计算机图形学编程试8MFC明暗处理实现

计算机图形学编程试8MFC明暗处理实现
计算机图形学编程试8MFC明暗处理实现

计算机图形学编程试8MFC明暗处理实现

————————————————————————————————作者:————————————————————————————————日期:

计算机图形学编程练习8:MFC+明暗处理实现

MFC与OpenGL集成

在Windows下编程,利用MFC是一个非常便捷的方法。本次练习的主要目的,是希望同学们在MFC应用程序框架下进行OpenGL编程。为此,需要对MFC生成的应用程序进行适当的初始化,关于这方面的内容详见:

[1] Crain, Dennis. "Windows NT OpenGL: Getting Started." April 1994. (MSDN Library, Technical Articles)

[2] Rogerson, Dale. "OpenGL I: Quick Start.". December 1994. (MSDN Library, Technical Articles)

[3] D. Shreiner and The Khronos OpenGL ARB Working Group. OpenGL Programming Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1, 7th Ed., 2009. (附录D)

从设计目标来说,OpenGL是流水线结构(streamlined)、硬件无关(hardware-independent)、跨平台的3D图形编程API。但是,在实际应用时,OpenGL的具体实现是与操作系统以及图形硬件相关的。为此,操作系统需要提供像素格式(pixel format)与绘制上下文管理函数(rendering context managnment functions)。Windows操作系统提供了通用图形设备接口(generic graphics device interface, GDI)以及设备驱动实现。为了使OpenGL命令得到正确的执行,需要调用WGL函数,具体的步骤如下:

Step 1: 添加成员变量

在CView类(利用AppWizard生成)中添加如下成员变量:

// OpenGL Windows specification

HDC m_hDC; // Device Context

HGLRC m_hGLRC; // Rendering Context

CPalette m_cGLLP; // Logical Palette

Step 2: 设置像素格式

创建CView类的WM_CREATE的消息响应函数,进行像素格式的设置,例如:

int COpenGLRenderView::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

if (CView::OnCreate(lpCreateStruct) == -1)

return -1;

// TODO: Add your specialized creation code here

int nPixelFormat; // Pixel format index

HWND hWnd = GetSafeHwnd(); // Get the window's handle

m_hDC = ::GetDC(hWnd); // Get the Device context

static PIXELFORMATDESCRIPTOR pfd = {

sizeof(PIXELFORMATDESCRIPTOR), // Size of this structure

1, // Version of this structure

PFD_DRAW_TO_WINDOW | // Draw to Window (not to bitmap)

PFD_SUPPORT_OPENGL | // Support OpenGL calls in window

PFD_DOUBLEBUFFER, // Double buffered mode

PFD_TYPE_RGBA, // RGBA Color mode

24, // Want 24bit color

0,0,0,0,0,0, // Not used to select mode

0,0, // Not used to select mode

0,0,0,0,0, // Not used to select mode

32, // Size of depth buffer

0, // Not used to select mode

0, // Not used to select mode

PFD_MAIN_PLANE, // Draw in main plane

0, // Not used to select mode

0,0,0 }; // Not used to select mode

// Choose a pixel format that best matches that described in pfd

nPixelFormat = ChoosePixelFormat(m_hDC, &pfd);

// Set the pixel format for the device context

VERIFY(SetPixelFormat(m_hDC, nPixelFormat, &pfd));

// Create the rendering context

m_hGLRC = wglCreateContext(m_hDC);

// Create the palette if needed

InitializePalette();

// Make the rendering context current, perform initialization, then deselect it VERIFY(wglMakeCurrent(m_hDC, m_hGLRC));

GLSetupDef(m_hDC);

wglMakeCurrent(NULL, NULL);

return 0;

}

上述步骤的具体含义参看参考文献[1-3].

Step 3: 创建绘制上下文

该步骤在Step 2中已完成,具体的就是:

m_hGLRC = wglCreateContext(m_hDC);

Step 4: 设置调色板

创建CView类的一个成员函数,进行调色板的设置,例如:

void CTriangularPatchView::InitializePalette(void)

{

PIXELFORMATDESCRIPTOR pfd; // Pixel Format Descriptor

LOGPALETTE *pPal; // Pointer to memory for logical palette

int nPixelFormat; // Pixel format index

int nColors; // Number of entries in palette

int i; // Counting variable

BYTE RedRange,GreenRange,BlueRange;

// Range for each color entry (7,7,and 3)

// Get the pixel format index and retrieve the pixel format description nPixelFormat = GetPixelFormat(m_hDC);

DescribePixelFormat(m_hDC, nPixelFormat, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

// Does this pixel format require a palette? If not, do not create a

// palette and just return NULL

if (!(pfd.dwFlags & PFD_NEED_PALETTE))

return;

// Number of entries in palette. 8 bits yeilds 256 entries

nColors = 1 << https://www.360docs.net/doc/5d8142101.html,olorBits;

// Allocate space for a logical palette structure plus all the palette entries pPal = (LOGPALETTE*)malloc(sizeof(LOGPALETTE) +nColors*sizeof(PALETTEENTRY));

// Fill in palette header

pPal->palVersion = 0x300; // Windows 3.0

pPal->palNumEntries = nColors; // table size

// Build mask of all 1's. This creates a number represented by having

// the low order x bits set, where x = pfd.cRedBits, pfd.cGreenBits, and

// pfd.cBlueBits.

RedRange = (1 << pfd.cRedBits) -1;

GreenRange = (1 << pfd.cGreenBits) - 1;

BlueRange = (1 << pfd.cBlueBits) -1;

// Loop through all the palette entries

for (i = 0; i < nColors; i++)

{

// Fill in the 8-bit equivalents for each component

pPal->palPalEntry[i].peRed = (i >> pfd.cRedShift) & RedRange;

pPal->palPalEntry[i].peRed = (unsigned char)(

(double) pPal->palPalEntry[i].peRed * 255.0 / RedRange);

pPal->palPalEntry[i].peGreen = (i >> pfd.cGreenShift) & GreenRange;

pPal->palPalEntry[i].peGreen = (unsigned char)(

(double)pPal->palPalEntry[i].peGreen * 255.0 / GreenRange);

pPal->palPalEntry[i].peBlue = (i >> pfd.cBlueShift) & BlueRange;

pPal->palPalEntry[i].peBlue = (unsigned char)(

(double)pPal->palPalEntry[i].peBlue * 255.0 / BlueRange);

pPal->palPalEntry[i].peFlags = (unsigned char) NULL;

}

// Create the palette

m_cGLLP.CreatePalette(pPal);

// Go ahead and select and realize the palette for this device context

SelectPalette(m_hDC,(HPALETTE)m_cGLLP,FALSE);

RealizePalette(m_hDC);

// Free the memory used for the logical palette structure

free(pPal);

}

至此,已经可以调用OpenGL函数了,一定要记住:OpenGL命令只在获取了正确的绘制上下文后才能正确执行,即

wglMakeCurrent(m_hDC, m_hGLRC);

// issue OpenGL commands

…..

wglMakeCurrent(m_hDC, NULL);

Step 5: 重载OnEraseBkgnd函数

创建CView类的WM_ERASEBKGND的消息响应函数,防止Windows进行额外的背景清除操作,例如:BOOL COpenGLRenderView::OnEraseBkgnd(CDC* pDC)

{

// TODO: Add your message handler code here and/or call default

return FALSE;

}

Step 6: 设置OpenGL的基本参数(可选)

在CView类中添加头文件:

#include

#include

#include

以及成员函数:

void GLSetupDef(void *pData);

创建CView类的一个成员函数,进行OpenGL的基本参数的设置,例如:

void COpenGLRenderView::GLSetupDef(void *pData)

{

// set up clear color

glClearColor(1.0f, 1.0f, 1.0f, 1.0f);

// set up lighting

GLfloat light_position0[4] = {52.0f, 16.0f, 50.0f, 0.0f}; GLfloat light_position1[4] = {26.0f, 48.0f, 50.0f, 0.0f}; GLfloat light_position2[4] = {-16.0f, 52.0f, 50.0f, 0.0f};

GLfloat direction0[3] = {-52.0f, -16.0f, -50.0f};

GLfloat direction1[3] = {-26.0f, -48.0f, -50.0f};

GLfloat direction2[3] = {16.0f, -52.0f, -50.0f};

GLfloat color0[4] = {1.0f, 0.0f, 0.0f, 1.0f};

GLfloat color1[4] = {0.0f, 1.0f, 0.0f, 1.0f};

GLfloat color2[4] = {0.0f, 0.0f, 1.0f, 1.0f};

glLightfv(GL_LIGHT0, GL_POSITION, light_position0); glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, direction0); glLightfv(GL_LIGHT0, GL_DIFFUSE, color0);

glLightfv(GL_LIGHT0, GL_SPECULAR, color0);

glLightfv(GL_LIGHT1, GL_POSITION, light_position1); glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, direction1); glLightfv(GL_LIGHT1, GL_DIFFUSE, color1);

glLightfv(GL_LIGHT1, GL_SPECULAR, color1);

glLightfv(GL_LIGHT2, GL_POSITION, light_position2); glLightfv(GL_LIGHT2, GL_SPOT_DIRECTION, direction2); glLightfv(GL_LIGHT2, GL_DIFFUSE, color2);

glLightfv(GL_LIGHT2, GL_SPECULAR, color2);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glEnable(GL_LIGHT1);

glEnable(GL_LIGHT2);

// set up materials

GLfloat ambient[4] = {0.3f, 0.3f, 0.3f, 0.5f};

GLfloat material_ambient[4] = {0.0f, 0.0f, 0.0f, 0.0f}; GLfloat material_diffuse[4] = {1.0f, 1.0f, 1.0f, 0.3f}; GLfloat material_specular[4] = {0.5f, 0.5f, 0.5f, 0.5f}; GLfloat material_shininess = 51.2f;

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient);

glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, material_specular);

glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, material_diffuse);

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, material_ambient);

glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, material_shininess);

// enable depth test

glDepthFunc(GL_LESS);

glEnable(GL_DEPTH_TEST);

// enable cull face

// glCullFace(GL_BACK);

// glEnable(GL_CULL_FACE);

// set up point size and line width

glPointSize(1.0);

glLineWidth(1.0);

// set up point, line, polygon anti-aliasing mode

// glEnable(GL_POINT_SMOOTH);

// glHint(GL_POINT_SMOOTH_HINT, GL_NICEST);

// glEnable(GL_LINE_SMOOTH);

// glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);

glEnable(GL_POLYGON_SMOOTH);

glHint(GL_POLYGON_SMOOTH_HINT, GL_NICEST);

// set up the direction of front face

glFrontFace(GL_CCW);

// glPolygonMode(GL_BACK, GL_LINE);

}

Step 7: 设置绘制模式、重载OnSize函数、鼠标响应函数处理等(可选) 略,参见计算机图形学编程练习6及示例代码。

作业要求

●本次练习的主要学习目标:

?学习使用MFC编程:像素格式、调色板、绘制上下文;

?学习OpenGL编程:光照模型;

●在计算机图形学编程练习6的基础上,实现本次作业的具体要求:

?将程序从GLUT框架移植到MFC框架;

?给点光源设置属性,实现聚光灯的效果;

?给正十二面体设置材质(具体值不限),实现明暗处理;

下面是一些常见材质属性,同学们可以依据此表设置材质:

计算机图形学实验报告 (2)

中南大学信息科学与工程学院 实验报告实验名称 实验地点科技楼四楼 实验日期2014年6月 指导教师 学生班级 学生姓名 学生学号 提交日期2014年6月

实验一Window图形编程基础 一、实验类型:验证型实验 二、实验目的 1、熟练使用实验主要开发平台VC6.0; 2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序; 3、掌握Window图形编程的基本方法; 4、学会使用基本绘图函数和Window GDI对象; 三、实验内容 创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求: 1、用户可以通过菜单选择绘图颜色; 2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形; 四、实验要求与指导 1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。 2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形 其中“曲线”项有级联菜单,包括:圆、椭圆。 3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果: 六、实验主要代码 1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this); 在OnDraw函数中添加: m_pDC=new CClientDC(this); m_pDC->MoveTo(10,10); m_pDC->LineTo(100,100); m_pDC->SetPixel(100,200,RGB(0,0,0)); m_pDC->TextOut(100,100); 2、画圆: void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC) { int dx = xb - xa; int dy = yb - ya; int Steps, k; float xIncrement,yIncrement; float x = xa,y= ya; if(abs(dx)>abs(dy))

计算机图形学作业-Display-答案分析

计算机图形学作业I 一.判断题 1.齐次坐标提供了坐标系变换的有效方法,但仍然无法表示无穷远的点;(×) 2.若要对某点进行比例、旋转变换,首先需要将坐标原点平移至该点,在新的坐标系下做比例或旋转变换,然后在将原点平移回去;(√) 3. 相似变换是刚体变换加上等比缩放变换;(√) 4. 保距变换是刚体变换加上镜面反射;(√) 5. 射影变换保持直线性,但不保持平行性。(√) 二、填空题 1.透视投影的视见体为截头四棱锥形状;平行投影的视见体为长方体形状。 2.字符的图形表示可以分为矢量表示和点阵表示两种形式。 3.仿射变换保持直线的平行性 4.刚体变换保持长度 5.保角变换保持向量的角度 三、单项选择题 1. 分辨率为1024×1024的显示器各需要多少字节位平面数为24的帧缓存?( D) A. 512KB; B. 1MB; C. 2MB; D. 3MB ; 2. 在透视投影中,主灭点的最多个数是( C ) A 1; B 2; C 3; D 4 3. 以下关于图形变换的论述不正确的是( B ) A. 平移变换不改变图形大小和形状,只改变图形位置; B. 拓扑关系不变的几何变换不改变图形的连接关系和平行关系; C.旋转变换后各图形部分间的线性关系和角度关系不变,变换后直线的长度不变 D.错切变换虽然可引起图形角度的改变,但不会发生图形畸变; 4. 使用下列二维图形变换矩阵:将产生变换的结果为( D ) A. 图形放大2倍; B. 图形放大2倍,同时沿X、Y1个绘图单位; C.沿X坐标轴方向各移动2个绘图单位; D.沿X坐标轴方向放大2倍,同时沿X、Y坐标轴方向各平移1个绘图单位。 5. 下列有关投影的叙述语句中,正确的论述为(B ) A. 透视投影具有近小远大的特点; B. 平行投影的投影中心到投影面距离是无限的; C. 透视投影变换中,一组平行于投影面的线的投影产生一个灭点; T =

计算机图形学教程课后习题参考答案.

第一章 1、试述计算机图形学研究的基本内容? 答:见课本P5-6页的1.1.4节。 2、计算机图形学、图形处理与模式识别本质区别是什么?请各举一例说明。 答:计算机图形学是研究根据给定的描述,用计算机生成相应的图形、图像,且所生成的图形、图像可以显示屏幕上、硬拷贝输出或作为数据集存在计算机中的学科。计算机图形学研究的是从数据描述到图形生成的过程。例如计算机动画制作。 图形处理是利用计算机对原来存在物体的映像进行分析处理,然后再现图像。例如工业中的射线探伤。 模式识别是指计算机对图形信息进行识别和分析描述,是从图形(图像)到描述的表达过程。例如邮件分捡设备扫描信件上手写的邮政编码,并将编码用图像复原成数字。 3、计算机图形学与CAD、CAM技术关系如何? 答:见课本P4-5页的1.1.3节。 4、举3个例子说明计算机图形学的应用。 答:①事务管理中的交互绘图 应用图形学最多的领域之一是绘制事务管理中的各种图形。通过从简明的形式呈现出数据的模型和趋势以增加对复杂现象的理解,并促使决策的制定。 ②地理信息系统 地理信息系统是建立在地理图形基础上的信息管理系统。利用计算机图形生成技术可以绘制地理的、地质的以及其它自然现象的高精度勘探、测量图形。 ③计算机动画 用图形学的方法产生动画片,其形象逼真、生动,轻而易举地解决了人工绘图时难以解决的问题,大大提高了工作效率。 5、计算机绘图有哪些特点? 答:见课本P8页的1.3.1节。 6、计算机生成图形的方法有哪些? 答:计算机生成图形的方法有两种:矢量法和描点法。 ①矢量法:在显示屏上先给定一系列坐标点,然后控制电子束在屏幕上按一定的顺序扫描,逐个“点亮”临近两点间的短矢量,从而得到一条近似的曲线。尽管显示器产生的只是一些短直线的线段,但当直线段很短时,连成的曲线看起来还是光滑的。 ②描点法:把显示屏幕分成有限个可发亮的离散点,每个离散点叫做一个像素,屏幕上由像素点组成的阵列称为光栅,曲线的绘制过程就是将该曲线在光栅上经过的那些像素点串接起来,使它们发亮,所显示的每一曲线都是由一定大小的像素点组成的。当像素点具有多种颜色或多种灰度等级时,就可以显示彩色图形或具有不同灰度的图形。 7、当前计算机图形学研究的课题有哪些? 答:见课本P10-11页的1.4节。

计算机图形学实验报告,DOC

欢迎共阅

目录

实验一直线的DDA算法 一、【实验目的】 1.掌握DDA算法的基本原理。 2.掌握 3. 1.利用 2.加强对 四 { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } voidDDALine(intx0,inty0,intx1,inty1) { glColor3f(1.0,0.0,0.0); intdx,dy,epsl,k; floatx,y,xIncre,yIncre; dx=x1-x0;dy=y1-y0;

x=x0;y=y0; if(abs(dx)>abs(dy))epsl=abs(dx); elseepsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { glPointSize(3); glBegin(GL_POINTS); glEnd(); } } { } { } { glutInitWindowSize(400,300); glutInitWindowPosition(100,120); glutCreateWindow("line"); Initial(); glutDisplayFunc(Display); glutReshapeFunc(winReshapeFcn); glutMainLoop(); return0; }

计算机图形学作业-Display-答案

计算机图形学作业 I 一.判断题 1.齐次坐标提供了坐标系变换的有效方法,但仍然无法表示无穷远的点;(×) 2.若要对某点进行比例、旋转变换,首先需要将坐标原点平移至该点,在新的坐标系下做比例或旋转变换,然后在将原点平移回去;(√) 3. 相似变换是刚体变换加上等比缩放变换;(√) 4. 保距变换是刚体变换加上镜面反射;(√) 5. 射影变换保持直线性,但不保持平行性。(√) 二、填空题 1.透视投影的视见体为截头四棱锥形状;平行投影的视见体为长方体形状。 2.字符的图形表示可以分为矢量表示和点阵表示两种形式。 3.仿射变换保持直线的平行性 4.刚体变换保持长度 5.保角变换保持向量的角度 三、单项选择题 1. 分辨率为1024×1024的显示器各需要多少字节位平面数为24的帧缓存?( D) A. 512KB; B. 1MB; C. 2MB; D. 3MB ; 2. 在透视投影中,主灭点的最多个数是( C ) A 1; B 2; C 3; D 4 3. 以下关于图形变换的论述不正确的是( B ) A. 平移变换不改变图形大小和形状,只改变图形位置; B. 拓扑关系不变的几何变换不改变图形的连接关系和平行关系; C.旋转变换后各图形部分间的线性关系和角度关系不变,变换后直线的长度不变 D.错切变换虽然可引起图形角度的改变,但不会发生图形畸变; 4. 使用下列二维图形变换矩阵:将产生变换的结果为( D ) A. 图形放大2倍; B. 图形放大2倍,同时沿X、Y1个绘图单位; C.沿X坐标轴方向各移动2个绘图单位; D.沿X坐标轴方向放大2倍,同时沿X、Y坐标轴方向各平移1个绘图单位。 5. 下列有关投影的叙述语句中,正确的论述为(B ) A. 透视投影具有近小远大的特点; B. 平行投影的投影中心到投影面距离是无限的; C. 透视投影变换中,一组平行于投影面的线的投影产生一个灭点; T =

计算机图形学实验二

实验报告 课程名称:计算机图形学 实验项目:区域填充算法 实验仪器:计算机 系别:计算机学院 专业:计算机科学与技术 班级姓名:计科1602/ 学号:2016011 日期:2018-12-8 成绩: 指导教师:

一.实验目的(Objects) 1.实现多边形的扫描线填充算法。 二.实验内容 (Contents) 实现多边形的扫描线填充算法,通过鼠标,交互的画出一个多边形,然后利用种子填充算法,填充指定的区域。不能使用任何自带的填充区域函数,只能使用画点、画线函数或是直接对图像的某个像素进行赋值操作;

三.实验内容 (Your steps or codes, Results) //widget.cpp //2016CYY Cprogramming #include"widget.h" #include #include #include using namespace std; #define H 1080 #define W 1920 int click = 0; //端点数量 QPoint temp; QPoint first; int result = 1; //判断有没有结束 int sign = 1; //2为画线 int length = 5; struct edge { int ymax; float x; float dx; edge *next; }; edge edge_; QVector edges[H]; QVector points;//填充用 bool fin = false; QPoint *Queue = (QPoint *)malloc(length * sizeof(QPoint)); //存放端点的数组 Widget::Widget(QWidget *parent) : QWidget(parent) { } Widget::~Widget() { } void Widget::mouseMoveEvent(QMouseEvent *event) { setMouseTracking(true); if (click > 0 && result != 0) { startPt = temp; endPt =event->pos(); sign = 2; update(); } } void Widget::mouseReleaseEvent(QMouseEvent *event) { if (event->button() == Qt::LeftButton) { } else if (event->button() == Qt::RightButton) { sign = 2;

计算机图形学实验指导书1

佛山科学技术学院计算机图形学实验指导书 李晓东编 电信学院计算机系 2011年11月

实验1 直线段的扫描转换 实验类型:设计性 实验类别:专业实验 实验目的 1.通过实验,进一步理解直线段扫描转换的DDA算法、中点bresenham算法及 bresenham算法的基本原理; 2.掌握以上算法生成直线段的基本过程; 3.通过编程,会在C/C++环境下完成用DDA算法、中点bresenham算法及 bresenham算法对任意直线段的扫描转换。 实验设备及实验环境 计算机(每人一台) VC++6.0或其他C/C++语言程序设计环境 实验学时:2学时 实验内容 用DDA算法中点bresenham算法及bresenham算法实现任意给定两点的直线段的绘制(直线宽度和线型可自定)。 实验步骤: 1、复习有关算法的基本原理,明确实验目的和要求; 2、依据算法思想,绘制程序流程图; 3、设计程序界面,要求操作方便; 4、用C/C++语言编写源程序并调试、执行; 5、分析实验结果 6、对程序设计过程中出现的问题进行分析与总结; 7、打印源程序或把源程序以文件的形式提交; 8、按格式要求完成实验报告。 实验报告要求: 1、各种算法的基本原理; 2、各算法的流程图 3、实验结果及分析(比较三种算法的特点,界面插图并注明实验条件) 4、实验总结(含问题分析及解决方法)

实验2 圆的扫描转换 实验类型:设计性 实验类别:专业实验 实验目的 1、通过实验,进一步理解和掌握中点bresenham画圆算法的基本原理; 2、掌握以上算法生成圆和圆弧的基本过程; 3、掌握在C/C++环境下完成用中点bresenham算法圆或圆弧的绘制方法。实验设备及实验环境 计算机(每人一台) VC++6.0或其他C/C++语言程序设计环境 实验学时:2学时 实验内容 用中点(Besenham)算法实现圆或圆弧的绘制。 实验步骤 1.复习有关圆的生成算法,明确实验目的和要求; 2.依据算法思想,绘制程序流程图(注意圆弧生成时的输入条件); 3.设计程序界面,要求操作方便; 4.用C/C++语言编写源程序并调试、执行; 5.分析实验结果 6.对程序设计过程中出现的问题进行分析与总结; 7.打印源程序或把源程序以文件的形式提交; 8.按格式要求完成实验报告。 实验报告要求: 1.分析算法的工作原理; 2.画出算法的流程图 3.实验结果及分析(比较圆与圆弧生成算法的不同) 4.实验总结(含问题分析及解决方法)

计算机图形学作业答案

计算机图形学作业答案 第一章序论 第二章图形系统 1.什么是图像的分辨率? 解答:在水平和垂直方向上每单位长度(如英寸)所包含的像素点的数目。 2.计算在240像素/英寸下640×480图像的大小。 解答:(640/240)×(480/240)或者(8/3)×2英寸。 3.计算有512×512像素的2×2英寸图像的分辨率。 解答:512/2或256像素/英寸。 第三章二维图形生成技术 1.一条直线的两个端点是(0,0)和(6,18),计算x从0变到6时y所对应的值,并画出结果。 解答:由于直线的方程没有给出,所以必须找到直线的方程。下面是寻找直线方程(y =mx+b)的过程。首先寻找斜率: m =⊿y/⊿x =(y 2-y 1 )/(x 2 -x 1 )=(18-0)/(6-0) = 3 接着b在y轴的截距可以代入方程y=3x+b求出 0=3(0)+b。因此b=0,所以直线方程为y=3x。 2.使用斜截式方程画斜率介于0°和45°之间的直线的步骤是什么? 解答: (1)计算dx:dx=x 2-x 1 。 (2)计算dy:dy=y 2-y 1 。 (3)计算m:m=dy/dx。 (4)计算b: b=y 1-m×x 1 (5)设置左下方的端点坐标为(x,y),同时将x end 设为x的最大值。如果 dx < 0,则x=x 2、y=y 2 和x end =x 1 。如果dx > 0,那么x=x 1 、y=y 1 和x end =x 2 。 (6)测试整条线是否已经画完,如果x > x end 就停止。 (7)在当前的(x,y)坐标画一个点。 (8)增加x:x=x+1。 (9)根据方程y=mx+b计算下一个y值。 (10)转到步骤(6)。 3.请用伪代码程序描述使用斜截式方程画一条斜率介于45°和-45°(即|m|>1)之间的直线所需的步骤。

计算机图形学基础教程实验报告

湖北民族学院信息工程学院实验报告 (数字媒体技术专业用) 班级:0312413姓名:谌敦斌学号:031241318实验成绩: 实验时间:2013年10 月14 日9、10 节实验地点:数媒实验室课程名称:计算机图形学基础教程实验类型:设计型 实验题目:直线与圆的绘制 一、实验目的 通过本次实验,熟练掌握DDA、中点、Bresenham直线绘制方法和中点、Bresenham圆的画法,能够在vc环境下独立完成实验内容,逐渐熟悉opengl的语法特点,提高程序基本绘图的能力。 二、实验环境(软件、硬件及条件) Microsoft vc++6.0 多媒体计算机 三、实验内容 1.从DDA、中点、Bresenham画线法中任选一种,完成直线的绘制。 2.从中点、Bresenham画圆法中任选一种,完成圆的绘制。 四、实验方法与步骤 打开vc++6.0,新建一个工程,再在工程里面建一个.cpp文件,编辑程序,编译连接后执行即可。

程序如下 bresenham画线法: #include #include int bresenham(int x0,int y0,int x1,int y1,int color) { int x,y,dx,dy,e,i; dx=x1-x0; dy=y1-y0; e=-dx; y=y0; for(x=x0;x<=x1;x++) { putpixel(x,y,color); e+=2*dy; if(e>=0) { y++; e-=2*dx; } } return 0; } int main() { initgraph(640,480); bresenham(0,0,500,200,255); while(!kbhit()) { } closegraph(); return 0; } Bresenham画圆法: #include #include int circlepoints(int x,int y,int color) { putpixel(255+x,255+y,color); putpixel(255+y,255+x,color); putpixel(255-x,255+y,color);

计算机图形学课程参考文献

《计算机图形学》课程参考文献 [1 Kenneth R. Castleman, “Digital Image Processing”, Prentice-Hall International,Inc, 1996 [2] James Sharman. The Marching Cubes Algorithm[EB]. https://www.360docs.net/doc/5d8142101.html,/. [3] William E. Lorensen, Harvey E. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algrorithm[J].Computer Graphics, 1987, 21(4). [4] Jan Horn. Metaballs程序[CP]. http://www.sulaco.co.za. [5] 唐泽圣,等.三维数据场可视化[M].北京:清华大学出版社,1999.177-179. [6] 白燕斌,史惠康,等.OpenGL三维图形库编程指南[M].北京:机械工业出版社,1998. [7] 费广正,芦丽丹,陈立新.可视化OpenGL程序设计[M].北京:清华大学出版社,2001. [8] 田捷,包尚联,周明全.医学影像处理与分析[M].北京:电子工业出版社,2003. [9] 三维表面模型的重构、化简、压缩及其在计算机骨科手术模拟中的应用[R]. https://www.360docs.net/doc/5d8142101.html,/~yike/uthesis.pdf ; [10] 首套中国数字化可视人体二维图像[DB]. http://www.chinesevisiblehuman. com/ pic/pictype.asp [11] 季雪岗,王晓辉,张宏林,等.Delphi编程疑难详解[M].北京:人民邮电出版社,2000. [12] 郑启华.PASCAL程序设计(第二版)[M].北京:清华大学出版社,1996. [13] 涂晓斌,谢平,陈海雷,蒋先刚.实用微机工程绘图实验教程[M].西南交通大学出版社,2004,4. [14] David F.Rogers.计算机图形学算法基础[M].北京:电子工业出版社,2002. [15] 李信真,车刚明,欧阳洁,封建湖.计算方法[M].西安:西北工业大学出版社,2000. [16] Paul Bourke Polygonising a scalar field [CP]. http://astronomy. https://www.360docs.net/doc/5d8142101.html,.au/ ~pbourke/ modelling/polygonise/ [17] 刘骏.Delphi数字图像处理及高级应用[M].北京:科学出版社,2003. [18] 李弼程,彭天强,彭波,等.智能图像处理技术[M].北京:电子工业出版社,2004. [19] Kenneth R.Castleman著,朱志刚,石定机,等译.数字图像处理[M].北京:电子工业出版社,2002. [20] Milan Sonka, Vaclav Hlavac, Roger Boyle.Image Processing, Analysis, and Machine Vision [M].北京:人民邮电出版社,2003. [21] 阮秋奇.数字图像处理学[M]. 北京:电子工业出版社, 2001. [22] 刘宏昆,等.Delphi应用技巧与常见问题[M]. 北京:机械工业出版社, 2003. [23] 张增强,李鲲程,等.专家门诊—Delphi开发答疑300问[M].北京:人民邮电出版社,2003.6.

2016年春《计算机图形学》作业 (答案)

2016年北京大学现代远程教育《计算机图形学》作业题 注意事项: 1.本作业题中所标注的章节均以学习指导和课件为准; 2.作业请独立自主完成,不要抄袭。 一、填空题 1.(第1章)图形是由点、线、面、体等几何要素和明暗、灰度(亮度)、色彩等非几何要素构成的,从现实世界中抽象出来的带有灰度、色彩及形状的图或形。 2.(第2章)一个计算机图形系统至少应具有计算、存储、输入、输出、交互等基本功能; 3.(第2章)光栅扫描图形显示器是画点设备,显示一幅图像所需要的时间等于显示整个光栅所需的时间,而与图像的复杂程度无(填“有”或“无”)关; 4.(第3章)在计算机图形学中,多边形有两种重要的表示方法:顶点表示和点阵表示。 5.(第3章)多边形填充的扫描线算法先求出扫描线与多边形边的交点,利用____扫描线的连续性求出多边形与扫描线相交的连续区域,然后利用多边形边的连续性,求出下一条扫描线与多边形的交点,对所有扫描线由下到上依次处理。 6.(第3章)将区域内的一点(种子)赋予给定的颜色,然后将这种颜色扩展到整个区域内的过程叫区域填充;区域的表示方法有内点表示和 边界表示两种。 7.(第4章)常用坐标系一般可以分为世界坐标系、局部坐标系、观察坐标系、设备坐标系、标准化设备坐标系。

8.(第4章)对于基本几何变换,一般有平移、旋转、反射和错切等。这些基本几何变换都是相对于 坐标原点 和 坐标轴 进行的几何变换。 9.(第4章)在三维空间中的物体进行透视投影变换,最多可能产生 3 个主灭点。 10.(第6章)根据输入数据的不同性质,图形核心系统(GKS)和三维图形系统 (PHIGS)把输入设备在逻辑上分成以下几类: 定位___设备、 笔画__设备、 定值 设备、 选择 设备、 拾取 设备、 字符串 设备。 11.(第7章)隐藏面和隐藏线的消除有两种基本的算法,一种是基于 图像空间 的方法,一种是基于 物体空间 的方法。 12.(第7章)扫描线z 缓冲器算法所用到的数据结构包括一个 多边形y 筒 、一个 边y 筒 、一个 多边形活化表__、一个 边活化表___; 13.(第8章)通常,人们把反射光考虑成3个分量的组合,这3个分量分别是_ 环境光 反射、 漫 反射和 镜面 反射。 14.(第8章)为了解决由多个平面片近似表示曲面物体的绘制问题,人们提出了各种的简单算法,其中最具代表性的两种方法: Gouraud 光亮度插值技术 和 Phong 法向量插值技术 。 15.(第9章)对于三次多项式曲线,常用四个几何条件进行描述:两端点的位置P 0=P (0)和P 1=P (1);两端点的切矢量和;那么参数曲线的多项式表示为,其中,F 0(t )=___13223+-t t __,F 1(t )=__2332t t +-___,G 0(t )=__t t t +-232___, G 1(t )=____23t t -___。 二、选择题 1.(第2章)下列不属于图形输入设备的是____D____; A .键盘 B. 鼠标 C. 扫描仪 D. 打印机

一种基于计算几何方法的最小包容圆求解算法.kdh

2007年 工 程 图 学 学 报2007 第3期 JOURNAL OF ENGINEERING GRAPHICS No.3一种基于计算几何方法的最小包容圆求解算法 张 勇, 陈 强 (清华大学机械工程系先进成形制造重点实验室,北京 100084) 摘要:为实现点集最小包容圆(最小外接圆)的求解,将计算几何中的α-壳的概 念应用到最小包容圆的计算过程,提出了一种精确有效的最小包容圆求解算法。根据α-壳定 义及最小包容圆性质,证明当1/α等于最小包容圆半径时点集的α-壳顶点共圆,1/α小于最小 包容圆半径时α-壳不存在,1/α大于最小包容圆半径时随着1/α减小α-壳顶点数逐渐减小的规 律。将α-壳顶点数目作为搜索最小包容圆半径的依据,实现了最小包容圆半径的搜索和最小包容圆的求解。 关键词:计算机应用;优化算法;计算几何;最小包容圆;α-壳 中图分类号:TP 391 文献标识码:A 文章编号:1003-0158(2007)03-0097-05 Algorithm for Minimum Circumscribed Circle Detection Based on Computational Geometry Technique ZHANG Yong, CHEN Qiang ( Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China ) Abstract: α-hulls are applied to calculate the minimum circumscribed circle (MCC) of point set and an accurate and effective method for MCC detection is established through finding the least squares circle of the point set and iteratively approaching the MCC with recursive subdivision. Several theorems concerning the properties of α-hulls are presented. If 1/α is equal to the radius of points’ MCC, all vertices of the α-hull will be on the same circle. When 1/α is larger than the MCC’s radius, the number of vertices of α-hulls will decrease with decreasing of 1/α, and the number of vertices’ number will reach zero when 1/α is smaller than MCC’s radius. From the above rules, an algorithm for detecting MCC is developed, and experimental results show this algorithm is reliable. Key words: computer application; optimized algorithm; computational geometry; minimum circumscribed circle; α-hull 收稿日期:2005-12-20 基金项目:国家自然科学基金资助项目(50275083);高校博士点基金资助项目(20020003053)

计算机图形学上机实验指导

计算机图形学上机实验指导 指导教师:张加万老师 助教:张怡 2009-10-10

目录 1.计算机图形学实验(一) – OPENGL基础 ..................................... - 1 - 1.1综述 (1) 1.2在VC中新建项目 (1) 1.3一个O PEN GL的例子及说明 (1) 2.计算机图形学实验(二) – OPENGL变换 ..................................... - 5 - 2.1变换 (5) 3.计算机图形学实验(三) - 画线、画圆算法的实现....................... - 9 - 3.1MFC简介 (9) 3.2VC6的界面 (10) 3.3示例的说明 (11) 4.计算机图形学实验(四)- 高级OPENGL实验...................... - 14 - 4.1光照效果 (14) 4.2雾化处理 (16) 5.计算机图形学实验(五)- 高级OPENGL实验........................ - 20 - 5.1纹理映射 (20) 5.2反走样 (24) 6.计算机图形学实验(六) – OPENGL IN MS-WINDOWS .......... - 27 - 6.1 实验目标: (27) 6.2分形 (28)

1.计算机图形学实验(一) – OpenGL基础 1.1综述 这次试验的目的主要是使大家初步熟悉OpenGL这一图形系统的用法,编程平台是Visual C++,它对OpenGL提供了完备的支持。 OpenGL提供了一系列的辅助函数,用于简化Windows操作系统的窗口操作,使我们能把注意力集中到图形编程上,这次试验的程序就采用这些辅助函数。 本次实验不涉及面向对象编程,不涉及MFC。 1.2在VC中新建项目 1.2.1新建一个项目 选择菜单File中的New选项,弹出一个分页的对话框,选中页Projects中的Win32 Console Application项,然后填入你自己的Project name,如Test,回车即可。VC为你创建一个工作区(WorkSpace),你的项目Test就放在这个工作区里。 1.2.2为项目添加文件 为了使用OpenGL,我们需要在项目中加入三个相关的Lib文件:glu32.lib、glaux.lib、opengl32.lib,这三个文件位于c:\program files\microsoft visual studio\vc98\lib目录中。 选中菜单Project->Add To Project->Files项(或用鼠标右键),把这三个文件加入项目,在FileView中会有显示。这三个文件请务必加入,否则编译时会出错。或者将这三个文件名添加到Project->Setting->Link->Object/library Modules 即可。 点击工具条中New Text File按钮,新建一个文本文件,存盘为Test.c作为你的源程序文件,再把它加入到项目中,然后就可以开始编程了。 1.3一个OpenGL的例子及说明 1.3.1源程序 请将下面的程序写入源文件Test.c,这个程序很简单,只是在屏幕上画两根线。 #include

计算机图形学 图形的几何变换的实现算法教程文件

计算机图形学图形的几何变换的实现算 法

实验二 图形的几何变换的实现算法 班级 08信计 学号 59 姓名 分数 一、实验目的和要求: 1、掌握而为图形的基本几何变换,如平移,旋转,缩放,对称,错切变换;。 2、掌握OpenGL 中模型变换函数,实现简单的动画技术。 3、学习使用OpenGL 生成基本图形。 4、巩固所学理论知识,加深对二维变换的理解,加深理解利用变换矩阵可由简单图形得到复杂图形。加深对变换矩阵算法的理解。 编制利用旋转变换绘制齿轮的程序。编程实现变换矩阵算法,绘制给出形体的三视图。调试程序及分析运行结果。要求每位学生独立完成该实验,并上传实验报告。 二、实验原理和内容: . 原理: 图像的几何变换包括:图像的空间平移、比例缩放、旋转、仿射变换和图像插值。 图像几何变换的实质:改变像素的空间位置,估算新空间位置上的像素值。 图像几何变换的一般表达式:[,][(,),(,)]u v X x y Y x y = ,其中,[,]u v 为变换后图像像素的笛卡尔坐标, [,]x y 为原始图像中像素的笛卡尔坐标。这样就得到了原始图像与变换后图像的像素的对应关系。 平移变换:若图像像素点 (,)x y 平移到 00(,)x x y y ++,则变换函数为 0(,)u X x y x x ==+, 0(,)v Y x y y y ==+,写成矩阵表达式为: 00x u x y v y ??????=+???????????? 其中,x 0和y 0分别为x 和y 的坐标平移量。 比例缩放:若图像坐标 (,)x y 缩放到( ,x y s s )倍,则变换函数为:

计算机图形学实验报告

计算机图形学 实验报告 学号:20072115 姓名: 班级:计算机 2班 指导老师:何太军 2010.6.19

实验一、Windows 图形程序设计基础 1、实验目的 1)学习理解Win32 应用程序设计的基本知识(SDK 编程); 2)掌握Win32 应用程序的基本结构(消息循环与消息处理等); 3)学习使用VC++编写Win32 Application 的方法。 4)学习MFC 类库的概念与结构; 5)学习使用VC++编写Win32 应用的方法(单文档、多文档、对话框); 6)学习使用MFC 的图形编程。 2、实验内容 1)使用WindowsAPI 编写一个简单的Win32 程序,调用绘图API 函数绘制若干图形。(可选任务) 2 )使用MFC AppWizard 建立一个SDI 程序,窗口内显示"Hello,This is my first SDI Application"。(必选任务) 3)利用MFC AppWizard(exe)建立一个SDI 程序,在文档视口内绘制基本图形(直线、圆、椭圆、矩形、多边形、曲线、圆弧、椭圆弧、填充、文字等),练习图形属性的编程(修改线型、线宽、颜色、填充样式、文字样式等)。定义图形数据结构Point\Line\Circle 等保存一些简单图形数据(在文档类中),并在视图类OnDraw 中绘制。 3、实验过程

1)使用MFC AppWizard(exe)建立一个SDI 程序,选择单文档; 2)在View类的OnDraw()函数中添加图形绘制代码,说出字符串“Hello,This is my first SDI Application”,另外实现各种颜色、各种边框的线、圆、方形、多边形以及圆弧的绘制; 3)在类视图中添加图形数据point_pp,pp_circle的类,保存简单图形数据,通过在OnDraw()函数中调用,实现线、圆的绘制。 4、实验结果 正确地在指定位置显示了"Hello,This is my first SDI Application"字符串,成功绘制了圆,椭圆,方形,多边形以及曲线圆弧、椭圆弧,同时按指定属性改绘了圆、方形和直线。成功地完成了实验。 结果截图: 5、实验体会 通过实验一,了解了如用使用基本的SDI编程函数绘制简单的图

计算机图形学实验报告

计算机图形学 实验报告 姓名:谢云飞 学号:20112497 班级:计算机科学与技术11-2班实验地点:逸夫楼507 实验时间:2014.03

实验1直线的生成 1实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析 实验数据的能力; 编程实现DDA算法、Bresenham中点算法;对于给定起点和终点的 直线,分别调用DDA算法和Bresenham中点算法进行批量绘制,并记 录两种算法的绘制时间;利用excel等数据分析软件,将试验结果编 制成表格,并绘制折线图比较两种算法的性能。 2实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One(自制平台)。 本实验提供名为 Experiment_Frame_One的平台,该平台提供基本 绘制、设置、输入功能,学生在此基础上实现DDA算法和Mid_Bresenham 算法,并进行分析。 ?平台界面:如错误!未找到引用源。所示 ?设置:通过view->setting菜单进入,如错误!未找到引 用源。所示 ?输入:通过view->input…菜单进入.如错误!未找到引用 源。所示 ?实现算法: ◆DDA算法:void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) Mid_Bresenham法:void CExperiment_Frame_OneView::Mid_Bresenham(int X0, int Y0, int X1, int Y1)

3实验结果 3.1程序流程图 1)DDA算法流程图:开始 定义两点坐标差dx,dy,以及epsl,计数k=0,描绘点坐标x,y,x增 量xIncre,y增量yIncre ↓ 输入两点坐标x1,y1,x0,y0 ↓ dx=x1-x0,dy=y1-y0; _________↓_________ ↓↓ 若|dx|>|dy| 反之 epsl=|dx| epsl=|dy| ↓________...________↓ ↓ xIncre=dx/epsl; yIncre=dy/epsl ↓ 填充(强制整形)(x+0.5,y+0.5); ↓←←←← 横坐标x+xIncre; 纵坐标y+yIncre; ↓↑ 若k<=epsl →→→k++ ↓ 结束 2)Mid_Bresenham算法流程图开始 ↓ 定义整形dx,dy,判断值d,以及UpIncre,DownIncre,填充点x,y ↓ 输入x0,y0,x1,y1 ______↓______ ↓↓ 若x0>x1 反之 x=x1;x1=x0;x0=x; x=x0;

计算机图形学实验二报告

计算机科学与通信工程学院 实验报告 课程计算机图形学 实验题目曲线拟合 学生姓名 学号 专业班级 指导教师 日期

成绩评定表

曲线拟合 1. 实验内容 1. 绘制三次Bezier曲线 (1)给定四个已知点P1—P4,以此作为控制顶点绘制一段三次Bezier曲线。 (2)给定四个已知点P1—P4,以此作为曲线上的点绘制一段三次Bezier曲线。 2. 绘制三次B样条曲线 给定六个已知点P1—P6,以此作为控制顶点绘制一条三次B样条曲线。 2. 实验环境 软硬件运行环境:Windows XP 开发工具:visual studio 2008 3. 问题分析 1. 绘制三次Bezier曲线 Bezier曲线是用N+1个顶点(控制点)所构成的N根折线来定义一根N阶曲线。本次实验中的三次Bezier曲线有4个顶点,设它们分别为P0,P1,P2,P3,那么对于曲线上各个点Pi(x,y)满足下列关系: P(t)=[(-P0+3P1-3P2+3P3)t3+(3P0-6P1+3P2)t2+(-3P0+3P2)t+(P0+4P1+P2)]/6 X(t)=[(-X0+3X1-3X2+3X3)t3+(3X0-6X1+3X2)t2+(-3X0+3X2)t+(X0+4X1+X2)]/6 Y(t)=[(-Y0+3Y1-3Y2+3Y3)t3+(3Y0-6Y1+3Y2)t2+(-3Y0+3Y2)t+(Y0+4Y1+Y2)]/6 其中P0、P1、P2、P3为四个已知的点,坐标分别为(X0、Y0)、(X1、Y1)、(X1、Y2) 、(X3、Y3)。所以只要确定控制点的坐标,该曲线可通过编程即可绘制出来。 2. 绘制三次B样条曲线 三次B样条函数绘制曲线的光滑连接条件为:对于6个顶点,取P1、P2、P3、P4 4个顶点绘制在第一段三次样条曲线,再取P2、P3、P4、P5 这4个顶点绘制在第二段三次样条曲线,总计可绘制3段光滑连接的三次样条曲线。 4. 算法设计 程序框架 //DiamondView.h class CDiamondView : public CView { ……

电子科大15春《计算机图形学》在线作业1答案

15春《计算机图形学》在线作业1 一、单选题(共10 道试题,共50 分。) 1. 下列有关平面几何投影的叙述语句中,正确的论述为____。 A. 在平面几何投影中,若投影中心移到距离投影面无穷远处,则成为平行投影 B. 透视投影与平行投影相比,视觉效果更有真实感,而且能真实地反映物体的精确的尺寸和形状 C. 透视投影变换中,一组平行线投影在与之平行的投影面上,可以产生灭点 D. 在三维空间中的物体进行透视投影变换,可能产生三个或者更多的主灭点 正确答案:A 2. ____是可以判别点在区域内外的方法。 A. 反走样法 B. 射线法 C. 中点分割法 D. Roberts方法 正确答案:A 3. 触摸屏是____设备。 A. 输入 B. 输出 C. 输入输出 D. 既不是输入也不是输出 正确答案:C 4. 灰度等级为16级,分辨率为1024*1024的显示器,至少需要的帧缓存容量为____。 A. 512KB B. 1MB C. 2MB D. 3MB 正确答案:A 5. 在下列有关曲线和曲面概念的叙述语句中,错误的论述为____。 A. 实体模型和曲面造型是CAD系统中常用的主要造型方法,曲面造型是用参数曲面描述来表示一个复杂的物体 B. 在曲线和曲面定义时,使用的基函数应有两个重要性质:凸包性和仿射不变性 C. 从描述复杂性和形状灵活性考虑,最常用的参数曲面是3次有理多项式的曲面 D. 参数形式和隐含形式都是精确的解析表示法,在计算机图形学中,它们一样好用 正确答案:D 6. 下在下列叙述语句中,错误的论述为____。 A. 在图形文件系统中,点、线、圆等图形元素通常都用其几何特征参数来描述

相关文档
最新文档