蛋白质吸附分离研究进展

蛋白质吸附分离研究进展
蛋白质吸附分离研究进展

蛋白质吸附分离研究进展

【摘要】本文主要说明蛋白质的分子结构,总结近年来蛋白质的吸附理论及分离技术研究成果。

【关键词】蛋白质;吸附;分离;表面活性剂

目前,蛋白质的吸附已成为一个非常重要而活跃的研究领域。随着科技进步,使得新型分离技术的开发,需求迫切。另一方面,由于生物反应过程机理十分复杂,反应较难控制,反应液中杂质含量多,目标产物含量低,也给纯化分离带来了很大困难。本文主要对蛋白质的吸附及分离进行综述。

1.蛋白质分子结构

蛋白质一般由20种不同的氨基酸组成,氨基酸之间由肽键连接。肽键与一般的酰胺键一样,由于酰胺氦上的孤对电子与相邻羰基之间的共振相互作用(resonance interaction)表现出高稳定性。肽键的实际结构是一个共振杂化体。由于氧原子离域形成了包括肽键的羰基0、羰基C和酰胺N在内的O--C—NⅡ轨道系统,从而使得肽键的C-N具有部分双键的性质而不能自由旋转。肽键的C、0、N、H和与之相邻的两个a碳原子处于同一个平面,此刚性结构的平面就叫肽平面。肽链主链上的仅碳原子连接的两个键c—N键和C-C键能够自由旋转。如果不考虑键长和键角的微小变化,多肽链的所有可能构象都能用P和中这两个二面角来描述。

2.蛋白质吸附的理论分析

2.1 蛋白质吸附的理论

由肽链结构可知,蛋白质属于两性电解质,根据所处溶液pH不同表面净电荷可正可负。研究认为,蛋白质吸附过程中的相互作用包括氢键、静电和疏水等非共价的相互作用[2]。3种相互作用的本质都与静电作用相关。其中氢键的形成是由于电负性原子与氢形成的基团中.氢原子周围分布的电子少,正电荷氢核与另一电负性强的原子之间产生静电吸引,从而形成氢键。疏水相互作用又称为非极性相互作用,发生于非极性基团之间,蛋白质同时含极性和非极性的基团,当蛋白质处于水溶液中时,极性基团之间以及极性基团与水分子之间易发生静电吸引而排开非极性水基团,因此疏水相互作用并非是疏水基团之间有吸引力的缘故,而是非极性基团由于避开水的需要而被迫接近(8)。这些相互作用本身与小分子的吸附没有差别。蛋白质吸附的独特性在于吸附的是大分子,以及吸附过程蛋白质可以发生各种物理(如构象变化)和化学的变化。

2.2材料表面性质对蛋白质吸附的影响

当蛋白质吸附在材料的表面,其构象和序列将发生变化,因此蛋白质的构象和序列会影响蛋白质的吸附行为。有研究认为,蛋白质与材料表面的相互作用(包括静电力、范德华力、氢键、疏水作用),使吸附的蛋白质的构象发生变化而达到稳定吸附的状态(4)。另外是平铺式还是直立式吸附,在材料的表面也会影响蛋白质的吸附量屿(4)。

蛋白质的吸附会引起其物理和化学性质的变化。初始的吸附现象是瞬间的,这种瞬间的初始吸附会伴随吸附层的结构重整及再组织化晗]。这种结构重整除了会降低系统的吉布斯自由能外,对于吸附层上的蛋白质还会有变性或分子展开的效应,这会使原本被包覆在内部的疏水性氨基显露出来。以不带电的聚甲醛和牛血清蛋白进行研究,观察到蛋白质浓度升高时吸附量也相应升高,当BSA浓度达到0.6 g/L时得到最大吸附值(3mg/m2),之后吸附量不再与蛋白质浓度有关(5)。蛋白质在等电点时具有最大吸附量,并且在等电点附近呈对称分布(1)。造成此现象有2个原因:①蛋白质于等电点时具有最小溶解度,此时所需的吸附能最低;②静电排斥力在等电点时最小。

3.蛋白质与表面活性剂的相互作用

蛋白质是两性多聚电解质,它的肽链又因形成各种有序结构而形成“亲水区”和“疏水区”,表现出一定的表面活性。它和表面活性剂的相互作用,主要包括电性和疏水性两部分,这就使它们相互作用比较复杂。

用疏水柱在FPLC仪上测定了一些蛋白的表面疏水性(2)。发现蛋白质的疏水性与表面性质密切相关,而与蛋白质的分子量、疏水残基总数并不直接相关。从动力学和热力学的角度对表面活性剂和蛋白质的相互作用进行了探讨,从理论上对表面活性剂和蛋白质的相互作用进行了总结(1)。这一领域的研究主要集中于3个方面:①表面活性剂一蛋白质复合物结构的研究及蛋白质结构的变化;②表面活性剂一蛋白质混合溶液的相行为;⑨表面活性剂一蛋白质混合溶液的界面吸附。用表面张力法研究了SDS和肌酸激酶的相互作用|。在蛋白质溶液中引入带相反电荷的表面活性剂时,因电荷中和,使复合体的净电量减少直至零,并引入了一些疏水基,故复合体的水溶性下降,沉淀析出。当表面活性剂的量进一步增加时,因疏水吸附、表面活性剂大量吸附达1.49SDS/g蛋白质,复合体带净电荷增加,故水溶性增加,沉淀又复溶解。表面活性剂和蛋白质的这种作用可能意味着表面活性剂与蛋白质的相互作用有两个比较明显的作用阶段:电性作用和疏水作用。

3.1 蛋白质与非离子表面活性剂相互作用

早期的理论认为非离子型表面活性剂与蛋白质问由于缺乏静电引力而不能发生相互作用。但近来的研究表明,非离子型表面活性剂与蛋白质也存在相互作用,这种作用极大地影响吸附层的性质,对乳液的稳定性尤为重要。研究蛋白质与非离子型表面活性剂在界面的吸附多采用LB膜技术和界面流变学研究方法。采用磺化聚苯乙烯乳胶膜作为表面,运用LB 膜技术测定Tween20对B一酪蛋白的置换量及置换过程中吸附层的水化厚度[12|。研究表明,随着Tween20质量分数的增加,蛋白质被置换下来,吸附层的水化厚度降低,Tween20的加入降低了以蛋白质为乳化剂的乳液的稳定性。在总结大量实验事实的基础上提出了蛋白质一表面活性剂混合体系界面吸附的2种机理:①增溶机理。分散在表面的蛋白质分子与水溶性的表面活性剂形成蛋白质一表面活性剂复合物,使蛋白质分子以复合物的形式进入水相。此时,表面活性剂与被吸附的蛋白质有强烈的相互作用;②置换机理。由于表面活性剂与表面的相面上分散的蛋白质被表面活性剂置换下来。此时,表面活性剂必须强烈地吸附于表面。一般离子型表面活性剂与蛋白质混合体系是增溶机理,而非离子型表面活性剂与蛋白质的混合体系主要是置换机理。Levitz对具有长极性链非表面活性剂烷基苯酚聚乙烯已二醇(CNaPENp)的表面作用进行了研究并提出了相应的简化了的热力学模型,聚乙烯链(POE)比离子型表面活性剂的相互排斥力弱,吸附后的形态如同伸展的皇冠状。磷脂和肺部的一种主要亲水蛋白质(sP-A)的相互作用,发现了一种“花束”状吸附结构。并用电镜观测了其微观结构。吸附过程中添加二价离子(如钙离子),发现蛋白质和磷脂层的结构发生了改变。Ruso 等研究了不同表面活性剂一蛋白质比率下全氟表面活性剂与溶菌酶的相互作用[16I。动态光散射发现酶的构型基本保持不变,只有二级结构略微变化。氟原子的疏水性很强,但由于C-F键的刚性,阻碍了疏水相互作用,结果导致主要相互作用为静电作用。应用Longrnuir-Blodgett单层技术研究4种表面活性助沉降剂(它们的疏水基团相同)固定化脂肪酶,在一定表面压力下用表面活性剂单层包裹脂肪酶(6)。复合物的订一A(A为分子ilia)曲线趋势与纯表面活性剂有显著不同,说明几种表面活性剂与脂肪酶有相互作用。表面电势能(△u)可以用来表征单层分子电偶级的方位,△U越大,偶极相互作用力越显著。

3.2蛋白质吸附表面活性剂的测定方法

通常,测定蛋白质吸附表面活性剂的方法是“渗透平衡法”。但该法不仅复杂、耗时,而且不精确。李学刚等提出了采用阴、阳离子表顶活性剂互滴定和表面张力2种简单方法测定蛋白质和表面活性剂的结合量,结果颇为近似,说明此2种方法在测定蛋白质对表面活性剂吸附方面是可行的。界面剪切流变测定法可用来研究蛋白质和低分子量表面活性剂之间的

相互作用。NMR弛豫技术通过测定亲水基a一碳氘代表面活性剂的旋转弛豫速率表征蛋白质一表面活性剂复合物的微观结构。冷冻蚀刻电镜(Cryo—TEM)可以在纳米层次上直接观察蛋白质分子、蛋白质一表面活性剂聚集体以及它们在稀溶液中的形貌变化,是一种较NMR 更定量的技术(7)。荧光技术作为~种传统的研究聚集体的方法,在研究蛋白质结构变化方面又有新的发展。通过使激发波长和入射波长保持固定的波长间距,同步扫描激发和发射单色器,可得到同步荧光光谱。根据发射光谱中波长的改变可判断蛋白质的构象的变化。同步荧光光谱技术已应用于药物与蛋白质的相互作用的研究中。将这种技术应用于蛋白质与表面活性剂相互作用的研究中将会发挥重要的作用。

4.蛋白质的分离

蛋白质的一个主要特点是分子大,而且不同种类的蛋白质分子大小也不相等。可以用凝胶过滤法、超滤法、盐析法、离心法及透析法等将蛋白质与其它小分子物质分离,也可将大小不同的蛋白质进行分离。如顾有方等就是根据蛋白质的这种特性对血液中免疫球蛋白进行提取的。在室温下,采用盐析和等电点沉淀工艺分离除去提取液中的大豆蛋白质脚]。翁瑜等的双向凝胶电泳比较3种常用蛋白质提取方法可以看出,双向凝胶电泳的效果更好。仝向荣等通过离子交换、凝胶过滤、亲和层析及反向高效液相色谱操作,提取了棒纹牛蛭体内抗凝血蛋白。磁性高分子纳米颗粒分离蛋白质的原理主要分静电吸附分离和亲和分离。基于静电吸附原理,Bucak等人利用磷脂包裹的磁性纳米颗粒的表面负电性选择性分离出了带有正电荷的蛋白质。Liao等制备了一种离子交换效率高、吸附/解离速度快的核壳型(Fe。OJPAA)磁性纳米吸附介质。利用该磁性纳米吸附介质,基于静电吸附原理成功分离了水相中的菠萝蛋白酶。同样是利用这种磁性高分子纳米颗粒.基于亲和技术实现了目标蛋白的选择性分离,利用这种水溶性磁性纳米颗粒表面的羧基,共价交联IDA进而固定Cu2+,最后实现组氨酸标记蛋白的捕获嘲]。其实验原理和Xu研究小组的类似隗驯,只是将原来的无机磁核首先包被了PAA,这样磁性纳米颗粒的磁响应特性增强,同时壳材料的保护也使得该颗粒能够在生理环境中稳定存在。利用N一异丙基丙烯酰胺包裹磁性纳米颗粒的热敏性,通过改变温度控制吸附或者解离,并成功的应用于牛血清白蛋白的分离。运用磁性纳米微粒经过表面修饰,连接NH。集团作为分离器(NNP—NH2),很容易从生物样品中分离蛋白质。笔者认为蛋白质的磁分离具有快速、高纯度、高收率等优点。

5.总结

蛋白质是构成生物体内具有生物活性的高聚物分子,结构复杂。研究蛋白质在界面上的吸附对于了解蛋白质在界面上的吸附及分离提取蛋白质具有重要意义。蛋白质的吸附研究和分离工作仍是一项艰巨的任务,到目前为止,还没有一个单独的或一套现成的方法能把各种蛋白质从复杂的混合物中吸附出来,但对任何一种蛋白质都有可能选择一套适当的分离程序来获取高纯度的制品纯化。不过我们相信在今后科学工作者们一定能够找出更多更好的方法来吸附分离蛋白质,使得对蛋白质有更深入的研究。

参考文献

【1】沈同,王镜岩.生物化学(上),第二版.北京:高等教育出版社,1990.

【2】李学刚,董佳里,张光先.表面张力法研究表面活性剂和肌酸激酶相互作用.西南农业大学学报,1997,19:

【3】李学刚,董佳里.蛋白质吸附表面活性剂的两种测定法研究.西南农业大学学报,1997。【4】顾有方,刘艳慧.陈会良,等.免疫球蛋白分离提取方法及其应用的研究进展[J].畜牧兽医科技信息,2004(12):

【5】胡卫新,王晓磊,张洁.大豆异黄酮提取条件和大豆蛋白质分离工艺研究[J].大豆科学,2005,

【6】翁瑜,曾群力,姜槐,等.双向凝胶电泳比较三种常用蛋白质提取方法[J].中国生物化学与分子生物学报,

2005.21(5):

【7】仝向荣,王德斌,马绍宾.棒纹牛蛭体内抗凝血蛋白的提取[D].昆明师范高等专科学校学报,2004。

【8】周筠梅.蛋白质表面疏水性的研究.生物物理学报,1996(12):559~564

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

蛋白质的盐析与透析

蛋白质的盐析与透析 一、实验目的 1.了解蛋白质的分离纯化方法 2.掌握蛋白质的盐析及透析方法 二、实验原理 在蛋白质溶液中加入一定浓度的中性盐,蛋白质即从溶液中沉淀析出,这种作用称为盐析。盐析法常用的盐类有硫酸铵、硫酸钠等。 蛋白质用盐析法沉淀分离后,需脱盐才能获得纯品,脱盐最常用的方法为透析法。蛋白质在溶液中因其胶体质点直径较大,不能透过半透膜,而无机盐及其它低分子物质可以透过,故利用透析法可以把经盐析法所得的蛋白质提纯,即把蛋白质溶液装入透析袋内,将袋口用线扎紧,然后把它放进蒸馏水或缓冲液中,蛋白质分子量大,不能透过透析袋而被保留在袋内,通过不断更换袋外蒸馏水或缓冲液,直至袋内盐分透析完为止。透析常需较长时间,宜在低温下进行。 三、实验材料和试剂 10%鸡蛋白溶液,含鸡蛋清的氯化钠蛋白溶液,饱和硫酸铵溶液,硫酸铵晶体,1%硝酸银溶液。 四、实验步骤 (一)蛋白质盐析 取10%鸡蛋白溶液5ml于试管中,加入等量饱和硫酸铵溶液,微微摇动试管,使溶液混合后静置数分钟,蛋白即析出,如无沉淀可再加少许饱和硫酸铵溶液,观察蛋白质的析出; 取少量沉淀混合物,加水稀释,观察沉淀是否会再溶解。 (二)蛋白质的透析 注入含鸡蛋清的氯化钠蛋白溶液5ml于透析袋中,将袋的开口端用线扎紧,然后悬挂在盛有蒸馏水的烧杯中,使其开口端位于水面之上。 经过10分钟后,自烧杯中取出1ml溶液于试管中,加1%硝酸银溶液一滴,如有白色氯化银沉淀生成,即证明蒸馏水中有Cl-存在。 再自烧杯中取出1ml溶液于另一试管中,加入1ml 10%的氢氧化钠溶液,然后滴加1-2滴1%的硫酸铜溶液,观察有无蓝紫色出现。 每隔20分钟更换蒸馏水一次,经过数小时,则可观察到透析袋内出现轻微混浊,此即为蛋白质沉淀。继续透析至蒸馏水中不再生成氯化银沉淀为止。 实验报告记录透析完毕所需的时间。 附:胶棉半透膜的制备 市售5%的胶棉液,加入干燥的150mL锥形瓶中,将锥形瓶横斜不断转动,使瓶的内壁和瓶口都均匀沾有胶棉液。倒出多余的胶棉液,然后倒置约1min使乙醚、乙醇不断蒸发,直到干燥。逐步剥离瓶口的薄膜,沿瓶壁薄膜夹缝注入蒸馏水,使薄膜逐步跟瓶壁胶离,轻轻取出,浸入蒸馏水中备用。 如有侵权请联系告知删除,感谢你们的配合!

吸附分离技术的应用

吸附分离技术的应用 陈健古共伟郜豫川 四川天一科技 股份有限公司 610225 吸附分离的应用丰富多彩,广泛应用于石油化工、化工、医药、冶金和电子等工业部门,用于气体分离、干燥及空气净化、废水处理等环保领域。吸附分离技术可以实现常温空气分离氧氮,酸性气体脱除,从各种气体中分离回收氢气、、CO、甲烷、乙烯等。 CO 2 一、吸附分离在空气净化上的应用 吸附分离在空气净化领域有广泛的应用。如空气干燥、臭气和酸气脱除及回收、清除挥发性有机物等。 空气干燥 空气中通常含有一定水分,而这种水分在很多场合是有害的,必须被除去。吸附法是除去空气中水分最常用的方法之一。 硅胶和活性氧化铝是通用的干燥剂,分子筛在某些场合也被用作干燥剂。在一些应用场合吸附剂不需要再生,但在另一些场合则需要再生重复使用。非再生(一次性使用)的吸附剂被用作包装干燥剂、双层(dual pane)窗户中的干燥剂、制冷和空调系统中的干燥剂等。硅胶是包装中最常用的作为干燥剂的吸附剂。吸附剂在很多场合上的应用是需要再生的,因为吸附剂的成本太高而不允许一次性使用。再生可以采用变温吸附(TSA)和变压吸附(PSA)两种方式。

为了防止热交换器在低温下冻结堵塞,作为深冷法空分装置原料的空气必须有是无水和无CO 2 的,空气必须进行干燥和净化,这里吸附剂作用的是13X分子筛。作为吸附法常温分离氧氮原料的空气也需干燥,干燥剂可用活性氧化铝等。 PSA最初的一个工业使用是气体干燥,采用两床Skarstrom循环工艺。该循环使用吸附、逆向放压、逆向冲洗和顺向升压过程,生产水分含量小于1ppm的干燥空气流。约一半的仪表空气干燥器使用类似的PSA循环。 ) 脱除无机污染物 工业生产中产生大量的CO 2、SO 2 和NO x 等酸性有害气体,它们会引起温室效 应、酸雨等现象,破坏地球和人们的生活环境。随着工业化发展,这些气体的危害程度越来越大,因此人们在致力于开发各种方法来治理这些有害气体。其中吸附分离的方法是有效的治理方法之一。 一些无机污染物可通过TSA过程除去。Sulfacid和Hitachi固定床工艺、Sumitomo和BF移动床工艺及Westvaco流化床工艺都使用活性碳吸附剂脱除SO 2 。 丝光分子筛、13X型分子筛、硅胶、泥煤和活性碳等是良好的NO x 吸附剂。在有 氧存在时,分子筛不仅能吸附NO x ,还能将NO氧化成NO 2 。通入热空气(或空气 与蒸汽的混合物)解吸,可回收HNO 3或NO 2 。硝酸尾气中的NO x 经过吸附处理可 控制在50ppm以下。吸附法还可用于其它低浓度NO x 废所的治理。从烟道气脱除 NO x 也可采用吸附方法。国内采用吸附法治理NO x 废气技术已由四川天一科技股份 有限完成工业性试验并在硝酸生产厂得到应用。 近年四川天一科技股份有限公司在该法的研究开发上取得较大进展,研制了对NO x 有强吸附能力的专用吸附剂并对工艺过程作出改进。与其它方法相比,变压吸附硝酸尾气治理技术有以下特点: ①尾气中的NO x 被分离和浓缩后返回吸收塔,可提高硝酸生产总收率2%-5%;

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

蛋白质的分离纯化和表征

蛋白质的分离纯化和表征 第一节蛋白质的酸碱性质 各个解离基团的pK 值与游离氨基酸的不完全相同。等电点要用等电聚焦等方法测定。 第二节蛋白质分子的大小与形状

一、根据化学组成测定最低相对分子质量 假定某种微量成分只有一个,测出其百分含量后,可用比例式算出最低相对分子质量。 若测出两种微量成分的百分含量,分别用比例式算出的最低相对分子质量不相同时,可计算两个最低相对分子质量近似的最小公倍数。 例题:一种纯酶含亮氨酸(Mr 131)1.65%,含异亮氨酸(Mr131)2.48%,求最低相对分子质量。 解:按照Leu 的百分含量计算,最低Mr X1: X1=(100′ 131)/1.65=7939.4。 按照Ile 的百分含量计算最低Mr X2: X2=(100′ 131)/2.48=5282.3。 由于X1 和X2 数字差异较大,提示这种酶含Leu 和Ile 不止1 个,为了估算Leu 和Ile 的个数,首先计算: X1/X2=7939.4/5282.3≈1.5。 这种酶含任何氨基酸的个数均应是整数,说明该酶至少含有2 个Leu,3 个Ile,其最低相对分子质量为: 7939.4 ′2 =15878.8或5282.3×3=15846.9。 二、渗透压法测定相对分子质量 三、沉降分析法测定相对分子质量

基本原理: (一)离心力(centrifugal force,Fc) 当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“Fc”由下式定义: F=m·a=m·ω2 r a—粒子旋转的加速度,m—沉降粒子的有效质量,ω—粒子旋转的角速度,r—粒子的旋转半径(cm)。 (二)相对离心力(relative centrifugal force,RCF) 由于各种离心机转子的半径或者离心管至旋转轴中心的距离不同,离心力而受变化,因此在文献中常用“相对离心力”或“数字×g”表示离心力,只要RCF 值不变,一个样品可以在不同的离心机上获得相同的结果。 RCF 就是实际离心场转化为重力加速度的倍数。

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

蛋白质的盐析与透析

蛋白质的分离纯化 一、实验目的 1.了解蛋白质的分离纯化方法 2.掌握蛋白质的盐析及透析方法 二、实验原理 在蛋白质溶液中加入一定浓度的中性盐,蛋白质即从溶液中沉淀析出,这种作用称为盐析。盐析法常用的盐类有硫酸铵、硫酸钠等。 蛋白质用盐析法沉淀分离后,需脱盐才能获得纯品,脱盐最常用的方法为透析法。蛋白质在溶液中因其胶体质点直径较大,不能透过半透膜,而无机盐及其它低分子物质可以透过,故利用透析法可以把经盐析法所得的蛋白质提纯,即把蛋白质溶液装入透析袋内,将袋口用线扎紧,然后把它放进蒸馏水或缓冲液中,蛋白质分子量大,不能透过透析袋而被保留在袋内,通过不断更换袋外蒸馏水或缓冲液,直至袋内盐分透析完为止。透析常需较长时间,宜在低温下进行。 三、实验材料和试剂 10%鸡蛋白溶液,含鸡蛋清的氯化钠蛋白溶液,饱和硫酸铵溶液,硫酸铵晶体,1%硝酸银溶液,双缩脲试剂 四、实验步骤 (一)蛋白质盐析 取10%鸡蛋白溶液5ml于试管中,加入等量饱和硫酸铵溶液,微微摇动试管,使溶液混合后静置数分钟,蛋白即析出,如无沉淀可再加少许饱和硫酸铵溶液,观察蛋白质的析出; 取少量沉淀混合物,加水稀释,观察沉淀是否会再溶解。 (二)蛋白质的透析 注入含鸡蛋清的氯化钠蛋白溶液5ml于透析袋中,将袋的开口端用线扎紧,然后悬挂在盛有蒸馏水的烧杯中,使其开口端位于水面之上。 经过10分钟后,自烧杯中取出1ml溶液于试管中,加1%硝酸银溶液一滴,如有白色氯化银沉淀生成,即证明蒸馏水中有Cl-存在。 再自烧杯中取出1ml溶液于另一试管中,加入1ml 10%的氢氧化钠溶液,然后滴加1-2滴1%的硫酸铜溶液,观察有无蓝紫色出现。 每隔20分钟更换蒸馏水一次,经过数小时,则可观察到透析袋内出现轻微混浊,此即为蛋白质沉淀。继续透析至蒸馏水中不再生成氯化银沉淀为止。 实验报告记录透析完毕所需的时间。

蛋白质提取与制备的原理和方法

蛋白质提取与制备的原理和方法 蛋白质提取与制备蛋白质种类很多,性质上的差异很大,既或是同类蛋白质,因选用材料不同,使用方法差别也很大,且又处于不同的体系中,因此不可能有一个固定的程序适用各类蛋白质的分离。但多数分离工作中的关键部分基本手段还是共同的,大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白质溶于乙醇、丙酮及丁醇等有机溶剂中。因此可采用不同溶剂提取、分离及纯化蛋白质和酶。 蛋白质与酶在不同溶剂中溶解度的差异,主要取决于蛋白分子中非极性疏水基团与极性亲水基团的比例,其次取决于这些基团的排列和偶极矩。故分子结构性质是不同蛋白质溶解差异的内因。温度、pH、离子强度等是影响蛋白质溶解度的外界条件。提取蛋白质时常根据这些内外因素综合加以利用。将细胞内蛋白质提取出来。并与其它不需要的物质分开。但动物材料中的蛋白质有些可溶性的形式存在于体液(如血浆、消化硫等)中,可以不必经过提取直接进行分离。蛋白质中的角蛋白、胶原及丝蛋白等不溶性蛋白质,只需要适当的溶剂洗去可溶性的伴随物,如脂类、糖类以及其他可溶性蛋白质,最后剩下的就是不溶性蛋白质。这些蛋白质经细胞破碎后,用水、稀盐酸及缓冲液等适当溶剂,将蛋白质溶解出来,再用离心法除去不溶物,即得粗提取液。水适用于白蛋白类蛋白质的抽提。如果抽提物的pH用适当缓冲液控制时,共稳定性及溶解度均能增加。如球蛋白 类能溶于稀盐溶液中,脂蛋白可用 稀的去垢剂溶液如十二烷基硫酸钠、洋地黄皂苷(Digitonin)溶液或有机溶剂来抽提。其它不溶于水的蛋白质通常用稀碱溶液抽提。 蛋白质类别和溶解性质 白蛋白和球蛋白: 溶于水及稀盐、稀酸、稀碱溶液,可被50%饱和度硫酸铵析出。 真球蛋白: 一般在等电点时不溶于水,但加入少量的盐、酸、碱则可溶解。 拟球蛋白: 溶于水,可为50%饱和度硫酸铵析出 醇溶蛋白: 溶于70~80%乙醇中,不溶于水及无水乙醇 壳蛋白: 在等电点不溶于水,也不溶于稀盐酸,易溶于稀酸、稀碱溶液 精蛋白: 溶于水和稀酸,易在稀氨水中沉淀 组蛋白: 溶于水和稀酸,易在稀氨水中沉淀 硬蛋白质: 不溶于水、盐、稀酸及稀碱 缀合蛋白(包括磷蛋白、粘蛋白、糖蛋白、核蛋白、脂蛋白、血红蛋白、金属蛋白、黄素蛋白和氮苯蛋白等) : 此类蛋白质溶解性质随蛋白质与非蛋白质结合部分的不同而异,除脂蛋白外,一般可溶于稀酸、稀碱及盐溶液中,脂蛋白如

盐析法

盐析法综述 摘要:沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。盐析法是其中的一种,盐析法是在中药水提液中,加入无机盐至一定浓度,或达饱和状态,可使某些成分在水中溶解度降低,从而与水溶性大的杂质分离。常作盐析的无机盐有氯化钠、硫酸钠、硫酸镁、硫酸铵等。 关键词:沉淀法;盐析;原理;方法评价;蛋白质盐析 沉淀法 沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。 有机溶剂沉淀法多用于生物小分子、多糖及核酸产品的分离纯化,有时也用于蛋白质沉淀。有机溶剂的沉淀机理是降低水的介电常数,导致具有表面水层的生物大分子脱水,相互聚集,最后析出。等电点沉淀法用于氨基酸、蛋白质及其它两性物质的沉淀。但此法单独应用较少,多与其它方法结合使用。两性电解质分子上的净电荷为零时溶解度最低,不同的两性电解质具有不同的等电点,以此为基础可进行分离。、非离子多聚体沉淀法用于分离生物大分子非离子多聚物是六十年代发展起来的一类重要沉淀剂,最早用于提纯免疫球蛋白、沉淀一些细菌和病毒,近年来逐渐广泛应用于核酸和酶的分离提纯。最常用的是铅盐法,可以用于除去杂质,也可用于沉淀有效成分。沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合液中加人适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。一般来说,所有固体溶质都可以在溶液中加入中性盐而沉淀析出,这一过程叫盐析。在生化制备中,许多物质都可以用盐析法进行沉淀分离,如蛋白质、多肽、多糖、核酸等,其中以蛋白质沉淀最为常见,特别是在粗提阶段。 对沉淀形式的要求 (1)沉淀的溶解度要小,以保证被测组分能沉淀完全。 (2)沉淀要纯净,不应带入沉淀剂和其他杂质。 (3)沉淀易于过滤和洗涤,以便于操作和提高沉淀的纯度。 (4)沉淀易于转化为称量形式。 盐析法 胶体的盐析 胶体的盐析是加盐而使胶粒的溶解度降低,形成沉底析出的

蛋白质分离与纯化教学设计课题

蛋白质分离与纯化教学设计 一、教学背景分析 【教材分析】 “蛋白质的分离与纯化”实验是《高中生物》选修1生物技术实践 5.3血红蛋白的提取与分离中的容。本节课的主要容包括蛋白质的提取、分离纯化等基本知识,主要要求学生掌握凝胶电泳的实验原理以及操作方法。“血红蛋白分离与纯化”实验不仅是学习血红蛋白的提取、分离纯化方法,而且也是进一步掌握蛋白质的组成、结构和功能的基础。 【学情分析】 到目前为止,学生已经学习了蛋白质的相关知识,对蛋白质有了一定的了解,“蛋白质的分离与纯化”实验目的是使学生体验从复杂细胞混合物体系中提取和纯化生物大分子的基本原理、过程和方法,虽然操作难度较大,但原理清晰,动手机会较多,学习兴趣很高。学生有必修“生命活动的主要承担者——蛋白质”的基础,在一定程度上掌握了蛋白质的组成、结构和功能等基础知识,学生在进行实验前还是能大概了解影响蛋白质分离纯化的因素的,再者经过老师的指导,实验能取得良好的结果的。 二、教学目标 【知识目标】 1.了解从血液中提取蛋白质的原理与方法。 2.说出凝胶电泳的基本原理与方法。 【能力目标】 运用凝胶电泳对蛋白质进行分离纯化。 【情感态度与价值观目标】 1.培养学生科学实验的观点。 2.初步形成科学的思维方式,发展科学素养和人文精神。 三、教学重难点

【教学重点】 从血液中提取蛋白质;凝胶电泳分离纯化蛋白质。 【教学难点】 样品预处理,色谱柱的装柱,纯化分离操作。 四、实验实施准备 【教师准备】 1.分组。学生按学科能力的强中弱平均分组,各组尽量平衡,各组自行分工,并由实验员统一安排实验过程。 2.实验材料:血液 仪器:试管、胶头滴管、烧杯、玻璃棒、离心机、研磨器、透析袋、电泳仪等。 试剂:20mmol/L磷酸缓冲液(pH为8.6)、蒸馏水、聚丙烯酸铵、生理盐水、5%醋酸水溶液等。 【学生准备】 1.预习实验“蛋白质分离纯化”,了解蛋白质的相关信息。 2.进行分组。 五、教学方法 【教法】分析评价法、任务驱动法、直观演示法 【学法】自主学习法、合作交流法 六、教学媒体 黑板、多媒体 七、课时安排 两个课时(80min) 一个课时用来讲述理论部分知识:样品处理与色谱柱分离纯化蛋白质的原理与方法; 另一课时用来进行实验。

分离技术-

1、列举一个给你日常生活带来很大益处,而且是得益于分离科学的事例。分析解决这个分离问题时可采用哪几种分离方法,这些分离方法分别依据分离物质的那些性质。 2、中国科学家屠呦呦因成功研制出新型抗疟疾药物青蒿素,获得2015年诺贝尔医学奖。青蒿素是从中医文献中得到的启发,用现代化学方法提取的,请通过查阅资料说明提取分离中药有效成分都有哪些具体的实施方法。 3、了解国内纯净水生产的主要分离技术是什么,该技术掉了原水中的哪些物质(写出详细工艺流程)。 4、活性炭和碳纳米管是否有可能用来做固相萃取的填料?如果可以,你认为它们对溶质的保留机理会是一样的吗? 5、固体样品的溶剂萃取方法有哪几种,从原理、设备及复杂程度、适用物质对象和样品、萃取效果等方面总结各方法的特点。 1答:海水的淡化可采用膜分离技术 膜分离技术( Membrane Separation,MS) 是利用具有选择透过性的天然或人工合成的薄膜作为分离介质,以外界能量或化学位差为推动力,对双组分或多组分药材进行分离、分级、提纯或富集的技术。膜分离技术包括微滤、纳滤、超滤和反渗透等。 2答: 1.经典的提取分离方法传统中草药提取方法有:溶剂提取法、水蒸汽蒸馏法两种。溶剂提取法有浸渍法、渗源法、煎煮法、回流提取法、连续提取等。分离纯化方法有,系统溶剂分离法、两相溶剂举取法、沉淀法、盐析法、透析法、结晶法、分馏法等。 2.现代提取分离技术超临界流体萃取法、膜分离技术、超微粉碎技术、中药絮凝分离技术、半仿生提取法、超声提取法、旋流提取法、加压逆流提取法、酶法、大孔树脂吸附法、超滤法、分子蒸馏法。 超临界流体萃取法(SFE):该技术是80年代引入中国的一项新型分离技术。其原理是以一种超临界流体在高于临界温度和压力下,从目标物中萃取有效成分,当恢复到常压常温时,溶解在流体中成分立即以溶于吸收液的

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

蛋白质的分离纯化方法

蛋白质的分离纯化方法 根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有 用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

盐析法沉淀蛋白质的原理

盐析法沉淀蛋白质的原理 1 中性盐沉淀(盐析法) 在溶液中加入中性盐使生物大分子沉淀析出的过程称为“盐析”。除了蛋白质和酶以外,多肽、多糖和核酸等都可以用盐析法进行沉淀分离。 盐析法应用最广的还是在蛋白质领域,已有八十多年的历史,其突出的优点是: ①成本低,不需要特别昂贵的设备。 ②操作简单、安全。 ③对许多生物活性物质具有稳定作用。 ⑴中性盐沉淀蛋白质的基本原理 蛋白质和酶均易溶于水,因为该分子的-COOH、-NH2和-OH都是亲水基团,这些基团与极性水分子相互作用形成水化层,包围于蛋白质分子周围形成1nm~100nm颗粒的亲水胶体,削弱了蛋白质分子之间的作用力,蛋白质分子表面极性基团越多,水化层越厚,蛋白质分子与溶剂分子之间的亲和力越大,因而溶解度也越大。亲水胶体在水中的稳定因素有两个:即电荷和水膜。因为中性盐的亲水性大于蛋白质和酶分子的亲水性,所以加入大量中性盐后,夺走了水分子,破坏了水膜,暴露出疏水区域,同时又中和了电荷,破坏了亲水胶体,蛋白质分子即形成沉淀。

⑵中性盐的选择 常用的中性盐中最重要的是(NH4)2SO4,因为它与其他常用盐类相比有十分突出的优点: 1) 溶解度大:尤其是在低温时仍有相当高的溶解度,这是其他盐类所不具备的。由于酶和各种蛋白质通常是在低温下稳定,因而盐析操作也要求在低温下(0~4℃)进行。 2) 分离效果好:有的提取液加入适量硫酸铵 盐析,一步就可以除去75%的杂蛋白,纯 度提高了四倍。 3) 不易引起变性,有稳定酶与蛋白质结构的 作用。有的酶或蛋白质用2~3mol/L浓度的 (NH4)2SO4保存可达数年之久。 4) 价格便宜,废液不污染环境。 ⑶盐析的操作方法 最常用的是固体硫酸铵加入法。将其研成细粉,在搅拌下缓慢均匀少量多次地加入,接近计划饱和度时,加盐的速度更要慢一些,尽量避免局部硫酸铵浓度过大而造成不应有的蛋白质沉淀。盐析后要在冰浴中放置一段时间,待沉淀完全后再离心与过滤。 在低浓度硫酸铵中盐析可采用离心分离,高浓度硫酸铵常用过滤方法。

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理 (一)利用分子大小 1、透析:原理:利用蛋白质分子不能透过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖、水等分开。 方法:将待提纯蛋白质放在透析袋中放在蒸馏水中进行 涉及的问题: 如何加快透析过程 (1)加大浓度差,及时更换透析液 (2)利用磁力搅拌器 常用的半透膜:玻璃纸、火棉和其他材料合成 2、超过滤:原理:利用压力和离心力,强行使其他小分子和水通过半透膜,而蛋白质留在膜上 3、凝胶过滤层析:原理:当不同分子大小的蛋白质混合物流进凝胶层析柱时,比凝胶网孔大的分子不能进入珠内网状结构,排阻在凝胶珠以外,在凝胶珠缝隙间隙中向下移动。而比孔小的分子不同程度地进入凝胶珠内,这样由于不同大小分子所经历的路径不同而到分离。 结果:大分子先被洗脱下来,小分子后被洗脱下来 (二)利用溶解度差别 4、等电点沉淀:原理:不同蛋白质具有不同的等电点,当蛋白质混合物调到其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来.。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.当离子强度增加,足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析

(三)根据电荷不同 6、SDS-PAGE 全称十二烷基硫酸钠—聚丙烯酰胺凝胶电泳 原理:通过加热和SDS可以使蛋白质变性,多亚基的蛋白质也解离为单亚基,处理后的样品中肽链是处于无二硫键连接的,分离的状态。电泳时SDS-蛋白质复合物在凝胶中的迁移率不再受蛋白质原有电荷和形状的影响,而主要取决于蛋白质分子量。所以SDS-PAGE常用来分析蛋白质的纯度和大致测定蛋白质的分子量。 7、离子交换层析:原理:氨基酸分离常用阳离子交换树脂,树脂被处理成钠型,将混合氨基酸上柱,氨基酸主要以阳离子形式存在,在树脂上与钠离子发生交换,而被挂在树脂上。 氨基酸在树脂上结合的牢固程度取决于氨基酸与树脂之间的亲和力,决定亲和力的因素有:(1)主要是静电吸引力(2)氨基酸侧链同树脂之间的疏水作用氨基酸与阳离子交换树脂间的静电引力大小次序依次是: 碱性氨基酸R2+>中性氨基酸R+>酸性氨基酸R0。 因此洗脱顺序应该是: 酸性氨基酸中性氨基酸碱性氨基酸 为使氨基酸从树脂上洗脱下来采用逐步提高pH和盐浓度的方法

蛋白质的盐析

蛋白质的盐析 SANY GROUP system office room 【SANYUA16H-

蛋白质的盐析(验证型) 一、实验目的 了解在工业化生产过程中使用(NH4)2SO4的情况,及(NH4)2SO4使用时的注意事项。 二、实验原理 用高浓度中性盐使蛋白质从溶液中沉淀出来的方法称盐析。常用的中性盐有(NH4)2SO4、NaCl 等。高`浓度中性盐能使蛋白质沉淀是因为它具有脱水性,能脱去蛋白质胶粒水膜,又有中和蛋白质胶粒外双电层电荷的作用。不同蛋白质盐析时所需盐浓度不同,故调节盐浓度,可适当地将蛋白质分开。如球蛋白在半饱和硫酸铵溶液中沉淀,清蛋白在饱和硫酸铵溶液中沉淀,用盐析法沉淀的蛋白质并未变性,用稀释的方法或透析的方法可使之复溶。 三、器材与试剂 1、发酵溶液 2、10%的三氯醋酸溶液 3、饱和(NH4)2SO4溶液 4、(NH4)2SO4粉末 四、实验步骤 (1)取发酵溶液5ml,加饱和(NH4)2SO4溶液1ml2ml3ml4ml5ml,混匀,静止数分钟,即有白色沉淀析出,应为何物?过滤至清,除去沉淀,滤液备用。取少量沉淀,加H2O看是否复溶? (2)取滤液0.5ml,加10%的三氯醋酸数滴,有白色沉淀产生,应为何物?然后在721分光光度计OD600下进行透光率的检测,检测时必须在倒入比色皿以后10秒内读取(为什么?)。(在进行检测时应注意将721分光光度计调整到OD600;在测量前应把机器预热半小时左右。在检测时应注意有效的检测范围是T值15%以上到70%以下)。 (3)另外,取滤液2.5ml于小烧杯中,加(NH4)2SO4粉末,随加随搅拌,直至(NH4)2SO4不能溶解为止,有白色沉淀产生,应为何物?然后过滤至清,除去沉淀,过滤备用。 (4)将(1)-(3)做的滤液中加10%三氯醋酸数滴观察有无沉淀产生。找到没有沉淀的加饱和(NH4)2SO4溶液的点。然后在721分光光度计OD600下进行透光率的检测。并且作出曲线。 (5)对大量的发酵液进行处理,在滤液中加10%三氯醋酸数滴观察有无沉淀产生。 (6)盐析曲线的制作方法:如果要分离一种新的蛋白质和酶,没有文献数据可以借鉴,则应先确定沉淀该物质的硫酸铵饱和度。具体操作方法如下:取已定量测定蛋白质或酶的活性与浓度的待分离样品溶液,冷至0℃~5℃,调至该蛋白质稳定的pH值,分6~10次分别加入不同量的硫酸铵,第一次加硫酸铵至蛋白质溶液刚开始出现沉淀时,记下所加硫酸铵的量,这是盐析曲线的起点。继续加硫酸铵至溶液微微混浊时,静止一段时间,离心得到第一个沉淀级分,然后取上清再加至混浊,离心得到第二个级分,如此连续可得到6~10个级分,按照每次加入硫酸铵的量,查出相应的硫酸铵饱和度。将每一级分沉淀物分别溶解在一定体积的适宜的pH缓冲液中,测定其蛋白质含量和酶活力。以每个级分的蛋白质含量和酶活力对硫酸铵饱和度作图,即可得到盐析曲线。 五、盐析注意事项: 1.盐析的成败决定于溶液的pH值与离子强度,溶液pH值越接近蛋白的等电点,蛋白质越容易沉淀。 2.盐析一般用的硫酸铵,容易吸潮,因而在使用前,一般先磨碎,平铺放入烤箱内60℃烘干后再称量,这样更准确。 3.在加入盐时应该缓慢均匀,搅拌也要缓慢,越到后来速度应该更注意缓慢,如果出现一些未溶解的盐,应该等其完全溶解后再加盐,以免引起局部的盐浓度过高,导致酶失活。

蛋白质和酶的分离与纯化

蛋白质和酶的分离纯化及鉴定 蛋白质是生命体中的重要物质基础之一。从分子水平上认识生命现象,已成为现代生物学发展的主要方向。要研究蛋白质,首先要得到高度纯化的目的蛋白。蛋白质在组织或细胞中一般都是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质。要想从成千上万种蛋白质混合物中纯化出目的蛋白,就要根据蛋白质的理化性质不同设计出合理的分离方法。 目前研究为止酶除核酶外本质都是蛋白质,因此酶的分离纯化方法基本是采用蛋白质的分离纯化方法,但是酶的活性受到多种因素的影响,因此酶的分离纯化比一般的蛋白质要求更高。 一、质分离纯化的一般原则 1. 原料的选择 原则:来源方便,成本低,易操作、安全的原料。 蛋白分布:体液、组织、细胞定位 2. 破碎方法: (1) 机械方法:通过机械运动产生的剪切力的作用,使细胞或组织破碎的方法。 如:捣碎法、研磨、匀桨法 (2) 物理方法:通过温度、压力、声波等各种物理因素的作用,使组织细胞破碎的方法。 如:反复冻融、渗透压、超声破碎 (3) 化学方法:通过各种化学试剂对细胞膜的作用,使细胞破碎的方法. 如:甲苯、丙酮、氯仿和非离子型的表面活性剂(Triton和Tween) (4) 酶促法:溶菌酶、蜗牛酶等 3. 目的蛋白或酶的特异、快速、精确的定性或定量方法 4. 先粗后细,分级分离 粗分:将得到的蛋白溶液先利用简单、快速、易处理的方法除去大部分杂蛋白。如: 盐析、离心、有机溶剂沉淀等。 精制:利用蛋白质性质的差异,采用不同的方法,如:离子交换层析、分子筛、吸附层析、亲和层析、电泳、离心、结晶等方法进一步纯化。 5. 避免蛋白质的变性(pH、适合的温度和缓冲体系等) 二、常用的蛋白质的分离纯化技术 可以根据各种蛋白质的结构、理化性质不同设计分离方法。 (一)根据蛋白质的溶解度不同进行分离

相关文档
最新文档