接收机

接收机
接收机

一、接收机概念:

是一个具有如下组成的电路系统:天线,滤波器,放大器,A/D转换器。GPS卫星发送的导航定位信号,是一种可供无数用户共享的信息资源。对于陆地、海洋和空间的广大用户,只要用户拥有能够接收、跟踪、变换和测量GPS信号的接收设备,即GPS信号接收机,就可以在任何时候用GPS信号进行导航定位测量。

二、接收机分类

1、

<1>导航型接收机。此类型接收机主要用于运动载体的导航,它可以实时给出载体的位置和速度。这类接收机一般采用C/A码伪距测量,单点实时定位精度较低,一般为±25mm,有SA影响时为±100mm。这类接收机价格便宜,应用广泛。根据应用领域的不同,此类接收机还可以进一步分为:车载型--用于车辆导航定位;航海型--用于船舶导航定位;航空型--用于飞机导航定位。由于飞机运行速度快,因此,在航空上用的接收机要求能适应高速运动。星载型--用于卫星的导航定位。由于卫星的速度高达7km/s以上,因此对接收机的要求更高。

<2>测地型接收机。测地型接收机主要用于精密大地测量和精密工程测量。定位精度高。仪器结构复杂,价格较贵。授时型接收机这类接收机主要利用GPS卫星提供的高精度时间标准进行授时,常用于天文台及无线电通讯中时间同步。

2、折叠载波频率分类

<1>单频接收机。单频接收机只能接收L1载波信号,测定载波相位观测值进行定位。由于不能有效消除电离层延迟影响,单频接收机只适用于短基线(<15km)的精密定位。

<2>双频接收机。双频接收机可以同时接收L1,L2载波信号。利用双频对电离层延迟的不一样,可以消除电离层对电磁波信号的延迟的影响,因此双频接收机可用于长达几千公里的精密定位。

3、折叠通道数分类

<1>GPS接收机。能同时接收多颗GPS卫星的信号,为了分离接收到的不同卫星的信号,以实现对卫星信号的跟踪、处理和量测,具有这样功能的器件称为天线信号通道。

4、折叠具有通道分类

<1>多通道接收机

<2>序贯通道接收机

<3>多路多用通道接收机

5、按接收机工作原理分类:

<1>码相关型接收机。码相关型接收机是利用码相关技术得到伪距观测值。

<2>平方型接收机。平方型接收机是利用载波信号的平方技术去掉调制信号,来恢复完整的载波信号,通过相位计测定接收机内产生的载波信号与接收到的载波信号之间的相位差,测定伪距观测值。

<3>混合型接收机。这种仪器是综合上述两种接收机的优点,既可以得到码相位伪距,也可以得到载波相位观测值。

<4>干涉型接收机。这种接收机是将GPS卫星作为射电源,采用干涉测量方法,测定两个测站间距离。

三、特征

AOR 最新宽带接收机,提供专业级的监察功能。提供多种频率接收模式、数位讯号处理、同步接收和监测频率、模拟视频信号解调等功能。模拟视频信号解调:监察FM 模拟视频信号或搜索频率监察器,并将信号输出成复合视频。FFT信号分析仪:AR5001D采用FFT(Fast Fourier Transform)信号分析仪,频谱显示由400 kHz 到10 MHz之间出现的100kHz

增量信号,用以监察频段的活动情况或侦察不明信号。规格:

>频率范围: 40 kHz - 3.15 GHz

>调制方式: USB/LSB (J3E) / CW (A1A) / AM (A3E) / FM (F3E) / WFM (F3E) / FM-Stereo (F8E) / 可自选-APCO P-25 (D3E)

>信道数目: 2,000 个

>工作温度范围: -0°C 至+50°C

>尺寸- 凸出部份除外(宽x高x深): 220 mm x 97 mm x 304 mm

>重量: 5 kg

折叠AR2300专业级黑盒接收机

特征:

AOR 最新数码化产品,可以透过连接线网络控制器检查和监测系统,而且在功能和技术规格上与AR-5001D 完全相同,提供多种频率接收模式、数位讯号处理、同步接收和监测频

率、模拟视频信号解调等功能。

规格:

>频率范围: 40 kHz - 3.15 GHz

>调制方式: USB/LSB (J3E) / CW (A1A) / AM (A3E) / FM (F3E) / WFM (F3E) / FM-Stereo (F8E) / 可自选-APCO P-25 (D3E)

>信道数目: 2,000 个

>工作温度范围: 0°C 至+50°C

>尺寸(宽x高x深): 220 mm x 70 mm x 285 mm >重量: 3kg

淘宝技术架构发展总结

引言 光棍节的狂欢 “时间到,开抢!”坐在电脑前早已等待多时的小美一看时间已到2011年11月11日零时,便迫不及待地投身于淘宝商城一年一度的大型网购促销活动——“淘宝双11购物狂欢节”。小美打开早已收藏好的宝贝——某品牌的雪地靴,飞快的点击购买,付款,一回头发现3000双靴子已被抢购一空。 小美跳起来,大叫一声“欧耶!” 小美不知道,就在11日零点过后的这一分钟内,全国有342万人和她一起涌入淘宝商城。当然,她更不知道,此时此刻,在淘宝杭州的一间办公室里,灯火通明,这里是“战时指挥部”,淘宝技术部的一群工程师,正在紧盯着网站的流量和交易数据。白板上是他们刚刚下的注,赌谁能最准确地猜中流量峰值和全天的交易总额。他们的手边放着充足的食物和各类提神的饮料。 一阵急促的电话声响起来,是前线部门询问数据的,工程师大声报着:“第1分钟,进入淘宝商城的会员有342万”。过一会工程师主动拿起电话:“交易额超过1亿了,现在是第8分钟。”接下来,“第21分钟,刚突破2亿”。“第32分钟,3亿了”。“第1个小时,亿”。这些数据随后出现在微博上,引起一片惊呼。 “完蛋了!”突然有人大喝一声,所有的眼睛都紧张的盯着他,只见他挠挠头,嘿嘿的笑道“我赌的少了,20亿轻松就能过了,我再加5亿”,他跑去白板边上把自己的赌注擦去,写上25,接下来有人写上28,有人写上30,有人跑到微博上开下盘口,同事们纷纷转载下注。接下来的这24个小时,战时指挥部的工程师们都不能休息,他们盯着网站的各种监控指标,适时的调整机器和增减功能。顶住第一波高峰之后,这些人开始忙里偷闲的给自己买东西,大家互相交流着哪家买的移动硬盘靠谱,哪家衣服适合自己的女朋友,不时的有人哀嚎宝贝被人抢了、信用卡额度不够了。同时,旁边白板上的赌注越下越大。 11月11日,这个棍子最多的日子被网民自我调侃的变成了一个节日——“光棍节”。而淘宝网又用疯狂的折扣促销给它赋予了另外一个意义——“购物狂欢节”。2011年11月11日这一天,淘宝商城与淘宝网交易额之和突破52亿,这个数字是“购物天堂”香港一天零售总额亿的6倍。 网民感受到的是疯抢的喜悦,而网站的技术人员感受到的却是“压力山大”。就如同你家办酒席,宴请左邻右舍,这个办起来容易。倘若宴请十里八乡所有的人,吃饭的人自然开心,但却不是一般人家能够办得起来的。能办得起来如此盛宴者,需要强大的财力物力、组织能力、技术实力(例如做这么多菜,你的炒

光接收机的结构及原理

第三部分光接收机的结构及原理 在有线电视HFC网络中,光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为RF信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光/电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中,无论是分离组件还是一体组件,该部分的成本比重都比较大,与光发射机的激光器一样,不仅决定了光接收机的性能指标,还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成,除光接收组件外,功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合,整机也会有显著不同。有线电视技术发展到今天,光接收机采用分离元件制作放大模块已不多见,基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路,它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源,并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等,另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有14dB、18dB、20dB、22dB、27dB等,用于单模块放大器的34dB的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的

不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名,一般以推挽和功率倍增为主要区分,同时附加增益的差异与器件工艺,如果不说是砷化镓工艺模块则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过,根据集中极电流导通时间的长短,通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器;只有在输入信号的半个周期内有集中极电流的放大器称为乙类放大器;在小于输入信号半个周期内有集中极电流的放大器称为丙类放大器。在许多实用的放大电路中,为了提高放大效率通常都需要把工作点移到截止区,即采用半周导通的乙类工作状态,这时若仍采用一个晶体管,输出信号中将只出现一半波形,将发生严重的截止失真。为了解决这个问题,可采用两只特性完全相同的晶体管,使其中一只晶体管在正半周导通,另一晶体管在负半周导通,最后在负载上合成完整波形,这就是推挽放大电路。下图是推挽放大电路的结构示意图: 输入信号经过高频传输变压器B1,反相加在晶体管VT1和V T2上,被放大后各自在半个周期内产生半个波,在变压器B2上反相叠加,重新合成完整波形输出,由于输出信号反相叠加,其中的直流分量和非线性失真中的偶次谐波互相抵消。降低了直流工作点,使变压器中流过电流减少,从而体积可以做得较小,进一步提高了放大器

【CN109728857A】一种集成相干接收机【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910183072.7 (22)申请日 2019.03.12 (71)申请人 湖北捷讯光电有限公司 地址 430073 湖北省武汉市东湖新技术开 发区高新大道999号 (72)发明人 方锦辉 解振海  (74)专利代理机构 北京国昊天诚知识产权代理 有限公司 11315 代理人 马骥 南霆 (51)Int.Cl. H04B 10/61(2013.01) (54)发明名称 一种集成相干接收机 (57)摘要 本申请公开了一种集成相干接收机,解决了 现有技术的集成相干接收机体积大,光路损耗大 的问题。包括第一偏振分束器、第二偏振分束器、 第一混频器、第二混频器和PD阵列。集成相干接 收机使用的波导材料为硅基二氧化硅。第一偏振 分束器和第二偏振分束器的结构为马赫-曾德干 涉仪,分别输入本地光和信号光,将本地光和信 号光分为TE模式和TM模式。本地光和信号光的TE 模式光信号输入第一混频器混频后输出能量相 等、相位不同的四个光信号,TM模式光信号输入 第二混频器混频后输出能量相等、相位不同的四 个光信号。PD阵列中的每一个PD耦合对准一个输 出波导,将输出的光信号转换为电信号。具有能 够缩小体积、便于制作、 减小光路损耗的优点。权利要求书1页 说明书4页 附图2页CN 109728857 A 2019.05.07 C N 109728857 A

权 利 要 求 书1/1页CN 109728857 A 1.一种集成相干接收机,其特征在于,包括第一偏振分束器、第二偏振分束器、第一混频器、第二混频器和PD阵列; 所述集成相干接收机使用的波导材料为硅基二氧化硅; 所述第一偏振分束器和第二偏振分束器的结构为马赫-曾德干涉仪,分别输入本地光和信号光,将所述本地光和信号光分为TE模式和TM模式; 所述本地光和信号光的TE模式光信号输入第一混频器混频后输出能量相等、相位不同的四个光信号,TM模式光信号输入第二混频器混频后输出能量相等、相位不同的四个光信号; 所述PD阵列中的每一个PD耦合对准所述第一混频器和第二混频器中的一个输出波导,将所述第一混频器和第二混频器输出的光信号转换为电信号。 2.如权利要求1所述的集成相干接收机,其特征在于,所述第一混频器和第二混频器输出波导的输出端为与光信号传播方向呈45°角的切面。 3.如权利要求1所述的集成相干接收机,其特征在于,所述第一偏振分束器、第二偏振分束器分别包括上臂、下臂、第一MMI和第二MMI; 光信号输入第一MMI分为两束,分别沿上臂和下臂传输,然后在第二MMI处耦合后,由不同端口输出。 4.如权利要求1所述的集成相干接收机,其特征在于,所述第一混频器和第二混频器为90°混频器,所述TM模式/TE模式的光信号混频后输出四个光信号的相位分别为0°、180°、90°和270°。 5.如权利要求1所述的集成相干接收机,其特征在于,所述第一偏振分束器、第二偏振分束器、第一混频器和第二混频器集成于同一芯片。 6.如权利要求1所述的集成相干接收机,其特征在于,所述集成相干接收机还包括两个差分放大器,每个差分放大器连接四个PD,将PD输入的微电流信号差分放大为电压信号。 7.如权利要求1所述的集成相干接收机,其特征在于,所述集成相干接收机还包括高速传输设备,用于与外部设备连接,输出信号。 8.如权利要求2所述的集成相干接收机,其特征在于,所述PD阵列与所述第一混频器和第二混频器输出波导通过红外成像方法进行耦合对称监控。 9.如权利要求3所述的集成相干接收机,其特征在于,对所述上臂或下臂的波导宽度和长度进行优化设计,改变输入光信号的有效折射率,实现TE/TM模式的分离。 2

接收机系统设计

接收机系统设计 接收机设计是一种综合性的挑战,首先要明确设计目的,即设计那一种接收机,不同种类接收机的设计方法是大不相同的。然后根据系统设计的指标要求进行全面分析,寻找出设计重点或难点,即是高灵敏度设计;或是高线性设计;或是大动态范围设计;还是宽频带设计。不同的设计重点有不同的实现方法,根据系统要求的性能指标,首先要确定: 1.接收机的结构形式,设计系统实现的原理方框图。 确定采样超外差式结构,零中频结构,还是数字IF结构;确定采样 本振频率合成器的类型;确定是一次变频还是多次变频结构,是否 用高中频;确定信号的动态范围及接收机的线性度。 2.接收机功能电路实现及系统线路组成,设计电路图。 本章对一般接收机的设计方法不作详细的讨论,只重点讨论接收机设计中有关高线性度和大动态范围实现的具体方法,这也是本课题实现中的难点所在。 §大动态范围接收机设计方法 接收机动态范围DR(Dynamic Range),是指接收机能够接收检测到的信号功率从最小可检测信号MDS到接收机输入1-dB压缩点之间的功率变化范围,是接收机最重要的性能指标之一。第二章对动态范围已经作了详细的论述。通常,一般的接收机都具有60dB~80dB的动态范围,现代接收机则对动态范围指标提出相当苛刻的要求,往往超过100dB。如本项目动态范围指标要求做的大于120dB。 实现接收机动态范围的功能电路是接收机中的AGC,自动增益控制电路。AGC是一个闭环负反馈自动控制系统,是接收机最重要的功能电路之一。接收机的总增益通常分配在各级AGC电路中,各级AGC电路级联构成总的增益。在接收微弱信号时,接收机要具有高增益,将微弱信号放大到要求的电平,在接收机靠近发射电台式时,AGC控制接收机的总增益,使接收机对大信号的增益很小,甚至衰减。接收机动态范围实现的示意图如下图所示。

三大板块的业务架构和公司发展的路径

三大板块的业务架构和公司发展的路径 --谢伟良总经理在2004年度总结大会上的讲话 在深圳地区资产整合的工作过程中,设计新公司的业务架构是当时遇到的难题之一。如今,经过两年的运转,不断深入的经营管理实践给了我们昭示,反复进行的思考和交流使我们的思路逐渐明晰。借此机会,我想就公司的业务架构和发展路径,向各位员工作简要报告。我相信这是员工们很关心的问题,管理层也有必要就此问题与员工们交流。 三大业务板块 航天科工集团领导对深圳地区的整合有一个明确的要求,那就是新成立的公司应该是一个实体经营的公司,而不是一个纯粹的投资控股公司。按照这一要求,结合公司整合的基础,确定了公司的三方面业务,即外贸、物业、工业。这三方面业务的确定完全是承继性的,带有明显的历史印记,那就是业务单一、规模小、效益低,其中外贸主要是进出口贸易中的代理业务,物业主要是自有房产的租赁业务,工业则为一个小规模企业群的分布,这些企业以加工为主,经营规模小,产品的技术含量不高、装备相对落后、发展后劲不足。 确定这三项业务为主业有不得已而为之的成分,同时我们也认为,这三项业务都有发展的前景和上升的空间,而且以这三项业务为平台谋求公司的业务发展,也符合我们的发展理念,那就是发展要有基础,未来的业务应该从与现在的业务存在关联性的方面去寻找。基于这种认识,我们一直致力于与三方面业务有关联的方面拓展业务。经过近两年的实践,我们开发了一些新的业务,进行了机构的调整,改变了三项业务相对薄弱和单

一的状况,使三项业务渐次充实、丰满,从而显露出三个业务"板块"的雏形。 我们说深圳公司的主营业务已经从三项单一的业务,发展为三个业务板块,这是不难识别的一个现实转变。 --物业板块方面,以物业分公司、物业管理公司、地产项目公司、置业顾问公司为平台,形成了一个有内在逻辑关系、在价值链上相互连接的、包括地产开发、置业中介服务、房屋租赁、物业管理的业务群。 --外贸板块方面,以外贸分公司、香阁里公司、香港公司,以及即将成立的航天科工欧洲公司为平台,形成了以设立于国内的外贸分公司为基础支撑,以航天科工欧洲公司为前端,以香港公司为策应,以香阁里公司为外贸新业态平台,包括直接远洋贸易、外贸代理、进口商品自营销售的业务群。在条件和时机成熟的时候,将建立自己控制的外贸生产基地。 --工业板块方面,以电子机械事业部、研发中心为平台的电力仪表和控制系统、安防产品的生产经营业务;以圳峰公司、鼎汉公司、深凯公司为平台的电子元器件和电子产品配套件产品的生产经营;以天宏公司为平台的高分子材料产品的生产经营。 当前的实际情况是,上述三大业务板块内容还不够丰满,实力也还比较弱,到底有多大的发展前景,我们还难以断言。这是不可回避的问题,无庸讳言。然而,三大业务板块也不是完全无优势可言。理论上看,三大板块都有开拓的空间,都能自成体系。三大板块业务中,我们在市场方面有一定基础,在人才和经验方面有一些积累。在经营的特性上,三大板块的业务存在互为补充的优点,物业业务比较稳定,外贸业务起效快,易于上规模,工业发展有利于形成自主性和控制能力。

GPS接收机的结构和工作原理

GPS接收机的组成及工作原理 目录 第一节 GPS接收机的分类 第二节 GPS接收机组成及工作原理第三节 GPS接收机的构成 第四节注意事项 第五节常见问题及解决方法

第一节 GPS接收机的分类 根据GPS用户的不同要求,所需的接收设备各异。随着GPS定位技术的迅速发展和应用领域的日益扩大,许多国家都在积极研制、开发适用于不同要求的GPS接收机及相应的数据处理软件。 1、按用途分可分为: (1)导航型接收机:①车载型 ②航海型 ③航空型 ④星载型 (2)测地型接收机 (3) 授时型接收机 2、按接收机的载波频率分类(或者说按接受机的卫星信号频率分类) (1)单频接收机 (2)双频接收机 3、按接收机的通道数分类: (1)多通道接收机 (2)序贯通道接收机 (3)多路复用通道接收机 4、按工作原理分类: (1)码相关型接收机 (2)平方型接收机 (3)混合型接收机 (4)干涉型接收机 5、按接收卫星系统分类 (1)单星系统 (2)双星系统 (3)多星系统 6、按接收机的作业模式分类 (1)静态接收机 (2)动态接收机 7、按接收机的结构分类 (1)分体式接收机 (2)整体式接收机 (3)手持式接收机 目前生产GPS测量仪器的厂家有几十家,产品有几百种,但拥有较为成熟产品的不外乎几家,在我国测绘市场占有份额较大的有Trimble、Leica、Ashtech、Javad(Topcon)、Thales(DSNP)加拿大诺瓦太(NoVAteL)等。我国的南方测绘仪器公司和中海达测绘仪器公司也已经有了自己的GPS产品,北京、苏州光学仪器厂也已开始了GPS设备的研制与开发工作。

新型窄带调频接收机集成电路MC3362,MC3363,MC3364,MC3367的应用

新型窄带调频接收机集成电路MC3362,MC3363,MC3364,MC3367的应用 单片接收机电路MC3362系列的出现,大大地推动了移动通信电台的革新。这些集成电路芯片的共同特点是:功能强,单片化,电压低,低功耗,灵敏度高。 新型的低功耗窄带FM单片接收机电路MC3362,已经包含了除高放外的前端电路,而且还增加了载波检测电路和用于FSK检测的比较器,它适用于窄带话音与数据链路的通信。MC3362的外引线图如图例8-1所示。 MC3362包含有二个本振,二个混频和二个中放电路,是一个从天线输入到音频预放大输出的全二次超外差式的接收电路。MC3362的第一混频工作频率可以超过450MHz。第一本振可采用灵活的LC振荡回路,也可作为PLL频率合成器的VCO,工作频率可达190MHz,在RF输入为450MHz时,还可以用外部振荡器(100mV)驱动。 MC3362具有很好的灵敏度和镜像抑制能力,12dBSINAD(信纳比),灵敏度为0.7μV。可用于FSK数据通信。有60dB动态范围的接收信号场强指示器。可用于控制有中心和无中心移动通信设备的过区切换和空闲通信检测。 图例8-2给出MC3362的一个典型应用例子。输入射频信号经第一混频器放大(18dB),并混频转换成第一中频信号(10.7MHz),第一中频信号再经过外部带通陶瓷滤波器滤波,然后,输入到第二混频器进一步放大(22dB)并混频转换成第二中频信号(255kHz)。第二中频信号再通过外部带通陶瓷滤波器滤波后,输入到限幅放大器和电频检测电路,最后通过相移鉴频器恢复成音频信号输出。另外,电平检测电路用来监视输入RF 信号的场强,数据整形比较电路用于检测FSK调制信号的过零率,该电路检测数据的速率为2000~35000波特。 MC3363在MC3362的基础上增加了一只高放管和静噪电路,因此灵敏度更高,性能更好。MC3363的功能框图如图例8-3所示。由于增加了一级高放,所以12dBSINAD灵敏度可达0.3μV。 该芯片特别适用于无绳电话。

超融合:架构演变和技术发展

超融合:架构演变和技术发展 开篇推荐: ?如何学习微服务大规模设计? (点击文字链接可阅读) 1、超融合:软件定义一切趋势下的诱人组合 超融合是以虚拟化为核心,将计算、存储、网络等虚拟资源融合到一台标准x86 服务器中形成基本架构单元,通过一整套虚拟化软件,实现存储、计算、网络等基础功能的虚拟化,从而使购买者到手不需要进行任何硬件的配置就可以直接使用。 “超”特指虚拟化,对应虚拟化计算架构。这一概念最早源自Nutanix 等存储初创厂商将Google/Facebook 等互联网厂商采用的计算存储融合架构用于虚拟化环境,为企业客户提供一种基于X86 硬件平台的计算存储融合产品或解决方案。超融合架构中最根本的变化是存储,由原先的集中共享式存储(SAN、NAS)转向软件定义存储,特别是分布式存储(如Object、Block、File 存储)。 “融合”是指计算和存储部署在同一个节点上,相当于多个组件部署在一个系统中,同时提供计算和存储能力。物理

融合系统中,计算和存储仍然可以是两个独立的组件,没有直接的相互依赖关系。超融合则重点以虚拟化计算为中心,计算和存储紧密相关,存储由虚拟机而非物理机 CVM(Controller VM)来控制并将分散的存储资源形成统一的存储池,而后再提供给Hypervisor 用于创建应用虚拟机。 超融合已从1.0 阶段发展至3.0 阶段,服务云平台化趋势明显,应用场景不断丰富。超融合1.0,特点是简单的硬件堆砌,将服务器、存储、网络设备打包进一个“盒子” 中;超融合2.0,其特点则是软件堆砌,一般是机架式服务器+分布式文件系统+第三方虚拟化+第三方云平台,具有更多的软件功能。 在1.0 和2.0 阶段,超融合和云之间仍旧有着“一步之遥”,并不能称之为“开箱即用”的云就绪系统,超融合步入3.0 阶段,呈现以下两个特点:

接收机系统设计

接收机系统设计 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

接收机系统设计 接收机设计是一种综合性的挑战,首先要明确设计目的,即设计那一种接收机,不同种类接收机的设计方法是大不相同的。然后根据系统设计的指标要求进行全面分析,寻找出设计重点或难点,即是高灵敏度设计;或是高线性设计;或是大动态范围设计;还是宽频带设计。不同的设计重点有不同的实现方法,根据系统要求的性能指标,首先要确定: 1.接收机的结构形式,设计系统实现的原理方框图。 确定采样超外差式结构,零中频结构,还是数字I F结构;确定采 样本振频率合成器的类型;确定是一次变频还是多次变频结构, 是否用高中频;确定信号的动态范围及接收机的线性度。 2.接收机功能电路实现及系统线路组成,设计电路图。 本章对一般接收机的设计方法不作详细的讨论,只重点讨论接收机设计中有关高线性度和大动态范围实现的具体方法,这也是本课题实现中的难点所在。 §大动态范围接收机设计方法 接收机动态范围D R(D yn a m i c R a n g e),是指接收机能够接收检测到的信号功率从最小可检测信号M D S到接收机输入1-d B压缩点之间的功率变化范围,是接收机最重要的性能指标之一。第二章对动态范围已经作了详细的论述。通常,一般的接收机都具有60d B~80d B的动态范围,现代接收机则对动态范围指标提出相当苛刻的要求,往往超过100d B。如本项目动态范围指标要求做的大于120d B。 实现接收机动态范围的功能电路是接收机中的A G C,自动增益控制电路。A G C是一个闭环负反馈自动控制系统,是接收机最重要的功能电路之一。接收机的总增益通常分配在各级A G C电路中,各级A G C电路级联构成总的增益。在接收微弱信号时,接收机要具有高增益,将微弱信号放大到要求的电平,在接收机靠近发射电台式时,A G C控制接收机的总增益,使接收机对大信号的增益很小,甚至衰减。接收机动态范围实现的示意图如下图所示。

光接收机的结构和原理

光接收机的结构和原理 2009-08-31 20:20:03| 分类:电子通信时代| 标签:|字号大中小订阅 在有线电视HFC网络中,光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为RF信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光/电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中,无论是分离组件还是一体组件,该部分的成本比重都比较大,与光发射机的激光器一样,不仅决定了光接收机的性能指标,还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成,除光接收组件外,功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合,整机也会有显著不同。有线电视技术发展到今天,光接收机采用分离元件制作放大模块已不多见,基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路,它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源,并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等,另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有14dB、18dB、20dB、22dB、27dB等,用于单模块放大器的34dB的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名,一般以推挽和功率倍增为主要区分,同时附加增益的差异与器件工艺,如果不说是砷化镓工艺模块 则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过,根据集中极电流导通时间的长短,通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器;只有在输入信号的半个周期内有集中极电流的放大器称为乙类放大器;在小于输入信号半个周期内有集中极电流的放大器称为丙类放大器。在许多实用的放大电路中,为了提高放大效率通常都需要把工作点移到截止区,即采用半周导通的乙类工作状态,这时若仍采用一个晶体管,输出信号中将只出现一半波形,将发生严重的截止失真。为了解决这个问题,可采用两只特性完全相同的晶体管,使其中一只晶体管在正半周导通,另一晶体管在负半周导通,最后在负载上合成完整波形,这就是推 挽放大电路。下图是推挽放大电路的结构示意图: 输入信号经过高频传输变压器B1,反相加在晶体管VT1和VT2上,被放大后各自在半个周期内产生半个波,在变压器B2上反相叠加,重新合成完整波形输出,由于输出信号反相叠加,其中的直流分量和非线性失真中的偶次谐波互相抵消。降低了直流工作点,使变压器中流过电流减少,从而体积可以做得较小,进一步提高了放大器的输出功率和效率;更为重要的是,偶次谐波的抵消,减少了放大器的非线性失真,对提高有线电视系统的非线性失真指标具有重要意义。在实际应用中,通常采用两组推挽电路并接的方法,构成桥式结构,则每级推挽电路在负载上的直流电压可抵消,从而简化电路结构。在推挽电路中,两个极性相同晶体管的特性应尽可能一致,两个极性相反晶体管的特性应尽可能互补,才能最大限度的抵消输出信号中的偶次谐波失真,若在电电路中引入负反馈,非线性失真还可进一步减小。 下图是商用化模块常采用的电路结构。 该模块用了共射——共基极放大推挽输出,4个NPN型晶体管两两接成共射—共基极组合放大电路,它们再通过输入、输出变压器接成推挽电路。共射—共基电路的特点是:简单高效,在选定最佳e极电流的情况下,此电路能有效的减小集电极非线性及e—b结非线性。此电路采用低射极电阻和高并联电阻取得高增益,又由于采用了低噪声晶体管使模块的噪声系数降到了尽可能低的程度。总之该电路集中了共射—共基

基于光纤通信系统的光接收机前端电路的设计毕业设计

本科毕业设计(论文)

南通大学毕业设计(论文) 原创性声明 本人声明:所呈交的论文是本人在导师指导下进行的研究成果。除了文中特别加以标注和致谢的地方外,论文中不包含其他人已发表或撰写过的研究成果。参与同一工作的其他同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 本论文使用授权说明 本人完全了解南通大学有关保留、使用学位论文的规定,即:学校有权保留论文及送交论文复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容。 (保密的论文在解密后应遵守此规定) 学生签名:指导教师签名:日期: 2

摘要 随着通信技术产业的迅速发展,光纤通信由于其频带宽、容量大、损耗低、抗辐射等诸多优点成为高速通信系统研究热点。光接收机在整个光纤通信系统中占有重要地位,而前置放大器和限幅放大器是构成光接收机的两个关键电路,所以它们的性能在很大程度上决定了光接收机甚至是光纤通信系统的性能。 为了设计一个满足性能要求、结构简单的光接收机,我们对前置放大器和限幅放大器进行了详细的分析设计,利用电路仿真软件Pspice对跨阻型前置放大器进行了直流分析、交流分析和温度分析等。也对限幅放大器进行了单元电路的设计与仿真。通过对两种电路的分析设计,实现了高增益大带宽的放大目标,可以最大地消除寄生参量的影响,减小混合电路的组装环节,使集成电路的速度性能和可靠性得到显著的提高。 关键词:光接收机,前端放大电路,前置放大器,限幅放大器

ABSTRACT With the rapid development of communication technology industry, optical fiber communication have become the high-speed communications systems research focus because of its frequency bandwidth, large capacity, low loss, anti-radiation, and many other advantages.Optical receiver plays an important role in the optical communication systems, and the preamplifier and limiting amplifier is the two key circuits which constitute the optical receiver, so their performance largely determines the performance of the optical receiver and even the optical fiber communication systems. In order to design an optical receiver which meets the performance requirements and has a simple structure, we analyze and design the preamplifier and limiting amplifier in detail, and we use the circuit simulation software Pspice for transimpedance type preamplifier’s DC analysis, AC analysis and temperature analysis. We also design and simulate unit circuit of limiting amplifier.Through the analysis of the two circuit design, we achieve the amplified target of high gain and large bandwidth, it can eliminate the effects of parasitic parameters largely and reduce the assembly of hybrid circuits,so the speed performance and reliability of integrated circuits can be improved significantly. Keywords:Optical Receiver, Front-end Amplifier, Preamplifier, Limiting Amplifier

最佳接收机

数字通信实验报告 题 目: 数字通信中的最佳接收机 讲课老师: 学生姓名: 所属院系: 信息科学与工程学院 专 业: 信息与通信工程 学 号: 完成日期:2015/4/28 数字通信中的最佳接收机 1 AGWN 最佳接收机的原理 1.1 受加性高斯白噪声恶化信号的最佳接收机 假设信道以高斯白噪声相加来恶化信号,如下图所示。 图2.1通过AWGN 信道的接收信号模型 在T ≤≤t 0间隔内,接收信号可以表示为:

()()()t n t s t m +=r (T ≤≤t 0) (1-1) 其中n(t)表示具有功率密度谱()02 1 f N = φ(W/Hz )的加性高斯白噪声的样本函数。 将接收机划分为两个部分——信号解调器和检测器,信号的解调器的功能是将接收波形变换成N 维向量。检测器的功能是根据向量r 在M 个可能信号波形中判定哪一个波形被发送。接收机的结构如图所示: 图1.2接收机结构 1.2最佳解调器 解调器是为检测器提供判断依据的,没有最优的解调器设计,检测器设计得再好也不可能使整个接收机的性能达到最佳。因此解调器的设计准则就是:从接收信号当中提取一切可以检测器所利用的信息,作为检测器的输入信号,从而尽可能使检测器不会因为判断依据不足而导致错误判断的发生。信号解调器的功能是将接收波形变换成n 维向量r=[r1 r2 …rn],其中n 是发送信号波形的维数。?最佳解调器问题为使输出信噪比最大化问题,要想解调器达到最佳,那么有两种方法可以实现分别为:相关解调器和匹配滤波器调制。下面依次展开说明。 1.2.1相关解调器 相关解调器是将接收信号和噪声分解成N 维向量,也就是把接收信号和噪声信号展开成一系列线性正交基函数()t n f 。假设接收信号通过一组并行的N 个互相关器,这些互相关器主要是计算r(t)在N 个基函数()t n f 上的投影。对于相关解调器而言,它将信号和噪声分别在一组基函数上展开,基函数能够张成信号空间,而不能张成噪声空间。因此在展开的时候,噪声必定有一部分不能由基函数的线性组合来表示,这部分就是接收信号中对检测器来说唯一无用的一部分信号。 相关解调器是实现过程为: { ()()[()()]()dt t f t n t s dt t f t k T m k T +=? ? r k mk k n s r += ( k=1,2,…,N ) } (1-2) 其中 ()dt t f s s k T m mk ? =0 ( k=1,2,…,N ) (1-3) ()()dt t f t n n k T k ?= ( k=1,2,…,N ) (1-4) 相关型解调器的原理图如下:

嵌入式系统架构发展趋势及比较分析

嵌入式系统架构发展趋势及比较分析 范虎 嵌入式系统已经广泛地应用到当今各个领域,与我们的生活息息相关,小到掌上的数字产品,大到汽车、航天飞机。提到嵌入式系统我们很快会联想到单片机,不错,MCU是最基础和常用的嵌入式系统,但是目前像FPGA、ARM、DSP、MIPS 等其他嵌入式系统应用也越来越广泛。 总的来说,嵌入式系统发展呈现如下特点:·由8位处理向32位过渡·由单核向多核过渡·向网络化功能发展·MCU、FPGA、ARM、DSP等齐头并进·嵌入式操作系统呈多元化趋势,所有的嵌入式处理器都是基于一定的架构的,即IP 核(IntellectualProperty,知识产权),生产处理器的厂家很多,但拥有IP 核的屈指可数。嵌入式系统的架构有专有架构和标准架构之分,在MCU(微控制器)产品上,像瑞萨(Renesas)、飞思卡尔(Freescale)、NEC等都拥有自己的专有IP核,而其他嵌入式处理器都是基于标准架构。 标准的嵌入式系统架构有两大体系,目前占主要地位的是所谓RISC (ReducedInstructionSetComputer,精简指令集计算机)处理器。RISC体系的阵营非常广泛,从ARM、MIPS、PowerPC、ARC、Tensilica等等,都是属于RISC 处理器的范畴。不过这些处理器虽然同样是属于RISC体系,但是在指令集设计与处理单元的结构上都各有不同,因此彼此完全不能兼容,在特定平台上所开发的软件无法直接为另一硬件平台所用,而必须经过重新编译。 其次是CISC(ComplexInstructionSetComputer,复杂指令集计算机)处理器体系,我们所熟知的Intel的X86处理器就属于CISC体系,CISC体系其实是比较低效率的体系,但由于其已经被市场长久验证,稳定性高,故常被应用于效能需求不高,但稳定性要求高的应用中,如工控设备等产品。 下面将简单介绍一下几种比较常见的RISC和CISC嵌入式系统架构。 1、RISC家族之ARM处理器 ARM公司于1991年成立于英国剑桥,主要出售芯片设计技术的授权。目前,采用ARM技术(IP)核心的处理器,即我们通常所说的ARM处理器,已遍及工业控制、消费类电子产品、通信系统、网络系统、无线系统等各类产品市场,基于ARM技术的处理器应用约占据了32位RISC微处理器75%以上的市场。 目前市面上常见的ARM处理器架构,可分为ARM7、ARM9,ARM11以及Cortex 系列。ARM也是嵌入式处理器中首先推出多核心架构的厂商。ARM首个多核心架构为ARM11MPCore,架构于原先的ARM11处理器核心之上。ARM11采用当时最先进的0.13μm制造制程,运行频率最高可达500到700MHz。如果采用90nm制程,ARM11核心的工作频率能够轻松达到1GHz以上—对于嵌入式处理器来说,这显然是个相当惊人的程度。

新型窄带调频接收机集成电路MC3362

新型窄带调频接收机集成电路MC3362/MC3363/MC3 来源:本站整理作者:佚名2009年12月22日 11:31 1 分享 订阅 [导读]新型窄带调频接收机集成电路MC3362/MC3363/MC3364/MC3367的应用单片接收机电路MC3362系列的出现,大大地推动了移动通信电台的革新。这些集成电路芯片的共同特点是:功能 关键词:频接收机 新型窄带调频接收机集成电路MC3362/MC3363/MC3364/MC3367的应用 单片接收机电路MC3362系列的出现,大大地推动了移动通信电台的革新。这些集成电路芯片的共同特点是:功能强,单片化,电压低,低功耗,灵敏度高。 新型的低功耗窄带FM单片接收机电路MC3362,已经包含了除高放外的前端电路,而且还增加了载波检测电路和用于FSK检测的比较器,它适用于窄带话音与数据链路的通信。MC3362的外引线图如图例8-1所示。 MC3362包含有二个本振,二个混频和二个中放电路,是一个从天线输入到音频预放大输出的全二次超外差式的接收电路。MC3362的第一混频工作频率可以超过450MHz。第一本振可采用灵活的LC振荡回路,也可作为PLL频率合成器的VCO,工作频率可达190MHz,在RF输入为450MHz时,还可以用外部振荡器(100mV)驱动。 MC3362具有很好的灵敏度和镜像抑制能力,12dBSINAD(信纳比),灵敏度为0.7μV。可用于FSK数据通信。有60dB动态范围的接收信号场强指示器。可用于控制有中心和无中心移动通信设备的过区切换和空闲通信检测。 图例8-2给出MC3362的一个典型应用例子。输入射频信号经第一混频器放大(18dB),并混频转换成第一中频信号(10.7MHz),第一中频信号再经过外部带通陶瓷滤波器滤波,然后,输入到第二混频器进一步放大(22dB)并混频转换成第二中频信号(255kHz)。第二中频信号再通过外部带通陶瓷滤波器滤波后,输入到限幅放大器和电频检测电路,最后通过相移鉴频器恢复成音频信号输出。另外,电平检测电路用来监视输入RF信号的场强,数据整形比较电路用于检测FSK调制信号的过零率,该电路检测数据的速率为2000~35000波特。

光接收机的结构及原理(精)

第三部分光接收机的结构及原理 在有线电视 HFC 网络中, 光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为 RF 信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光 /电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中, 无论是分离组件还是一体组件, 该部分的成本比重都比较大, 与光发射机的激光器一样, 不仅决定了光接收机的性能指标, 还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成, 除光接收组件外, 功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合, 整机也会有显著不同。有线电视技术发展到今天, 光接收机采用分离元件制作放大模块已不多见, 基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路, 它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源, 并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等, 另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有 14dB 、 18dB 、 20dB 、 22dB 、 27dB 等,用于单模块放大器的 34dB 的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的 不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名, 一般以推挽和功率倍增为主要区分, 同时附加增益的差异与器件工艺, 如果不说是砷化镓工艺模块则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过, 根据集中极电流导通时间的长短, 通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器; 只

关于AIS接收机相关问题的说明

关于AIS接收机相关问题的说明 1、接收机构成 AIS接收机由AIS接收机、串口服务器、AC/DC电源、天线2.2米(含馈线)、网线等构成。其中AIS接收机和串口服务器作为核心模块封装在一个机壳中。 2、接收机原理 AIS接收机接收船台AIS发送的信号并解析数据通过串口输出给串口服务器。串口服务器是一款小巧的嵌入式网络设备,它可以把通过串口接收到的数据转换成标准的网络协议,发送到预先设定的服务器上。 3、接收机辐射 AIS接收机本身只是个单纯的接收机,没有AIS发射。整个接收机也没有任何射频发射器件。没有任何违反法律、法规或对人体有伤害的技术缺陷。 4、接收机供电 接收机使用220V市电供电,整个接收机功耗不足1W,对电力消耗微乎其微。 5、接收机带宽 AIS接收机串口输出的波特率为38400bps,所以接收机占用带宽的理论最大值为3.84K。这大概相当于超过3000艘船同时出现在一个接收机覆盖范围内(接收机正常覆盖半径为50Km)。这在事实上是完全不可能的。通常情况下,接收机所占用带宽都小于0.1k。同时需要注意的是接收机所占用的带宽是整个网络的上行带宽,对用户下载或访问网站等企业日常办公几乎没有影响。 6、网络安全 AIS接收机需要用户为其分配一个局域网IP地址。这是因为作为一款网络设备要在一个网络内运行,必需具有一个对应的IP地址,就象很多公司使用的网络打印机,要正常工作,也必需获取一个IP地址一样。 AIS接收机采用UDP方式向船讯网服务器发送数据。UDP通信是一种非可靠的单向通信,服务器不向接收机发送任何数据。所以AIS接收机在用户局域网上不会对其它计算机和网络构成任何威胁。这可以通过简单的网络监听而予以确认。 另外,一个符合大众经验的评估也能证明这一点,AIS接收机是如此小巧,仅仅一个嵌入式串口设备根本不可能执行威胁用户网络安全的工作。同时船讯网的定位、运营及盈利模式都非常清晰,船讯网没有必要、更不可能冒那么大的法律风险去从事对自己毫意义的非法行为。

超融合:架构演变和技术发展

超融合:架构演变和技术发展 1、超融合:软件定义一切趋势下的诱人组合 超融合是以虚拟化为核心,将计算、存储、网络等虚拟资源融合到一台标准x86服务器中形成基本架构单元,通过一整套虚拟化软件,实现存储、计算、网络等基础功能的虚拟化,从而使购买者到手不需要进行任何硬件的配置就可以直接使用。 “超”特指虚拟化,对应虚拟化计算架构。这一概念最早源自Nutanix等存储初创厂商将Google/Facebook等互联网厂商采用的计算存储融合架构用于虚拟化环境,为企业客户提供一种基于X86硬件平台的计算存储融合产品或解决方案。超融合架构中最根本的变化是存储,由原先的集中共享式存储(SAN、NAS)转向软件定义存储,特别是分布式存储(如Object、Block、File存储)。 “融合”是指计算和存储部署在同一个节点上,相当于多个组件部署在一个系统中,同时提供计算和存储能力。物理融合系统中,计算和存储仍然可以是两个独立的组件,没有直接的相互依赖关系。超融合则重点以虚拟化计算为中心,计算和存储紧密相关,存储由虚拟机而非物理机CVM(ControllerVM)来控制并将分散的存储资源形成统一的存储池,而后再提供给Hypervisor用于创建应用虚拟机。

超融合已从1.0阶段发展至3.0阶段,服务云平台化趋势明显,应用场景不断丰富。超融合1.0,特点是简单的硬件堆砌,将服务器、存储、网络设备打包进一个“盒子”中;超融合2.0,其特点则是软件堆砌,一般是机架式服务器+分布式文件系统+第三方虚拟化+第三方云平台,具有更多的软件功能。 在1.0和2.0阶段,超融合和云之间仍旧有着“一步之遥”,并不能称之为“开箱即用”的云就绪系统,超融合步入3.0阶段,呈现以下两个特点: 服务的云平台化。它所交付的不仅是软硬一体的超融合方案,更是一套完整的云平台服务:用户只需要一次性投入,就能够得到完整的云服务。假设用户是第一次上云,只需满足最基本的IaaS服务即可;随着云化的深入,用户开始在云上部署业务,在需要开发测试,需要数据库、大数据等应用的时候,不需要增加任何节点,便可在已有的超融合部署环境里获得丰富的PaaS服务,如数据库、缓存、大数据、数据仓库、容器平台、人工智能、物联网等。进一

相关文档
最新文档