立体几何专题试卷

立体几何专题试卷
立体几何专题试卷

《金版新学案》高三一轮总复习[B师大]数学文科

高效测评卷(七)

第七章立体几何

—————————————————————————————————————【说明】本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题格内,第Ⅱ卷可在各题后直接作答,共150分,考试时间120分钟.

第Ⅰ卷(选择题共60分)

只有一项是符合题目要求的)

1.在空间中,“两条直线没有公共点”是“这两条直线平行”的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

2.下列四个命题中,真命题的个数为()

①如果两个平面有三个公共点,那么这两个平面重合

②两条直线可以确定一个平面

③若M∈α,M∈β,α∩β=l,则M∈l

④空间中,相交于同一点的三条直线在同一平面内

A.1 B.2

C.3 D.4

3.一个空间几何体的主视图、左视图都是面积为

3

2

,且一个内角为60°的菱形,俯视

图为正方形,那么这个几何体的表面积为()

A.2 3 B.4 3

C.4 D.8

4.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的

体积是( )

A .54

B .54π

C .58

D .58π

5.设三条不同的直线a 、b 、c ,两个不同的平面α,β,b α,c α.则下列命题不成立的是( )

A .若α∥β,c ⊥α,则c ⊥β

B .“若b ⊥β,则α⊥β”的逆命题

C .若a 是c 在α的射影,b ⊥a ,则c ⊥b

D .“若b ∥c ,则c ∥α”的逆否命题

6.已知m ,n 为不同的直线,α,β为不同的平面,给出下列命题:

①????? m ⊥αm ⊥n ?n ∥α;②?????

m ⊥βn ⊥β?n ∥m ; ③?????

m ⊥αm ⊥β?β∥α;④??

???

m ?αn ⊥βα⊥β

?m ∥n .

其中正确的是( ) A .②③ B .③④ C .①②

D .①②③④

7.设P 是平面α外一点,且P 到平面α内的四边形的四条边的距离都相等,则四边形是( )

A .梯形

B .圆外切四边形

C .圆内接四边形

D .任意四边形

8.用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题:

①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b .

其中真命题的序号是( ) A .①② B .②③ C .①④

D .③④

9.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )

A .πa 2

B.73πa 2

C.11

3

πa 2 D .5πa 2

10.正四棱柱ABCD -A

1B 1C 1D 1中,AB =3,BB 1=4,长为1的线段

PQ在棱AA1上移动,长为3的线段MN在棱CC1上移动,点R在棱BB1上移动,则四棱锥R-PQMN的体积是()

A.6 B.10

C.12 D.不确定

11.已知平面α⊥平面β,α∩β=l,点A∈α,A?l,直线AB∥l,直线AC⊥l,直线m ∥α,m∥β,则下列四种位置关系中,不一定成立的是()

A.AB∥m B.AC⊥m

C.AB∥βD.AC⊥β

12.设α,β,γ是三个互不重合的平面,m,n是直线,给出下列命题:

①α⊥β,β⊥γ,则α⊥γ;

②若α∥β,mβ,m∥α,则m∥β;

③若m,n在γ内的射影互相垂直,则m⊥n;

④若m∥α,n∥β,α⊥β,则m⊥n.

其中正确命题的个数为()

A.0 B.1

C.2 D.3

第Ⅱ卷(非选择题共90分)

) 13.如图,一个空间几何体的主视图左视图和左视图都是边长为2的正三角形,俯视图是一个圆,那么该几何体的体积是________.

14.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面

B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该

正方体的面上的正投影可能是________(填出所有可能的图的序号).

15.如图,在长方体ABCD-A1B1C1D1中,AB=6,AD=4,AA1=3,分别过BC,A1D1的两个平行截面将长方体分成三部分,其体积分别记为V1=VAEA1-DFD1,V2=VEBE1A1-FCF1D1,V3=VB1E1B-C1F1C.若V1∶V2∶V3=1∶4∶1,则截面A1EFD1的面积为________.

16.如图,在棱长为a的正方体ABCD-A1B1C1D1中,点E为AA1的中点,在对角面BDD1B1上取一点M,使AM+ME最小,其最小值为________.

三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)

17.(12分)一几何体的三视图如下:

(1)画出它的直观图,并求其体积;

(2)你能发现该几何体的哪些面互相垂直?试一一列出.

18.(12分)如图,在三棱锥P-ABC中,△PAC和△PBC是边长为2的等边三角形,AB =2,O是AB中点.

(1)在棱P A上求一点M,使得OM∥平面PBC;

(2)求证:平面P AB⊥平面ABC.

19.(12分)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计

耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).

(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确

到0.01平方米);

(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作

灯笼的三视图(作图时,不需考虑骨架等因素).

20.(12分)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF ∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.

(1)求证:FH∥平面EDB;

(2)求证:AC⊥平面EDB;

(3)求四面体B-DEF的体积. 【解析方法代码108001099】

21.(12分)一个空间几何体G-ABCD的三视图如图所示,其中A i、B i、C i、D i、G i(i =1,2,3)分别是A、B、C、D、G五点在直立、侧立、水平三个投影面内的投影.在主视图中,四边形A1B1C1D1为正方形,且A1B1=2a;在左视图中,A2D2⊥A2G2;在俯视图中,A3G3=B3G3.

(1)根据三视图作出空间几何体G-ABCD的直观图,并标明A、B、C、D、G五点的位置;

(2)在空间几何体G-ABCD中,过点B作平面AGC的垂线,若垂足H在直线CG上,求证:平面AGD⊥平面BGC;

(3)在(2)的条件下,求三棱锥D-ACG的体积及其外接球的表面积.

22.(14分)如图所示,在三棱柱ABC-A1B1C1中,侧面A1ABB1和BCC1B1是两个全等的正方形,AC1⊥平面A1DB,D为AC的中点.

(1)求证:平面A1ABB1⊥平面BCC1B1;

(2)求证:B1C∥平面A1DB;

(3)设E是CC1上一点,试确定点E的位置,使平面A1DB⊥平面BDE,并说明理由.

答案

一、选择题

1.B 在空间中,两条直线没有公共点,可能是两条直线平行,也可能是两条直线异面,两条直线平行则两条直线没有公共点,∴“两条直线没有公共点”是“这两条直线平行”的必要不充分条件.

2.A ①两个平面有三个公共点,若这三个公共点共线,则这两个平面相交,故①不正确;两异面直线不能确定一个平面,故②不正确;在空间交于一点的三条直线不一定共面(如墙角),故④不正确;据平面的性质可知③正确.

3.C 由几何体的三视图可得,此几何体是由两个正四棱锥底面重合在一起组成的,由主视图的面积为

32,得菱形的边长为1,此几何体的表面积为S =8×1

2

×1×1=4. 4.A 设圆台的上、下底面半径分别为r ,R ,截去的圆锥与原圆锥的高分别为h ,H ,则r R =h

H

, 又πR 2

=9·πr 2

,∴R =3r , ∴H =3h .

∴13πR 2·H -13

πr 2h =52. 即13πR 2·H -13π·19R 2·13=52,∴13

πR 2H =54. 5.B 命题C 即为三垂线定理;命题D 中的原命题即为线面平行的判定定理,所以D 正确;命题A 显然成立;对于命题B ,若α⊥β,则b 与β的位置关系都有可能.

6.A 命题①的结论中,应为n ∥α或n ?α.命题①错误;命题②即为直线与平面垂直的性质定理.命题②正确;命题③显然成立;命题④的结论中,应为m ∥n 或m 与n 相交或m 与n 成异面直线才成立.命题④错误.

7.B P 到平面α内的四边形的四条边的距离都相等,则P 在平面α内的射影到四边形的四条边的距离也都相等,故四边形有内切圆.

8.C 由平行公理可知①正确;②不正确,若三条直线在同一平面内,则a ∥c ;③不正确,a 与b 有可能平行,也有可能异面或相交;由线面垂直的性质可知④正确.

9.B 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a . 如图,设O 、O 1分别为下、上底面中心,且球心O 2为O 1O 的中

点,又AD =

32a ,AO =33a ,OO 2=a

2

, 设球的半径为R ,则R 2

=AO 22

=13a 2+142=712

a 2

.

∴S 球=4πR 2

=4π×712a 2=73πa 2.

10.A 四棱锥R -PQMN 的底面积为 S =S △PQM +S △MNP =12PQ ·AC +1

2MN ·AC =1

2(PQ +MN )·AC =1

2(1+3)×32=6 2. 其高h =

322,V R -PQMN =13Sh =13×62×32

2

=6. 11.D ∵m ∥α,m ∥β,α∩β=l ,∴m ∥l . ∵AB ∥l ,∴AB ∥m .故A 一定正确.

∵AC ⊥l ,m ∥l ,∴AC ⊥m .从而B 一定正确. ∵A ∈α,AB ∥l ,l α,∴B ∈α. ∴AB β,l β.∴AB ∥β.故C 也正确.

∵AC ⊥l ,当点C 在平面α内时,AC ⊥β成立,当点C 不在平面α内时,AC ⊥β不成立.故D 不一定成立.

12.B 本题为线面位置关系的判定,注意对线面平行与垂直的判定定理与性质定理的应用.①错,当两平面同时垂直于一个平面时,这两个平面也可以平行,如正方体相对的两个平面;②正确,不妨过直线m 作一平面与α,β同时相交,交线分别为a ,b ,由α∥β知a ∥b ,又m ∥α?m ∥a ,∴m ∥b ,又m ?β,∴m ∥β;③错,不妨设该直线为正方体的两对角线,其在底面的射影为正方形的两对角线,它们是互相垂直的,但正方体的两对角线不垂直;④错,以正方形两平行棱,或一条棱及与其相交的面对角线为例,可找到反例.

二、填空题

13.解析: 由三视图知该几何体是底面半径为1,高为3的圆锥. 因此,其体积V =132×3=3

3π.

答案:

33

π 14.解析: 图①为空间四边形D ′OEF 在前面(或后面)上的投影.图②为空间四边形D ′OEF 在左面(或右面)上的投影.图③为空间四边形D ′OEF 在上面(或下面)上的投影.

答案: ①②③

15.解析: 设AE =x ,BE =6-x ,V 1=VAEA 1-DFD 1,V 2=VEBE 1A 1-FCF 1D 1,V 3

=VB 1E 1B -C 1F 1C ,

且V 1∶V 2∶V 3=1∶4∶1,

所以12×(3x )×4∶(6-x )×3×4∶1

2×(3x )×4=1∶4∶1,

解得x =AE =2,

∴A 1E =A 1A 2+AE 2=13, ∴SA 1EFD 1=413. 答案: 413

16.解析: 取CC 1的中点F ,连接EF ,EF 交平面BB 1D 1D 于点N ,且EN =FN , 所以F 点是E 点关于平面BB 1D 1D 的对称点, 则AM +ME =AM +MF ,

所以当A ,M ,F 三点共线时,AM +MF 最小,即AM +ME 最小, 此时AM +MF =AF =

AC 2

+???

?CC 122=3a

2

. 答案:

32

a 三、解答题

17.解析: (1)该几何体的直观图如图,

棱锥P -ABC ,其中PC ⊥面ABC ,∠ABC =90°,△ABC 斜边AC 上的高为12

5 cm ,PC

=6 cm ,AC =5 cm ,

∴V P -ABC =13×12×5×12

5×6=12(cm 3).

(2)互相垂直的面分别有:

面PAC ⊥面ABC ,面PBC ⊥面ABC ,面PBC ⊥面PAB . 18.解析: (1)当M 为棱P A 中点时,OM ∥平面PBC . 证明如下:

∵M ,O 分别为P A ,AB 中点, ∴OM ∥PB .

又PB ?平面PBC ,OM ?平面PBC , ∴OM ∥平面PBC . (2)证明:连结OC ,OP .

∵AC =CB =2,O 为AB 中点,AB =2, ∴OC ⊥AB ,OC =1. 同理,PO ⊥AB ,PO =1.

又PC =2,∴PC 2=OC 2+PO 2=2, ∴∠POC =90°.∴PO ⊥OC .

∵PO ⊥OC ,PO ⊥AB ,AB ∩OC =O ,∴PO ⊥平面ABC . ∵PO ?平面PAB , ∴平面PAB ⊥平面ABC .

19.解析: (1)由题意可知矩形的高即圆柱的母线长为9.6-8×2r 8=1.2-2r ,

∴塑料片面积S =πr 2+2πr (1.2-2r )=πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r ).

∴当r =0.4时,S 有最大值,约为1.51平方米.

(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米). 制作灯笼的三视图如图.

20.解析:

(1)证明:如图,设AC 与BD 交于点G ,则G 为AC 的中点. 连接EG ,GH ,由于H 为BC 的中点, 故GH 綊1

2

.

又EF 綊1

2AB ,∴EF 綊GH .

∴四边形EFHG 为平行四边形. ∴EG ∥FH .

而EG ?平面EDB ,FH ?平面EDB , ∴FH ∥平面EDB .

(2)证明:由四边形ABCD 为正方形,得AB ⊥BC . 又EF ∥AB ,∴EF ⊥BC . 而EF ⊥FB ,∴EF ⊥平面BFC . ∴EF ⊥FH .∴AB ⊥FH . 又BF =FC ,H 为BC 的中点, ∴FH ⊥BC .

∴FH ⊥平面ABCD .∴FH ⊥AC . 又FH ∥EG ,∴AC ⊥EG . 又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .

(3)∵EF ⊥FB ,∠BFC =90°, ∴BF ⊥平面CDEF .

∴BF 为四面体B -DEF 的高. 又BC =AB =2,∴BF =FC = 2. V B -DEF =13×1

2×1×2× 2

=13

. 21.解析: (1)

空间几何体的直观图如图所示,

由题意可知,平面ABCD ⊥平面ABG ,四边形ABCD 为正方形,且AG =BG ,AB =2a . (2)证明:因为过B 作平面AGC 的垂线,垂足H 在直线CG 上, 所以BH ⊥平面AGC .

因为AG ?平面AGC ,所以BH ⊥AG .

又因为BC ⊥AB ,所以BC ⊥平面AGB ,所以BC ⊥AG . 又因为BC ∩BH =B , 所以AG ⊥平面BGC .

又因为AG ?面AGD ,故平面AGD ⊥平面BGC .

(3)由(2)知,AG ⊥GB ,AG ⊥CG , 所以△ABG 为等腰直角三角形.

过点G 作GE ⊥AB 于点E ,则GE 为G 点到平面ABCD 的距离,且GE =12AB =a ,AG

=BG =2a .

所以V D -ACG =V G -ADC =13×12AD ×DC ×GE =2

3

a 3.

取AC 的中点M ,因为△AGC 和△ACD 均为直角三角形, 所以MD =MG =MA =MC =1

2

AC =2a .

所以M 是四棱锥D -ACG 的外接球的球心,半径为2a , 所以S 球=4π×(2a )2

=8πa 2

.

22.解析: (1)证法一:∵AC 1⊥平面A 1DB ,A 1B ?平面A 1DB ,

∴AC 1⊥A 1B ,又在正方形A 1ABB 1中,A 1B ⊥AB 1,AC 1∩AB 1=A , ∴A 1B ⊥平面AC 1B 1, 又B 1C 1?平面AC 1B 1, ∴A 1B ⊥B 1C 1.

又∵在正方形BCC 1B 1中, B 1C 1⊥BB 1, 又BB 1∩A 1B =B , ∴B 1C 1⊥平面A 1ABB 1, B 1C 1?平面B 1BCC 1, ∴平面A 1ABB 1⊥平面BCC 1B 1.

证法二:由已知可知三棱柱是直三棱柱, ∴四边形A 1ACC 1为矩形. 又AC 1⊥平面A 1DB , A 1D ?平面A 1DB ,

∴AC1⊥A1D.

又D为AC的中点,

∴AA1∶AD=AC∶CC1,

1

AC2=AA1·CC1=AB2,

2

∴AC=2AB,∴AB⊥BC,

又BC⊥BB1且BB1∩AB=B,

∴BC⊥平面A1ABB1,

又BC?平面BCC1B1,

∴平面A1ABB1⊥平面BCC1B.

(2)证明:连结AB1交A1B于点O,连接OD,∴O为AB1中点,又D为AC中点,

∴在△ACB1中,OD∥CB1.

∵CB1?平面A1DB,

OD?平面A1DB,

∴B1C∥平面A1DB.

(3)取CC1中点E,连接BE,

又D为AC中点,

∴在△ACC1中,DE∥AC1,

又AC1⊥平面A1DB.

∴DE⊥平面A1DB.

又∵DE?平面BDE,

∴平面A1DB⊥平面BDE,

即当E为CC1中点时,平面A1DB⊥平面BDE.

立体几何高考真题专项练习2019

立体几何高考真题专项练习2019 1.(2018)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC 的中点. (1)证明:PO⊥平面ABC; (2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离. 2.(2017)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°. (1)证明:直线BC∥平面PAD; (2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.

3.(2016)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置. (Ⅰ)证明:AC⊥HD′; (Ⅱ)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′﹣ABCFE体积. 4.(2015)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值.

5.(2014)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离. 6.(2013)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD; (Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积. 7.(2012)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=

近三年高考全国卷理科立体几何真题精编版

新课标卷高考真题 1、(2016年全国I 高考)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面 ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.

2、(2016年全国II 高考)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,5 4 AE CF == ,EF 交BD 于点H .将DEF ?沿EF 折到'D EF ?位置,10OD '=. (Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.

3【2015高考新课标1,理18】 如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面AFC; (Ⅱ)求直线AE与直线CF所成角的余弦值.

4、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点. (1)证明:PB∥平面AEC; (2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积. 图1-3

5、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A1B1C1中,侧面BB1C1C 为菱形,AB⊥B1C. 图1-5 (1)证明:AC=AB1; (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A -A1B1-C1的余弦值.

2021高考数学立体几何专题

专题09立体几何与空间向量选择填空题历年考题细目表 题型年份考点试题位置 单选题2019 表面积与体积2019年新课标1理科12 单选题2018 几何体的结构特征2018年新课标1理科07 单选题2018 表面积与体积2018年新课标1理科12 单选题2017 三视图与直观图2017年新课标1理科07 单选题2016 三视图与直观图2016年新课标1理科06 单选题2016 空间向量在立体几何中的应 用2016年新课标1理科11 单选题2015 表面积与体积2015年新课标1理科06 单选题2015 三视图与直观图2015年新课标1理科11 单选题2014 三视图与直观图2014年新课标1理科12 单选题2013 表面积与体积2013年新课标1理科06 单选题2013 三视图与直观图2013年新课标1理科08 单选题2012 三视图与直观图2012年新课标1理科07 单选题2012 表面积与体积2012年新课标1理科11 单选题2011 三视图与直观图2011年新课标1理科06 单选题2010 表面积与体积2010年新课标1理科10 填空题2017 表面积与体积2017年新课标1理科16 填空题2011 表面积与体积2011年新课标1理科15 填空题2010 三视图与直观图2010年新课标1理科14 历年高考真题汇编 1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.8πB.4πC.2πD.π 2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

立体几何(高考真题)专题

立体几何(高考真题+模拟新题)专题训练 1、[2011·四川卷]l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( ) A .l 1⊥l 2,l 2⊥l 3?l 1∥l 3 B .l 1⊥l 2,l 2∥l 3?l 1⊥l 3 C .l 1∥l 2∥l 3?l 1,l 2,l 3共面 D .l 1,l 2,l 3共点?l 1,l 2,l 3共面 2、[2011·南京质检]平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ?α,a ∥β C .存在两条平行直线a 、b ,a ?α,b ?β,a ∥β,b ∥α D .存在两条异面直线a 、b ,a ?α,b ?β,a ∥β,b ∥α 3、[2011·北京崇文一模] 已知m ,n 是两条不同直线,α,β,γ是三个不同平面,则下列命题中正确的为 ( ) A .若α⊥γ,β⊥γ,则α∥β B .若m ∥α,m ∥β,则α∥β C .若m ∥α,n ∥α,则m ∥n D .若m ⊥α,n ⊥α,则m ∥n 4、[2011·宁波二模]已知a ,β表示两个互相垂直的平面,a ,b 表示一对异面直线,则a ⊥b 的一个充分条件是( ) A .a ∥α,b ⊥β B .a ∥α,b ∥β C .a ⊥α,b ∥β D .a ⊥α,b ⊥β 5、[2011·泸州二诊] 如图K40-4,在正三棱柱ABC -A 1B 1C 1中,AB =1.若二面角C -AB -C 1的大小为60°,则点C 到平面C 1AB 的距离为( ) A.34 B.12 C.3 2 D .1 6、[2011·大连一模]已知三棱锥底面是边长为1的等边三角形,侧棱长均为2,则侧棱与底面所成角的余弦值为( ) A.32 B.12 C.33 D.36 7、 [2011·深圳调研] 在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 8、 [2011·沈阳模拟] 设A ,B ,C ,D 是空间不共面的四个点,且满足AB →·AC →=0,AD →·AC → =0,AD →·AB →=0,则△BCD 的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .无法确定 9、大纲理数11.G8[2011·全国卷]已知平面α截一球面得圆M ,过圆心M 且与α成60°二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( ) A .7π B .9π C .11π D .13π 10、大纲文数12.G8[2011·全国卷] 已知平面α截一球面得圆M ,过圆心M 且与α成60°二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( ) A .7π B .9π C .11π D .13π 11、课标文数7.G8[2011·湖北卷] 设球的体积为V 1,它的内接正方体的体积为V 2,下列说法中最合适的是( ) A .V 1比V 2大约多一半 B .V 1比V 2大约多两倍半 C .V 1比V 2大约多一倍 D .V 1比V 2大约多一倍半 12、大纲理数6.G5、G11[2011·全国卷]已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( ) A.23 B.33 C.6 3 D .1 12、[2011·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则CD =( ) A .2 B. 3 C. 2 D .1 13、课标理数4.G5[2011·浙江卷] 下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 14、大纲理数6.G5、G11[2011·全国卷]已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( ) A.23 B.33 C.6 3 D .1 15、大纲理数9.G11[2011·重庆卷] 高为2 4 的四棱锥S -ABCD 的底面是边长为1的正方形,点 S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( ) A.24 B.2 2C .1 D. 2 16、大纲理数16.G11[2011·全国卷]已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1、CC 1 上,且B 1E =2EB ,CF =2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于________. 17、课标理数12.G8[2011·辽宁卷] 已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( ) A .3 3 B .2 3 C. 3 D .1 18、课标理数15.G8[2011·课标全国卷] 已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,B C =23,则棱锥O -ABC D 的体积为________. 18、大纲文数15.G8[2011·四川卷] 如图1-3,半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是________. 4 19、[2011·北京卷] 如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 别是棱AP ,AC ,BC ,PB 的中点. (1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形; (3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由. 20、[2011·北京卷] 如图1-6,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.

(完整版)非常好高考立体几何专题复习

立体几何综合习题 一、考点分析 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ①? ? ??????→?? ?????→? ? ?? L 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱 直棱柱 其他棱柱 ★ 底面为矩形 底面为正方形侧棱与底面边长相等 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3 .球 球的性质: ①球心与截面圆心的连线垂直于截面; ★②r(其中,球心到截面的距离为 d、球的半径为R、截面的半径为r) ★球与多面体的组合体:球与正四面体,球与长 方体,球与正方体等的内接与外切. 注:球的有关问题转化为圆的问题解决. B

1.求异面直线所成的角(]0,90θ∈??: 解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角; 2求直线与平面所成的角[]0,90θ∈??:关键找“两足”:垂足与斜足 解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。 3求二面角的平面角[]0,θπ∈ 解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。

立体几何(小题)专题 历年高考真题模拟题汇总(解析版)

立体几何 一、年考试大纲 二、新课标全国卷命题分析 三、典型高考试题讲评 2011—年新课标全国(1卷、2卷、3卷)理科数学分类汇编——11.立体几何 一、考试大纲 1.空间几何体 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图. (3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. (4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). (5)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 2.点、直线、平面之间的位置关系 (1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. 公理2:过不在同一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理. 理解以下判定定理. 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明. 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行. 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行. 垂直于同一个平面的两条直线平行. 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. 3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题. 4.空间直角坐标系 (1)了解空间直角坐标系,会用空间直角坐标表示点的位置. (2)会推导空间两点间的距离公式. 二、新课标全国卷命题分析 立体几何小题常考的题型包括:(1)球体;(2)多面体的三视图、体积、表面积或角度,包括线线角、

高考数学专题复习立体几何专题空间角

立体几何专题:空间角 第一节:异面直线所成的角 一、基础知识 1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ?//a ,b ?//b ,相交直线a ?b ?所成的锐角(或直 角)叫做 。 2.范围: ?? ? ??∈2,0πθ 3.方法: 平移法、问量法、三线角公式 (1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。 (2)向量法: 可适当选取异面直线上的方向向量,利用公式b a = ><=,cos cos θ 求出来 方法1:利用向量计算。选取一组基向量,分别算出 b a ? 代入上式 方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量 ),,(111z y x a = ),,(222z y x b =2 2 22222 1 2 12 12 12121cos z y x z y x z z y y x x ++++++= ∴θ (3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 2 1= 二、例题讲练 例1、(2007年全国高考)如图,正四棱柱 1111ABCD A B C D -中, 12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b a b >,AA 1= c ,求异面直线D 1B 和AC 所成 的角的余弦值。 方法一:过B 点作 AC 的平行线(补形平移法) A B 1 B 1 A 1D 1 C C D

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

2017年高考立体几何大题

2017年高考立体几何大题(文科) 1、(2017新课标Ⅰ文数)(12分) 如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为 83 ,求该四棱锥的侧面积.

如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2 AB BC AD BAD ABC ==∠=∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积.

如图,四面体ABCD中,△ABC是正三角形,AD=CD. (1)证明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点. (Ⅰ)求证:PA⊥BD; (Ⅱ)求证:平面BDE⊥平面PAC; (Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.

由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD. A O∥平面B1CD1; (Ⅰ)证明: 1 (Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.

如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC.

高三立体几何专题复习

高三立体几何专题复习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考立体几何专题复习 一.考试要求: (1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。 (2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。 (3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。 (4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。 (5)会用反证法证明简单的问题。 (6)了解多面体的概念,了解凸多面体的概念。 (7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。 (8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。 (9)了解正多面体的概念,了解多面体的欧拉公式。 (10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。 二.复习目标: 1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用. 2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力. 3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力. 4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力. 5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力. 三.教学过程: (Ⅰ)基础知识详析 重庆高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

2018年高考数学空间几何高考真题

2017年高考数学空间几何高考真题 ?选择题(共9小题) 1 ?如图,在下列四个正方体中,A, B为正方体的两个顶点,M , N, Q为所在 棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() 2. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上, 则该圆柱的体积为() A. n B. C. D. 3. 在正方体ABCD- A i B i CD i中,E为棱CD的中点,贝U( ) A. A i E± DC i B. A i E丄BD C A i E丄BG D. A i E丄AC 4. 某三棱锥的三视图如图所示,则该三棱锥的体积为( A. 60 B. 30 C. 20 D . i0 侧〔左)视圄 C

5?某几何体的三视图如图所示(单位:cm ), 则该几何体的体积(单位:cm 2) 是( ) 6?如图,已知正四面体 D -ABC (所有棱长均相等的三棱锥),P 、Q 、R 分别为 AB 、BC CA 上的点,AP=PB ==2,分别记二面角 D- PR- Q , D- PQ- R, D - A .产 aV B B. aV 产 B C ? a< Y D. p< 产 a 7. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图, 该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A . 90 n B. 63 n C. 42 n D . 36 n 1 .某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三 D . +3 +1

4 角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中 有若干个是梯形,这些梯形的面积之和为( ) A . 10 B. 12 C. 14 D . 16 2. 已知直三棱柱 ABC- A 1B 1C 1中,/ ABC=120, AB=2, BC=CC=1,则异面直线 AB 1与BG 所成角的余弦值为( ) A . B. C. D. 二.填空题(共5小题) 8. 已知三棱锥S-ABC 的所有顶点都在球0的球面上,SC 是球0的直径.若平 面SCAL 平面SCB SA=AC SB=BC 三棱锥S-ABC 的体积为9,则球0的表面 积为 _______ . 9. 长方体的长、宽、高分别为3, 2,1,其顶点都在球0的球面上,则球0的 表面积为 _______ . 10. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18, 则这个球的体积为 ________ . 11. 由一个长方体和两个亍圆柱体构成的几何体的三视图如图,则该几何体的

历年高考立体几何大题试题(卷)

2015年高考立体几何大题试卷 1. 【2015高考新课标2,理19】 如图,长方体ABCD -A1B1C1D1中,AB=16, BC=10, AA = 8,点E , F 分别在AB , C1D1上,A1E =4 .过点E , F的平面:-与此长方体的面相交,交线围成一个正方形. (1题图) (I )在图中画出这个正方形(不必说出画法和理由) (n )求直线AF与平面〉所成角的正弦值. 2. 【2015江苏高考,16】如图,在直三棱柱ABC—中,已知AC丄BC ,

BC =CC 1,设 AB 1 的中点为 D , BQ BC^ E .求证:(1) DE // 平面 AA 1C 1C ; (2) BC 1 _ AB 1 . (2题图) (3题图) C C 第的题图

3. 【2015高考安徽,理19】如图所示,在多面体 AEDQCBA ,四边形AABB , ADD 1A 1 ,ABCD 均为正方形,E 为Bp 的中点,过 A,D,E 的平面交CD ,于F. (I)证明:EF //BQ ; (□)求二面角E - A ,D - B i 余弦值. 4. 【2015江苏高考,22】如图,在四棱锥P-ABCD 中,已知PA _平面ABCD ,且 四边形 ABCD 为直角梯 形,.ABC =/BAD = —,PA 二 AD =2,AB 二 BC =1 2 (1)求平面PAB 与平面PCD 所成二面角的余弦值; (2)点Q 是线段BP 上的动点,当直线 CQ 与DP 所成角最小时,求线段 BQ 的长 (4题图) 5 .【2015高考福建,理17】如图,在几何体 ABCDE 中,四边形ABCD 是矩形,AB A 平面BEC , BE A EC , AB=BE=EC=2 , G , F 分别是线段 BE , DC 的中点. (I 求证:GF //平面ADE ; (^)求平面AEF 与平面BEC 所成锐二面角的余弦值. 6. 【2015高考浙江,理17】如图,在三棱柱 AB^A 1B 1C 1-中,.BAC =90;, AB = AC=2 , AA = 4 , A 在底面ABC 的射影为BC 的中点,D 为B 1C 1的中点. (5题图) D

2010年高考立体几何专题复习-6

2010年高考立体几何专题复习 岱山中学 孙珊瑚 鲁纪伟 高考立体几何试题一般有选择、填空题, 解答题,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力. 2.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。 4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概 念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?? ???? , 二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力. 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面,设∩=OA ,∩=OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥,垂足为B ,AC ⊥,垂足为C ,则∠BAC =或∠BAC =-; (5) 利用面积射影定理,设平面内的平面图形F 的面积为S ,F 在平面内的射影图形的面积为S ,则cos =S S ' . 5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线

立体几何复习专题(空间角)(学生卷)

专题一:空间角 一、基础梳理 1.两条异面直线所成的角 (1)异面直线所成的角的范围:(0, ]2 π 。 (2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。两条异面直线,a b 垂直,记作a b ⊥。 (3)求异面直线所成的角的方法: (1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。 平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。 2.直线和平面所成的角(简称“线面角”) (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。 一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0?角。 直线和平面所成角范围:[0, 2 π]。 (2)最小角定理:斜线和平面所成角是这条斜线和平面内 经过斜足的直线所成的一切角中最小的角。 (3)公式:已知平面α的斜线a 与α内一直线b 相交成θ角, 且a 上的射影c 与b 相交成?2角, 则有θ??cos cos cos 21= 。 内的射影所成角,是这条斜线和这个平面内的任一条直 线所成角中最小的角。 3.二面角 (1)二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。若棱为l ,两个面分别为,αβ的二面角记为l αβ--。 (2)二面角的平面角: 过二面角的棱上的一点O 分别在两个半平面内...... 作棱的两条垂线,OA OB ,则AOB ∠叫做二面角 l αβ--的平面角。 说明:①二面角的平面角范围是[]0,π,因此二面 角有锐二面角、直二面角与钝二面角之分。 ②二面角的平面角为直角时,则称为直二面角, 组成直二面角的两个平面互相垂直。 (3)二面角的求法:(一)直接法:作二面角的平面角的作法:①定义法;②棱的垂面法;③三垂线定理或逆定理法;(注意一些常见模型的二面角的平面角的作法) (二)间接法:面积射影定理的方法。 (4)面积射影定理: 面积射影定理:已知ABC ?的边BC 在平面α内,顶点A α?。设ABC ?的面积为S ,它在平 ?2?1c b a θP αO A B l B' O' A' B O A βα

2015-2017近三年高考理科立体几何高考题汇编

2015-2017高考立体几何题汇编 2017(三)16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最小值为60°; 其中正确的是________。(填写所有正确结论的编号) 2017(三)19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . (1)证明:平面ACD ⊥平面ABC ; (2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值. 2017(二)4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π 2017(二)10.已知直三棱柱111ABC A B C -中,120ABC ∠=?,2AB =, 11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为 A . 32 B . 155 C . 105 D . 33 2017(二)19.(12分)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且 垂直于底 面ABCD ,o 1 ,90,2 AB BC AD BAD ABC == ∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值. 2017(一)7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为

相关文档
最新文档