仪,摄像机,光源,数据软件和计算机等。 二.高光谱成像仪市场现状 2017年全球高光谱成像系统产量达到395台,销售额约6849万美元。预计2023年将达到13456万美元,年复合增长率(CAGR)为11.91%。 2019年全球高光谱成像系统产量达到549台,销售额约9042万美元。从全球范围看,北美是最大生产地区,主要生产企业也集中在这一地区,比如美国Headwall Photonics,美国Resonon,美国Surface Optics,美国康宁(并购NovaSol),加拿大ITRES,加拿大Telops和美国Brimrose等。北美地区2019产量共318套,占全球的58.01%,其次是欧洲,主要生产商有芬兰Specim,欧洲微电子研究中心(IMEC),挪威纳斯克电子光学公司(Norsk Elektro Optikk AS)等。

图1 2017年全球不同分类高光谱成像系统产量份额 图2 2017年全球高光谱成像系统主要应用领域消费量份额

三.产品类型分类 1. 紫外光谱(10~380 nm) 军事领域:飞机发动机尾焰紫外追踪,导弹预警,紫外预警目标观察,紫外火控目标瞄准系统 公安刑侦:现场侦查痕迹,可观察指纹印、体液、火药、麻药 航天领域:空间探测 2. 可见光谱(380~780nm) 农业领域:防病虫害 增强视场:获取高光谱分辨率和高空间分辨率 公安刑侦:手印显现 3. 近红外光谱(780-2526nm) 生物医学领域:测定脑血流量和脑血管中CO2的活性、血或血清中血红蛋白载氧量、PH、葡萄糖、尿素等含量 农业、食品、纺织、聚合物、药物、石油化工、生化和环保。 4. 中红外光谱(2.5-25μm) 在军事、环境监测、医学治疗以及基础研究等领域 环境监测:监测甲烷和氧化亚氮 生物医学:蛋白质分析、液相色谱/生物反应器监控、无标签数字病理学、纳米成像5.远红外光谱(25-1000μm) 基础研究:半导体监测,超导体监测、等离子体诊断、天体物理研究。

光谱仪

光谱仪 光谱仪,又称分光仪,广泛为认知的为直读光谱仪。以光电倍增管等光探测器测量谱线不同波长位置强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。 根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪.经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器.调制光谱仪是非空间分光的,它采用圆孔进光. 根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪.光学多道分析仪OMA(OpticalMulti-channelAnalyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理, 存储诸功能于一体.由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率;使用OMA分析光谱,测量准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出。它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,

特别适应于对微弱信号,瞬变信号的检测. 一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分: 1.入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。 2.准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。 3.色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。 4.聚焦元件: 聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。 5.探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是CCD阵列或其它种类的光探测器阵列。 光谱仪应用很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、印刷、造纸、喇曼光谱、半导体工业、成分检测、颜色混合及匹配、生物医学应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监控、薄膜厚度测量、LED测量、发射光谱测量、紫外/可见吸收光谱测量、颜色测量等领域应用广泛。

成像光谱技术简介

成像光谱技术 1.成像光谱技术发展简述 光谱技术是指利用光与物质的相互作用研究分子结构及动态特性的学科,即通过获取光的发射、吸收与散射信息可获得与样品相关的化学信息,成像技术则是获取目标的影像信息,研究目标的空间特性信息。这两个独立的学科在各自的领域里已有数百年的发展历史,但是知道上个世纪六十年代,遥感技术兴起,空间探测和地表探测一时成为科学界研究的热点,人们希望得到的不单纯是目标的影响信息或者目标的光谱信息,而是同时得到影像信息和光谱信息,这一需求极大的导致了成像技术和光谱技术的结合,催生出了成像光谱技术。 所谓光谱成像技术,其本质是充分利用了物质对不同电磁波谱的吸收或辐射特性,在普通的二维空间成像的基础上,增加了一维的光谱信息。由于地物物质组成的不同,其对应的光谱之间存在差异(即指纹效应),从而可以利用地物目标的光谱进行识别和分类。光谱成像技术可以在电磁波段的紫外、可见光、近红外和中红外区域,获取许多窄并且光谱连续的图像数据,为每个像元提供一条完整并且连续的光谱曲线。 图1 成像光谱技术示意图 图1.1就是成像光谱技术的示意图,成像光谱仪得到一个三维的数据立方体,从每个空间象元都可以提取一条连续的光谱曲线,通过谱线的特征分析,继而用于后续的测探等目的。 2.成像光谱仪的分类 成像光谱仪是成像光谱技术发展的必然产物,是可以同时获取影像信息与像元的光谱信息的光学传感器,是成像光谱技术得以实现的实物载体,根据不同的分类标准可以进行多种分类,主要有以下几种: (1)根据成像光谱仪的光谱分辨率不同,可以分为多光谱成像仪

(Multispectral Imager, MSI),高光谱成像仪(Hyperspectral Imager, HSI),超光谱成像仪(Hyperspectral Imager, USI)。 多光谱成像仪:获得的目标物的波段在3~12之间,光谱分辨率一般在 100nm左右,主要用于地带分类等方面。 高光谱成像仪:获得的目标物的波段在100~200之间,光谱分辨率在10nm 左右,被广泛用于遥感中。 超光谱成像仪:获得的目标物的波段在1000~10000之间,光谱分辨率在 1nm以下,通常用于大气微粒探测等精细探测领域。 (2)按照分光原理的不同可以分为棱镜色散型、光栅衍射型、滤光片型、干涉 型以及计算层析型。 棱镜色散型和光栅衍射型分别是利用棱镜的色散和光栅的衍射来获取目标物的光谱,这两类光谱仪都是直接型光谱仪,即可以直接得到目标物的光谱曲线,具有原理简单和性能稳定等优点。 滤光片型光谱仪是采用相机加滤光片的方案,分光元件为滤光片,有多种形式,有线性滤光片、旋转滤光片等。这种光谱仪也是一种间接成像光谱仪,需要调制才能获得整个数据立方体 干涉型光谱仪是采用干涉仪实现两束相干光的干涉,从而获得目标物的干涉图。该类型的光谱仪其采集到干涉图和最终需要反演得到光谱图之间存在傅里叶变换关系,故其也称傅里叶变换光谱仪。 (3)按照扫描方式不同,成像光谱技术可分为挥扫式(Whiskbroom)、推扫式(Pushbroom)和凝视(Staring)成像光谱仪。 挥扫视:主要利用扫描镜,将空间信息按照一定的顺序输入,再由光谱仪对各点进行光谱分光,这类光谱仪的探测器一般为线阵。 推扫式:采用一个垂直于运动方向的面阵探测器,先将扫描成像于光谱仪的狭缝上,在通过运动获得另一维的光谱数据。 凝视型:无需探测器的运动,在任意时刻即可获取目标的二维空间信息以及一维光谱信息。 此外,还有多种分类方法,比如按照数据称重理论和调制方式以及搭载平台的不同等等。 3.成像光谱技术的应用 成像光谱技术应用方向可以分为两大类:军用和民用。在军用方面,由于成像光谱仪特别是高光谱成像仪具有在光谱上区分地物类型的能力,因此它在地物的精细分类、目标检测和变化检测上体现出较强的优势,成为一种重要的战场侦察手段。早在20世纪末,美国军方就有实验表明高光谱图像可以分辨出

高光谱成像国内外研究与应用

前言 随着科学技术的发展,人们的感官得到了延伸,认识事物的能力也不断的提高,其中光谱成像和雷达成像成为其中的佼佼者,高谱和图像使人们能够在大千世界更好的认识到事物。高光谱成像技术作为一项优点显著,实用的成像技术,从20世纪80年代开始得到了世界各国的重视,经过深入的研究和发展如今已经被广泛地应用于各个领域。 高光谱遥感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重信息。高光谱遥感的出现是遥感界的一场革命,它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。 高光谱成像技术是基于非常多窄波段的影像数据技术,其中最突出的应用是在遥感探测领域,并在民用领域有着更大的应用前景。 本文通过分析介绍高光谱图像的成像原理,探讨了高光谱图像在国内外发展现状及其应用。

1.高光谱图像成像原理及特点 1.1高光谱遥感基本概念 高光谱遥感是通过高光谱传感器探测物体反射的电磁波而获得地物目标的空间和频谱数据,成立于20世纪初期的测谱学就是它的基础。高光谱遥感的出现使得许多使用宽波段无法探查到的物体,更加容易被探测到,所以高光谱遥感的出现时成功的是革命性的。 1.2高光谱图像成像原理 光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。 其扫描过程是当ccd探测器在光学焦面的垂直方向上做横向扫描(x),当横向的平行光垂直入射到投身光栅是就形成了光栅光谱,这是象元经过高光谱仪在ccd上得出的数据,它的横向式x方向上的像素点也就是扫描的象元,它的总想是各象元对应的信息。在检测系统输送前进是排列的他测器完成纵向扫面(y)。综合扫描信息即可得到物体的三围高光谱数据。 1.3高光谱遥感的特点 (1)波段多且宽度窄能够使得高光谱遥感探测到别的宽波段无法探测到的物体。 (2)光谱响应范围更广和光谱分辨率高使得它能够更加精细的发硬出被探测物的微小特征。 (3)它可以提供空间域和光谱域信息也就是“谱像合一”。 (4)数据量大和信息冗余多,由于高光谱数据的波段多,其数据量大,而且和相邻波段的相关性比较高就使得信息冗余度增加很多。 (5)高光谱遥感的数据描述模型多能够分析的更灵活。经常使用的3种模型有:图像,光谱和特征模型。 1.4高光谱的优势 随着高光谱成像的光谱分辨率的提高,其探测能力也有所增强。因此,与全色和多光谱成像相比较,高光谱成像有以下显著优著: (1)有着近似连续的地物光谱信息。高光谱影像在经过光谱反射率重建后,能获取与被探测物近似的连续的光谱反射率曲线,与它的实测值相匹配,将实验室中被探测物光谱分析模型应用到成像过程中。 (2)对于地表覆盖的探测和识别能力极大提高。高光谱数据能够探测具有诊断性光谱

航天成像光谱仪CHRIS辐射与光谱性能评价

中国科学E辑技术科学 2006, 36(增刊): 85~93 85 航天成像光谱仪CHRIS辐射 与光谱性能评价* 张霞**张兵胡方超童庆禧 (中国科学院遥感应用研究所遥感科学国家重点实验室, 北京 100101) 摘要 CHRIS是欧空局于2001年10月成功发射的PROBA卫星上搭载的探索性高光谱遥感器, 它共有5种可选择的作业模式, 在可见光到近红外(0.4~1.05 μm)范围, 最多可以获取62个波段. 文中采用基于图像自身的大气校正方法(模型法ACORN和经验法), 在图像上选取最具代表性的植被和土壤光谱, 对CHRIS 这一新型的航天成像光谱仪进行了光谱与辐射性能评价. 计算显示, ACORN校正得到的玉米反射率在498~750 nm波长区间能够较好地表征植被的反射率光谱特征(如红边特征), 尤其是在对气溶胶敏感的蓝光部分比经验方法更有优势, 但是在750 nm之后就有很大偏差, 表明CHRIS在750 nm之后的波段存在光谱定标误差; 土壤光谱反射率在800 nm之后有递减的误差趋势, 表明CHRIS在部分波长区间还不能满足模型法大气校正的要求; ACORN反演得到的水汽含量分布图上存在的竖条纹, 则表明CHRIS的辐射定标性能的不足. CHRIS仪器作为欧空局第一个真正意义上的航天高光谱遥感器在光谱和辐射性能上仍有待改善. 关键词CHRIS高光谱定标性能大气自校正 为更好地理解地表的方向性反射特性, 欧空局(ESA)于2001年10月22日发射了PROBA-1(PROject for On Board Autonomy 1)小卫星, PROBA应用了星上自治示范技术, 适用于小区域的科学和应用任务[1]. 其上搭载有多角度紧密型高分辨率成像光谱仪CHRIS, 该光谱仪由Sira 技术公司研制, 可提供5个角度(0, ±36°, ±55°)的高光谱反射率数据, 从而为大气、陆地和海洋的二向性反射(BRDF)研究提供了宝贵的数据. 但是在CHRIS服务于科学应用之前, 有必要对其性能, 收稿日期: 2005-11-16; 接受日期: 2006-04-10 *国家自然科学基金项目(批准号: 40271085)和国家重点基础研究发展规划项目(批准号: 2002CB412506)资助 ** E-mail: zx_0101@https://www.360docs.net/doc/5d442809.html,

高光谱在遥感技术的应用

高光谱在遥感技术的应用 高光谱遥感技术(Hyperspectral Remote Sensing)的兴起是20世纪80年代遥感技术发展的主要成就之一.作为当前遥感的前沿技术,高光谱遥感在光谱分辨率上具有巨大的优势。,随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛。本文主要阐述高光谱遥感的特点和主要应用。 1 高光谱遥感 孙钊在《高光谱遥感的应用》中提到,高光谱遥感是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,利用成像光谱仪获取许多非常窄的光谱连续的影像数据的技术。 [1]高光谱遥感具有较高的光谱分辨率,通常达到10~2λ数量级。[2] 1.1 高光谱遥感特点 综合多篇关于高光谱的期刊文章,总结高光谱具有如下特点: (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。[3]与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。[4] (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。[5]成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。 (4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2 高光谱遥感的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势:

无人机载高光谱成像系统

无人机载高光谱成像系统 主要参数应优于以下参数。 波长范围:400-1000nm;像素扭曲不超过一个像素, 空间通道数:≥620;光谱通道数:≥250; 光谱采样间隔:优于2.4nm/pixel; 光谱分辨率在20μm狭缝时优于6nm; 最大数值孔径:F/2.5; 重量:<0.6kg(含内部的采集控制模块); 反射率标准布:不小于3m x 3m,包含3种反射率,可以为计算地物反射率提供标准参考; 定制3轴云台,通电后自动垂直向下,无需手动调平衡; 可在地面站软件上看到云台上图传相机的实时画面; 云台重量:≤0.8kg;

无人机载多光谱/热红外成像系统 主要参数应优于以下参数。 重量≤800 g 光谱波段:EO即电力光学:蓝色、绿色、红色、红边、近红外(NIR)LW IR(长波红外辐射) / 热红外: 8-14um 传感器分辨率:不低于2064*1544(每个EO(即电力光学)波段3.2 MP)/热红外线:不低于160*120

北斗GPS定位系统 仪器参数应优于以下主要参数。 解算技术:超越传统(固定/浮动)技术的 HD-GNSS处理引擎算法,比传统GNSS技术提供的误差估算评定更加精确。 卫星跟踪:360全星座技术,能够跟踪包括GPS、GLONASS、Galileo、北斗和QZSS卫星信号同步跟踪: –– GPS:L1C/A、L1C、L2C、L2E、L5; –– GLONASS:L1C/A、L1P、L2C/A、L2P、L3; –– SBAS:L1C/A、L5; –– Galileo:E1、E5A、E5B; ––北斗:B1、B2、B3 多星多频:不止于接收卫星数量,同时接收GPS、GLANASS、伽利略、北斗的第三频段 信号通道:接收机通道数不少于440个通道,支持更多的卫星信号同步跟踪 高精度静态精度:平面3mm+0.1ppm 高程3.5mm+0.4ppm RTK实时动态精度:平面8mm+1ppm 高程15mm+1ppm 网络RTK精度:平面8mm+0.5ppm 高程15mm+0.5ppm 定位速率:1Hz、2Hz、5Hz 10Hz和20Hz 数据格式:CMR+, CMRx, RTCM 2.1, RTCM 2.3, RTCM 3.0, RTCM 3.1, RT CM 3.2的输入输出 星站差分功能:具有OmniSTAR HP、XP、G2、VBS定位功能 智能化程度:接收机可以通过WBUI管理界面,实现远程管理,下载数据等 工作温度:-40℃~65℃ 防水/防尘:满足IP67等级,可侵入水下1米深 可以承受从2米高测杆处跌落 数据存储:主机4G内存:可以3年以上原始观测数据通讯链路:电台与

光谱仪的发展历史与现状

光谱仪的发展历史与现状 【摘要】光谱分析方法作为一种重要的分析手段,在科研、生产、质量控制等方面发挥了重要作用。本文主要从光谱仪原理、光谱仪基本特性、发展历程、重要发明(UVS、AAS)以及未来展望等几个方面进行简要的阐述。 【关键词】光谱仪原理、基本特性、发展历程、UVS、AAS 1.光谱仪基本原理 光谱仪器是进行光谱研究和物质结构分析,利用光学色散原理及现代先进电子技术设计的光电仪器。它的基本作用是测量被研究光(所研究物质反射、吸收、散射或受激发的荧光等)的光谱特性,包括波长、强度等谱线特征[1]。因此,光谱仪器应具有以下功能: (1)分光:把被研究光按一定波长或波数的发布规律在一定空间分开。(2)感光:将光信号转换成易于测量的电信号,相应测量出各波长光的强度,得到光能量按波长的发布规律。 (3)绘谱线图:把分开的光波及其强度按波长或波数的发布规律记录保存或显示对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分组成:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。 根据光谱仪器的工作原理可以分成两大类:一类是基于空间色散和干涉分光的经典光谱仪;另一类是基于调制原理分光的新型光谱仪。

经典光谱仪结构图 光源和照明系统可以是研究的对象,也可以作为研究的工具照射被研究的物质。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光源就是研究的对象;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)。为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要专门设计照明系统[2]。 分光系统是任何光谱仪的核心部分,它一般是由准直系统、色散系统、成像系统三部分组成,主要作用是将照射来的光在一定空间按照一定波长规律分开。如图2-1所示,准直系统一般由入射狭缝和准直物镜组成,入射狭缝位于准直物镜的焦平面上。光源和照明系统发出的光通过狭缝照射到准直物镜,变成平行光束投射到色散系统上。色散系统的作用是将入射的单束复合光分解为多束单色光。多束单色光经过成像物镜按照波长的顺序成像在透镜焦平面上;这样,单束的复合光经过分光系统后成功变成了多束单色光的像。目前主要的色散系统主要有物质色散(如棱镜)、多缝衍射(如光栅)和多光束干涉(如干涉仪)探测接收系统的作用是将成像系统焦平面上接收的光谱能量转换成易于测量的电信号,并测量出对应光谱组成部分的波长和强度,从而获得被研究物质的特性参数如物质的组成成分及其含量以及物质的温度、星体的运动速度等等。目前光谱仪器的接收系统可以分为目视系统、摄谱系统和光电系统。经典光谱仪器根据设计需要可以选择其中一种,但干涉调制光谱仪器只能采用光电接收系统。 传输存储显示系统是将探测接收系统测量出来的电信号经过初步处理后存储或通过高速传输接口上传给上位机,在上位机上对光谱数据进行进一步数据处理及显示等。 2.光谱仪基本特性 光谱仪器的基本特性主要包括:工作光谱围、色散率、分辨率、光强度以及工作效率等五个方面。 (1)工作光谱围 指使用光谱仪器所能记录的光谱围。它主要决定于仪器中光学零件的光谱透

光谱图像与高光谱图像的区别介绍

光谱图像与高光谱图像的区别介绍 光谱分辨率在10l数量级范围内的光谱图像称为高光谱图像(Hyperspectral Image)。遥感技术经过20世纪后半叶的发展,无论在理论上、技术上和应用上均发生了重大的变化。其中,高光谱图像技术的出现和快速发展无疑是这种变化中十分突出的一个方面。通过搭载在不同空间平台上的高光谱传感器,即成像光谱仪,在电磁波谱的紫外、可见光、近红外和中红外区域,以数十至数百个连续且细分的光谱波段对目标区域同时成像。在获得地表图像信息的同时,也获得其光谱信息,第一次真正做到了光谱与图像的结合。与多光谱遥感影像相比,高光谱影像不仅在信息丰富程度方面有了极大的提高,在处理技术上,对该类光谱数据进行更为合理、有效的分析处理提供了可能。因而,高光谱图像技术所具有的影响及发展潜力,是以往技术的各个发展阶段所不可比拟的,不仅引起了遥感界的关注,同时也引起了其它领域(如医学、农学等)的极大兴趣。 高光谱图像:是指一系列包含一些列可见/近红外光谱,一般有400-1000 nm,已经包含了可见光(400-780 nm)和近红外(780-1000nm)。 多光谱图像简介多光谱图像是指包含很多带的图像,有时只有3个带(彩色图像就是一个例子)但有时要多得多,甚至上百个。每个带是一幅灰度图像,它表示根据用来产生该带的传感器的敏感度得到的场景亮度。在这样一幅图像中,每个像素都与一个由像素在不同带的数值串,即一个矢量相关。这个数串就被称为像素的光谱标记。 1.用不相关或独立的其他带替换当前带;这个问题特别与遥感应用有关,但在一般的图像处理中,如果要从多光谱图像生成一幅单带灰度图像也与此有关。 2.使用一个像素的光谱标记来识别该像素所表示的目标种类。这是一个模式识别问题,它取决于下列图像处理问题的解:消除一个像素的光谱标记对图像采集所用光谱的依赖性。这是一个光谱恒常性问题。 3.处理多光谱图像的特定子集,它包括在电磁谱里仅光学部分的3个带,它需要以或者替换或者模仿人类感知颜色的形式来进行处理。 4.在特定应用中使用多光谱图像,并对它们进行常规的操作。这里的一个问题是,现在

高光谱遥感技术综述_袁迎辉

第07卷 第08期 中 国 水 运 Vol.7 No.08 2007年 08月 China Water Transport August 2007 收稿日期:2007-5-4 作者简介:袁迎辉 女(1983—) 东华理工大学矿产普查与勘探专业在读硕士研究生 (344000) 高光谱遥感技术综述 袁迎辉 林子瑜 摘 要:高光谱分辨率遥感是20世纪80年代兴起的新型对地观测技术,与传统遥感相比,高光谱遥感具有更为广泛的应用前景。文中概述了高光谱遥感的特点、发展过程、发展程度及目前几种典型的成像光谱仪数据特点。 关键词:高光谱遥感 数据处理技术 成像光谱仪 中图分类号:TP72 文献标识码:A 文章编号:1006-7973(2007)08-0155-03 遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。 一、高光谱遥感的概念及特点 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据[3];与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴ 波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。⑵ 光谱分辨率高。成像光谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。⑶ 数据量大。随着波段数的增加,数据量呈指数增加[2]。⑷ 信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。⑸ 可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。 近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80年代以来,美国已经研制了三代高光谱成像光谱仪。1983年,第一幅由航空成像光谱仪(AIS-1)获取的高光谱分辨率图像的正式出现标志着第一代高光谱分辨率传感 器面世。第一代成像光谱仪(AIS),由美国国家航空和航天管理局(NASA)所属的喷气推进实验室设计,共有两种,AIS-1(1982年~1985年,128波段)和AIS-2(1985年~1987年,128波段),其光谱覆盖范围为1.2~2.4μm。 1987年,由NASA 喷气推进实验室研制成功的航空可见光/红外光成像光谱仪(AVIRIS)成为第二代高光谱成像仪的代表。与此同时,加拿大、澳大利亚、日本等国家竞相投入力量研究成像光谱仪。在AVIRIS 之后,美国地球物理环境研究公司(GER)又研制了1台64通道的高光谱分辨率扫描仪(GERIS),主要用于环境监测和地质研究。其中63个通道为高光谱分辨率扫描仪,第64通道是用来存储航空陀螺信息。 第三代高光谱成像光谱仪为克里斯特里尔傅立叶变换高光谱成像仪(FTHSI),其重量仅为35kg,采用256通道,光谱范围为400~1050nm,光谱分辨率为2~10nm,视场角为150°。而于1999年和2000年发射升空的中分辨率成像光谱仪(MODIS 和Hyperion)都已经成为主要的应用数据来源。 在国内,成像光谱仪的研制工作紧跟国际前沿技术,目前已跻身国际先进行列。先后研制成功了专题应用扫描仪、红光细分光谱扫描仪FIMS、热红外多光谱扫描仪TIMS、19波段多光谱扫描仪AMSS、71波段的模块化航空成像光谱仪MAIS、128波段的OMIS 以及244波段的推扫式成像仪PHI 等。此外,中国科学院上海技术物理研究所研制的中分辨率成像光谱仪于2002年随“神州”三号飞船发射升空,这是继美国1999年发射EOS 平台之后第二次将中分辨率成像光谱仪送上太空,从而使中国成为世界上第二个拥有航天载成像光谱仪的国家。 经过20世纪80年代的起步与90年代的发展,至90年代后期,高光谱遥感应用由实验室研究阶段逐步转向实际应用阶段。迄今为止,国际上已有许多套航空成像光谱仪与少数几个卫星成像光谱仪处于运行状态,在实验、研究以及信息的商业化方面发挥着重要作用。

相关文档
最新文档