史上最全视频信号音频信号接口汇总,视频、音频工程师必备

史上最全视频信号音频信号接口汇总,视频、音频工程师必备
史上最全视频信号音频信号接口汇总,视频、音频工程师必备

信号接口1.S端子

标准S端子

标准S端子连接线

音频复合视频S端子色差常规连接示意图

S端子(S-Video)是应用最普遍的视频接口之一,是一种视频信号专用输出接口。常见的S端子是一个5芯接口,其中两路传输视频亮度信号,两路传输色度信号,一路为公共屏蔽地线,由于省去了图像信号Y与色度信号C的综合、编码、合成以及电视机机内的输入切换、矩阵解码等步骤,可有效防止亮度、色度信号复合输出的相互串扰,提高图像的清晰度。

一般DVD或VCD、TV、PC都具备S端子输出功能,投影机可通过专用的S端子线与这些设备的相应端子连接进行视频输入。

显卡上配置的9针增强S端子,可转接色差

S端子转接线

欧洲插转色差、S端子和A V

与电脑S端子连接需使用专用线,如VIVO线

2.VGA接口

DVI接口正在取代VGA,图为DVI转VGA的转接头

VGA是Video Graphics Adapter的缩写,信号类型为模拟类型,视频输出端的接口为15针母插座,视频输入连线端的接口为15针公插头。VGA端子含红(R)、黄(G)、篮(B)三基色信号和行(HS)、场(VS)扫描信号。VGA端子也叫D-Sub接口。VGA接口外形象“D”,其具备防呆性以防插反,上面共有15个针孔,分成三排,每排五个。VGA接口是显卡上输出信号的主流接口,其可与CRT显示器或具备VGA接口的电视机相连,VGA 接口本身可以传输VGA、SVGA、XGA等现在所有格式任何分辨率的模拟RGB+HV信号,其输出的信号已可和任何高清接口相貔美。

VGA转DVI线,可用在没有VGA接口的设备上

目前VGA接口不仅被广泛应用在了电脑上,投影机、影碟机、TV等视频设备也有很多都标配此接口。很多投影机上还有BGA输出接口,用于视频的转接输出。

3.分量视频接口

3RCA连接线

标准的3RCA线头

分量视频接口也叫色差输出/输入接口,又叫3RCA。分量视频接口通常采用YPbPr和YCbCr两种标识。分量视频接口/色差端子是在S端子的基础上,把色度(C)信号里的蓝色差(b)、红色差(r)分开发送,其分辨率可达到600线以上,可以输入多种等级讯号,从最基本的480i到倍频扫描的480P,甚至720P、1080i等等。如显卡上YPbPr接口采用9针S端子(mini-DIN)然后通过色差输出线将其独立传输。

3RCA转接头

分量视频接口是一种高清晰数字电视专业接口(逐行色差YPbPr),可连接高清晰数字信号机顶盒、卫星接收机、影碟机、各种高清晰显示器/电视设备。目前可以在投影机或高档影碟机等家电上看到有YUV YCbCr Y/B-Y/B-Y等标记的接口标识,虽然其标记方法和接头外形各异但都是色差端口。

图12A VGA转3RCA线

Y.Pb.Pr是逐行输入/输出,Y.Cb.Cr是隔行输入/输出。分量视频接口与S端子相比,要

多传输PB、PR两种信号,避免了两路色差混合解码并再次分离的过程,避免了因繁琐的传输过程所带来的图像失真,保障了色彩还原的更准确,保证了信号间互不产生干扰,所以其传输效果优于S端子。

具有这个接口的投影机可以和提供这类输出的电脑、影碟机和DV等设备相连,并可连接数字电视机顶盒收看高画质的数字电视节目。

4.BNC接口

标准的BNC端子

有别于普通15针D-SUB标准接头的特殊显示器借口,或称RGB端子、5RCA (Red/Green/Blue/H-sync/V-sync,为了方便使用,日本一些厂商将RGBHV接口的接线柱做成了色差常用的RCA/俗称“莲花头”接头,而不是RGBHV常用的BNC/螺旋锁自锁紧形式)。由RGB三原色信号及行同步、场同步五个独立信号接头组成。

标准的BNC线

VGA转BNC

DVI转BNC

BNC电缆有5个连接头用于接收红、绿、蓝、水平同步和垂直同步信号。BNC接头可以隔绝视频输入信号,使信号相互间干扰减少且信号频宽较普通D-SUB大,可达到最佳信号响应效果。可将数字信号传送至150/300M以上,模拟可传送300M以上。通常用于工作站和同轴电缆连接的连接器,标准专业视频设备输入、输出等领域,投影机上也很常见。

5RCA线缆

VGA转5RCA线,可用于投影机没有标配VGA/DVI接口(标配HDMI)等场合5.标准视频输入接口(RCA)

RCA是莲花插座的英文简称,RCA输入输出是最常见的音视频输入和输出接口,也被称A V接口(复合视频接口),通常都是成对的,把视频和音频信号“分开发送”,避免了因为音/视频混合干扰而导致的图像质量下降。但由于A V接口传输的仍是一种亮度/色度(Y/C)混合的视频信号,仍需显示设备对其进行亮/色分离和色度解码才能成像,这种先混合再分离的过程必然会造成色彩信号的损失,所以其目前主要被用在入门级音视频设备和应用上。

音频转RCA线

RCA转接延长头

插入示意图

白色的是音频接口和黄色的视频接口,使用时只需要将带莲花头的标准A V线缆与其它输出设备(如放像机、影碟机)上的相应接口连接起来即可。

不要小瞧了RCA,其也有做工不错的高档货6.DVI接口

DVI-D

DVI转HDMI线

DVI转色差接头

DVI全称为Digital Visual Interface。目前的DVI接口有两种,一为DVI-D(Digital,所谓纯数字)接口,只能接收数字信号,接口上只有3排8列共24个针脚,其中右上角的一个针脚为空,其不兼容模拟信号。一为DVI-I(Inteface,通用接口可通过转接头兼容VGA 信号)接口,可同时兼容模拟(其可以通过一个DVI-I转VGA转接头实现模拟信号的输出)和数字信号,目前多数显卡、液晶显示器、投影机皆采用这种接口。

DVI转VGA

两种DVI接口的显卡接口相互之间不能直接连接使用。如果播放设备采用的是DVI-D 接口,而投影机是DVI-I接口,那么还需要另配一个DVI-D转DVI-I的转接头或转接线才能正常连接。DVI传输的是数字信号,数字图像信息不需经过任何转换,就会直接被传送到显示设备上,因此减少了数字→模拟→数字繁琐的转换过程,大大节省了时间,因此它的速度更快,有效消除拖影现象,而且使用DVI进行数据传输,信号没有衰减,色彩更纯净,更逼真,更能满足高清信号传输的需求。

DVI-I和DVI-D之间连接也需要转接线/转接头

7. HDMI

HDMI的英文全称是“High Definition Multimedia”,中文的意思是高清晰度多媒体接口。HDMI连接器共有两种,即19针的A类连接器和29针的B类连接器。B类的外形尺寸稍大,支持双连接配置,可将最大传输速率提高一倍。使用这两类连接器可以分别获得165MHz及330MHz的像素时钟频率。

HDMI接口可以提供高达5Gbps的数据传输带宽,可以传送无压缩的音频信号及高分辨率视频信号。同时无需在信号传送前进行数/模或者模/数转换,可以保证最高质量的影音信号传送。

HDMI在针脚上和DVI兼容,只是采用了不同的封装。与DVI相比,HDMI可以传输数字音频信号,并增加了对HDCP的支持,同时提供了更好的DDC可选功能。HDMI支持5Gbps的数据传输率,最远可传输15米,足以应付一个1080P的视频和一个8声道的音频信号。而因为一个1080P的视频和一个8声道的音频信号需求少于4GB/s,因此HDMI 还有余量。

这允许它可以用一个电缆分别连接DVD播放器,接收器和PRR。此外HDMI支持EDID,DDC2B,因此具有HDMI的设备具有“即插即用”的特点,信号源和显示设备之间会自动进行“协商”,自动选择最合适的视频/音频格式。

HDMI to DVI-D转接头

HDMI to DVI-D转接线

应用HDMI的好处是只需要一条HDMI线,便可以同时传送影音信号,而不像现在需要多条线材来连接;同时,由于无线进行数/模或者模/数转换,能取得更高的音频和视频传输质量。对消费者而言,HDMI技术不仅能提供清晰的画质,而且由于音频/视频采用同一电缆,大大简化了家庭影院系统的安装。

随着电视的分辨率逐步提升,高清电视越来越普及,HDMI接口主要就是用于传输高质量、无损耗的数字音视频信号到高清电视, 最高带宽达到5Gbps。美国FCC规定2005年7月1日起,所有数字电视周边产品都必须内建HDMI或DVI。

8.其它接口

●RS232C

RS232C(串口)是一个通讯接口,可以用于仪器的二次开发,不过在单机工作的时候没有什么用处。RS232C端口被用于将计算机信号输入控制投影机。

●RJ45接口

RJ45是通过双绞线网线/水晶头互联的

RJ45是网络设备的标准接口,指的是由IEC 603-7标准化,使用由国际性的接插件标准定义的8个位置(4或8针)的模块化插孔或者插头。投影机通过该接口可以和各种电脑设备进行互联或资源共享。

●音频输入接口

3.5mm音频接口转2RCA,可用于和电脑等设备的音频连接

音频输入接口又叫A V接口或2RCA接口,可将计算机、录像机、影碟机等的音频信号输入进来,用自带扬声器播放。RCA音频端子一般成对地用不同颜色标注:右声道用红色(或者用字母“R”表示“右”);左声道用黑色或白色。有的时候,中置和环绕声道连接线会用其他的颜色标注来方便接线时区分,但整个系统中所有的RCA接头在电气性能上都是一样的。一般来讲,RCA立体声音频线都是左右声道为一组,每声道外观上是一根线。

●USB接口

常用视频信号接口与处理方法总结

常用视频信号接口与处理方法总结 刘学满2010-4-13 视频接口概述 视频接口,从颜色空间、数字/模拟、分离/复合(适用于模拟信号)、并行/串行(适用于数字信号) 单端/ 差分等类别可以分为如下几种,见下表:

二、模拟视频信号接口 1.接口设计 模拟信号由于其电压范围很小,如果接口电路设计不当,很可能造成最终的信号质量下降。因此 需要 注意以下几个事项: 1)阻抗匹配:通常为75Ω ,包括发送端,接收端以及传输路径上的阻抗。

2)隔直电容:为了防止不同设备间地电压差对信号造成的影响,此电容不宜过大或者过小。 3)滤波网络:尽可能地消除低频和高频纹波。 4)地平面:根据理论,地平面分隔可以防止数字信号对模拟地干扰,但从实际经验来 看,分隔成小的地平面后,实际上会造成环流( AD9883资料中有叙述) 。因此大部分 情况下,还是用同一个地。多层地平面,以及多打过孔,保持地电平的稳定是非常必 要的。 5)PCB走线:等长是需要的,而且要确保三个器件经过不同的选择器/ 缓冲器之后的延时也相差不 多,否则很难保证采样相位。 6)ESD保护:如果视频接口经常插拔,就需要加ESD保护二极管。 2.视频ADC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)A/D 是否支持交流耦合方式输入 2)A/D 内部是否有信号增益调整功能 3)是否支持差分输入 4)A/D 内部是否有PLL等器件,采样相位是否可调整 5)A/D输出的信号格式( 24bit RGB ,YCbCr)

6)是否支持SOG或者SOY等同步信号输入 模拟信号在A/D 转换时,通常需要进行一些调整,以达到最佳显示效果: 1)调整黑电平位置和最大辐值,通常可以配置A/D 芯片有关offset 和gain 的寄存器,经过此番调 整之后,实际上是校准了RGB三色,同时提高了灰度等级。 2)调整PLL锁相环,以达到合适的采样频率,并保证PLL 在各种温度条件下均能稳定工作。 3)调整采样起始点和终止点,确保有效信号不丢失。 4)调整采样相位,使最终显示画质更清晰。 3.视频DAC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)D/A 输出时,驱动方式是电压型的,还是电流型的?带负载与不带负载的电压是多少?是否合乎规范要求。如果不合适,必要时加缓冲器或者放大器输出。 2)D/A的输入接口是多少位的?如果是8bit/10bit 兼容,要注意最高2 位和最低2 位的接法。 3)输出同步信号是什么格式?是否需要输出CS或者SOG? 4.解码器 这里说的解码器是指针对CVBS(PAL、NTSC)或者Y/C 信号的亮度色度解调和分离用的解码器,解码器输出的通常为BT656 或者BT601 格式的数字信号,此信号仍为隔行信号。 解码器使用中,接口部分设计与ADC相类似,对输入信号格式,输出信号格式的寄存器配置有一些差异,如果输入格式设置不当,虽然能输出信号,但显示不正确。 5.编码器 视频编码器特指从BT656/BT601 格式转到CVBS/YC信号的转换器,一方面完成数字到模拟信号的转换,另一方面是完成亮度信号与色度信号的调制、复合。 解码器使用中,接口部分设计与DAC相类似,主要的不同也在于I 2C寄存器配置不同。6.缓冲器/放大器/ 选择器/分配器 模拟视频信号在传输和处理的过程中,通常需要一些缓冲/ 放大/ 选择/ 分配等处理。 在这些电路设计时,着重需要考虑的问题: 1)输入信号的电压辐值,芯片供电范围是否能满足要求,是否需要加75Ω电阻。 2)期望信号放大多少倍输出。

视频信号的传输方式

视频信号的传输方式 监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视;目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用,根据多年的工程经验,在这里我们作一些介绍供参考。 一、同轴电缆传输 (一)通过同轴电缆传输视频基带信号视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3 96编国标视频电缆衰减30dB/1000米, SYV75-5 96编国标视频电缆衰减19dB/1000米,,SYV75-7 96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输150米、75-5可以传输

300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术:在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及对云台、镜头的控制功能,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性;同轴视控实现方法有两类:一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分开;由于采用频率分割技术,为了完全分割两个不同的频率,需要使用带通滤波器、带通陷波器和低通滤波器、低通陷波器,这样就影响了视频信号的传输效果;由于需将控制信号调制在视频信号频率的上方,频率越高,衰减越大,这样传输距离受到限制;另外方法是采用双调制的方

视频信号测试与测量

1. 理解复合视频信号 复合视频信号是所有需要生成视频信号的成分组合在同一信号中的信号。构成复合信号的三个主要成分如下: ● 亮度信号——包含视频图像的强度(亮度或暗度)信息 ● 色彩信号——包含视频图像的色彩信息 ● 同步信号——控制在电视显示屏等显示器上信号的扫描 单色复合信号是由两个成分组成的:亮度和同步。图1显示了这个信号(通常成为Y信号)。 图1:单色复合视频信号(亮度从白过渡到黑) 色彩信号通常被称为C信号,在图2中示出。 图2:彩色条的色彩信息信号(包括颜色突发) 复合彩色视频信号通常成为彩色视频、消隐与同步(CVBS)信号示Y与C之和,如图3所示。 CVBS = Y + C

图3:彩色条的彩色复合视频信号两个组成部分Y与C可以作为两个独立信号分开传输。这两个信号合称为Y/C或S视频。 2. 视频信号组成 单一水平视频行信号由水平同步信号、后沿、活动象素场以及前沿组成,如图4所示。 图4:视频信号组成 水平同步(HSYNC)信号示每条新的视频行的开始。其后是后沿,用来作为从浮地(交流耦合)视频信号去除直流分量的参考电平。这是通过单色信号的钳制间隔实现的,它出现在后沿中。对于合成彩色信号,钳制发生在水平同步脉冲中,由于大部分后沿用于色彩突发,它提供了信号色彩成分解码信息。在MAX帮助中,视频信号的所有设置参数都有较清楚的描述。 色彩信息可以包含在单色视频信号中。复合色彩信号包含标准单色信号(RS-170或CCIR),并加入了以下成分: ● 色彩突发:位于后沿,这是提供后续色彩信息相位和幅值参考的高频场。

● 色彩信号:这是实际的色彩信息。它由两个以色彩突发频率调制到载波的象限成分组成。这些组成部分的相位和幅值决定了每个象素的色彩内容。 视频信号的另一方面是垂直同步(VSYNC)脉冲。这实际上是在场之间发生的脉冲序列,用于通知显示器,完成垂直重跟踪,准备扫描下一场。在每个场中都有几行是不包含活动视频信息的。有些只包含HSYNC脉冲,而其他包含均衡与VSYNC脉冲序列。这些脉冲是在早期的广播电视中定义的,所以从那以后构成了标准的一部分,虽然之后的硬件技术能够避免部分附加脉冲的使用。在图5中给出了复合RS-170交叉信号,其中包括垂直同步脉冲,为了简单起见,下面给出了一个6行帧: 图5:VSYNC脉冲 应当理解对于从模拟相机得到的图片,其垂直尺寸(以象素为单位)是由帧接收器对水平视频行采样的速率所决定的。而这个速率是由垂直行速率合相机的体系结构所决定的。相机CCD阵列的结构决定了每个象素的大小。为了避免图像失真,您必须对水平方向,以一定速率进行采样,将水平的活动视频场分割为正确的象素点数。下面是RS-170标准的实例: 感兴趣参数: ● 行/帧数:525(其中包括用于显示的485线;其余是每两个场之间的VSYNC行) ● 行频率:15.734 kHz ● 行持续时间:63.556微秒 ● 活动水平持续时间:52.66微秒 ● 活动象素/行数:640 现在,我们可以进行一些计算: ● 象素时钟频率(每个象素达到帧接收器的频率):640象素/行/ 52.66 e-6 秒/行= 12.15 e6 象素/行(12.15 MHz) ● 活动视频的象素行长度+ 定时信息(称为HCOUNT):63.556 e-6 秒* 12.15 e6 象素/秒= 772 象素/行

各种视频信号接口及定义

各种视频信号接口及定义 1.复合视频信号(Video) 复合视频信号是我们日常生活中最为常见的视频信号,它在一个传输信号中包含了亮度、色度和同步信号。 由于彩色编码的不同,复合视频又有PAL、NTSV、SECAM制式之分。复合视频信号本身的带宽只有5MHz(NTSC制式带宽仅4.5MHz),中间又加了彩色副载波信号(NTSC制为3.58MHz,PAL和SECAM制为4.43MHz),正好落在亮度信号带宽之内,占去了一部分亮度信号,又造成亮度和色度的相互干扰,使得复合视频成为最差的视频信号。 复合视频信号一般用RCA插头连接,就是通常说的莲花插头,见图1。欧洲也用SCART接口,老式的视频设备也有用BNC插头连接。 2.S视频信号(S-Video) S视频信号俗称S端子信号,它同时传送两路信号:亮度信号Y和色度信号C。由于将亮度和色度分离,所以图象质量优于复合视频信号,色度对亮度的串扰现象也消失。由于S 视频信号亮度带宽没有改变,色度信号仍须解调,所以其图象质量的提高是有限的,但肯定解决了亮色串扰,消除图象的爬行现象。S端子用四芯插头,见图2。欧洲也用SCART插头,老式的视频设备也有用两个BNC插头连接,计算机显卡也有用七芯插头,其外形与S端子一样,只是又包含了复合视频信号。 3.隔行色差信号(Y、Cr、Cb) 隔行色差信号含义与逐行色差信号相同,只是对应的是逐行扫描信号,包含在Y里的行同步信号频率为31KHz,而前述的几种视频信号行频只有15KHz。逐行色差信号须配具有逐行显示功能的设备,图象质量高于隔行色差信号,主要表现在图象更稳定。逐行色差所用端子与隔行色差相同,只是C换成P。 4.RGB信号 我们知道图象中的各种色彩都是由R、G、B三基色组成,显象管电子枪是R、G、B三枪组成,投影机三片液晶板也是R、G、B三色。R、G、B三路信号中,行、场的同步信号加在G信号中,RGB信号的带宽可以到几十兆,只要显示设备能兼容。所以RGB信号又优于色差信号,是最好最直接的显示信号。RGB信号同样也分为逐行和隔行,逐行信号要优于隔行信号。RGB信号所用端子为RCA插头,欧洲用SCART插头,老式设备用BNC插头。5.RGB+S信号 此信号就是在前述的RGB信号基础上,把加在G信号中的同步信号拿出来,再加一个复合同步信号,共四路信号传输。复合同步信号中包含了水平同步和垂直同步信号。此信号在老式设备中用的较多,一般用BNC插头。 6.RGB+Hs、Vs信号 这个信号是在上述信号基础上把复合同步信号分成水平同步信号和垂直同步信号,在老式三枪投影机用的较多,一般用BNC插头。现在17寸以上的高端显示器也此输入端子。电脑显示用的15针D型VGA插座,就是这5根线起作用。老式的EGA和CGA显示器行频只有15KHz,用的是9针D型接口。现代视听设备逐行扫描的RGB+Hs、Vs信号是以VGA端子输出的,是视频信号的最高级,与电脑640×480分辨率是兼容的。

常见视频信号传输特性(精)

常见视频信号传输特性 1. 分量视频(Component Signal) 摄像机的光学系统将景像的光束分解为三种基本的彩色:红色、绿色和蓝色。感光器材再把三种单色图像转换成分离的电信号。为了识别图像的左边沿和顶部,电信号中附加有同步信息。显示终端与摄像机的同步信息可以附加在绿色通道上,有时也附加在所有的三个通道,甚至另作为一个或两个独立的通道进行传输,下面是几种常见的同步信号附加模式和表示方法: - RGsB:同步信号附加在绿色通道,三根75Ω同轴电缆传输。 - RsGsBs:同步信号附加在红、绿、蓝三个通道,三根75Ω同轴电缆传输。 - RGBS:同步信号作为一个独立通道,四根75Ω同轴电缆传输。 - RGBHV:同步信号作为行、场二个独立通道,五根75Ω同轴电缆传输。 RGB分量视频可以产生从摄像机到显示终端的高质量图像,但传输这样的信号至少需要三个独立通道分别处理,使信号具有相同的增益、直流偏置、时间延迟和频率响应,分量视频的传输特性如下: - 传输介质:3-5根带屏蔽的同轴电缆 - 传输阻抗:75Ω- 常用接头:3-5×BNC接头 - 接线标准:红色=红基色(R)信号线,绿色=绿基色(G)信号线,蓝色=蓝基色(B)信号线,黑色=行同步(H)信号线,黄色=场同步(V)信号线,公共地=屏蔽网线(见附图VP-03) 2. 复合视频(Composite-Video)

由于分量视频信号各个通道间的增益不等或直流偏置的误差,会使终端显示的彩色产生细微的变化。同时,可能由于多条传输电缆的长度误差或者采用了不同的传输路径,这将会使彩色信号产生定时偏离,导致图像边缘模糊不清,严重时甚至出现多个分离的图像。 插入NTSC或PAL编解码器使视频信号易于处理而且是沿单线传输,这就是复合视频。复合视频格式是折中解决长距离传输的方式,色度和亮度共享 4.2MHz(NTSC)或 5.0-5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,所以还是要考虑频率响应和定时问题,应当避免使用多级编解码器,复合视频的传输特性如下: - 传输介质:单根带屏蔽的同轴电缆 - 传输阻抗:75?- 常用接头:BNC接头、莲花(RCA)接头 - 接线标准:插针=同轴信号线,外壳公共地=屏蔽网线(见附图VP-01) 3. 色差信号(Y,R-Y,B-Y) 对视频信号进行处理而传输图像时,RGB分量视频的方式并不是带宽利用率最高的方法,原因是三个分量信号均需要相同的带宽。 人类视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此我们可以将整个带宽用于亮度信息,把剩余可用带宽用于色差信息,以提高信号的带宽利用率。 将视频信号分量处理为亮度和色差信号,可以减少应当传输的信息量。用一个全带宽亮度通道(Y)表示视频信号的亮度细节,两个色差通道(R-Y和B-Y)的带宽限制在亮度带宽的大约一半,仍可提供足够的彩色信息。采用这种方法,可以通过简单的线性矩阵实现RGB与Y,R-Y,B-Y的转换。色差通道的带宽限制在线性矩阵之后实现,将色差信号恢复为RGB分量视频显示时,亮度细节按全带宽得以恢复,而彩色细节会限制在可以接受的范围内。 色差信号也有多种不同的格式,有着不同的应用范围,在普遍使用的复合PAL、SECAM和NTSC制式中,编码系数是各不相同的,见下表:

高清视频采集盒1080p 可采集SDI、DVI、VGA、HDMI、分量信号

JMC-U200高清视频采集盒 产品品牌:巨渺科技 型号:JMC-U200 产品特性: ●可采集1 路高清或标清视频信号,1 路模拟双声道音频信号。 ●输入视频信号可达1080p/60 Hz。 ●高清信号可采集SDI、DVI、VGA、HDMI、分量信号。 ●可采集SDI 内嵌音频。 ●可采集HDMI 中的LPCM 音频信号。 ●微软AV Stream 标准驱动,可支持大部分Windows 上的多媒体视频软件或流媒体软件。 高级特性: ●支持UVC、UAC 协议,在Window、Linux 和 Mac OS X 平台上都可以即插 即用。 ●高清USB3.0 输出,实际数据传输速度高达 390 MB/S。 ●高清输入可动态切换信号源类型:SDI、 DVI/HDMI,VGA,分量。

●可兼容复合视频(CVBS)输入信号。 ●自动输入视频格式侦测,自动视频有效区域侦 测,自动VGA 采集相位调节。逐行视频中运动画面 会有锯齿出现,会自动选择合适的方式(行滤波去 隔行或单场去隔行)去隔行,提升画面的锐利度和 清晰度。 ●针对VGA 视频,提供了自动相位校正功能,使 采集视频中的文字边缘更加锐利,易于辨识、 阅读。 ●手工设定有效画面区域功能,可用于画面的剪裁和对特殊输入信号时序的支持。 ●多阶画面缩放功能,具有三种针对画面宽高比的缩放模式。 ●支持垂直滤波和运动自适应去隔行功能。采用了新的视频处理流水线,能够处理RGB 和YUV 色彩空间的视频。 ●根据输入和输出格式,尽量减少RGB 和YUV 之间的转换,从最大程度地避免了YUV 色彩空间视频的色彩失真。 ●新的视频处理流水线目前能够处理YUV601、YUV709、Studio RGB、Computer RGB 这4 种不同的色彩空间。 ●硬件色彩转换,可输出RGB24,RGB32,YUY2,UYVY,I420 色彩格式。 ●支持色彩调节功能,可调节画面的对比度、亮度、色彩饱和度、色相、Gamma;并可单独调节R,G,B 三色的亮度、对比度。 ●高质量的图像缩放、剪裁、色彩空间转换、自动去除画面黑边、自动检测隔行视频源和去隔行。

视频监控中的常见几种视频传输方式介绍

视频监控中的常见几种视频传输方式介绍 目前,在安防监控行业中用来传输图象信号的方式有很多,但主要传输介质是同轴电缆、双绞线和光纤,对应的传输设备分别是同轴视频放大器、双绞线视频传输设备和光端机。同轴电缆是较早使用,也是最传统的视频传输方式。后来,由于远距离和大范围图象监控的需要以及人们对监控图象质量的要求提高,监控网络中开始大量使用光纤来传输图象信号。虽然双绞线被使用到图象监控网络中是近来的事,但双绞线的视频平衡传输技术是很早就出现了。它也是视频传输技术的一个分支。下面详细介绍下常见视频传输方式: 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能力和可扩

视频输入输出常用接口介绍

视频输入输出常用接口介绍 随着视频清晰度的不断提升,这也促使我们对高清视频产生了浓厚的兴趣,而如果要达某些清晰度的视频就需要配备相应的接口才能完全发挥其画质。所以说视频接口的发展是实现高清的前提,从早期最常见且最古老的有线TV输入到如今最尖端的HDMI数字高清接口,前前后后真是诞生了不少接口。但老期的接口信号还在继续使用,能过信号转换器就能达到更清晰的效果,比如: AV,S-VIDEO转VGA AV,S-VIDEO转HDMI,图像提升几倍,效果更好。 从现在电视机背后的接口也能看出这点,背后密密麻麻且繁琐的接口让人第一眼看过去有点晕的感觉。今天小编就将这些接口的名称与作用做一个全面解析,希望能对选购电视时为接口而烦恼的朋友起到帮助。 TV接口

TV输入接口 TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/ 解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 AV接口 AV接口又称(RCARCA)可以算是TV的改进型接口,外观方面有了很大不同。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。

AV输入接口与AV线 由于AV输出仍然是将亮度与色度混合的视频信号,所以依旧需要显示设备进行亮度和色彩分离,并且解码才能成像。这样的做法必然对画质会造成损失,所以AV接口的画质依然不能让人满意。在连接方面非常的简单,只需将3种颜色的AV线与电视端的3种颜色的接口对应连接即可。 总体来说,AV接口实现了音频和视频的分离传输,在成像方面可以避免音频与视频互相干扰而导致的画质下降。AV接口在电视与DVD连接中使用的比较广,是每台电视必备的接口之一。 S端子 S端子可以说是AV端子的改革,在信号传输方面不再将色度与亮度混合输出,而是分离进行信号传输,所以我们又称它为“二分量视频接口”。

视频信号的基础知识

一、视频信号的结构与使用 ?图象采集卡是对模拟视频信号采样并作A/D转换而成为数字信号的,为了获得正确的数字信号,对模拟视频信号有一个大概的了解是十分重要的,尤其在一些特殊的应用领域,例如: ?实时处理 ?多路视频输入 ?非标准视频采集 ?立体视觉 ?序列图象分析 ?运动图象 ?等都对摄象机的同步连接;多路切换;图象处理与视频信号的同步配合;图象窗口的选择;亮度与对比度的调节有着特殊的要求,为了满足这些要求,把视频信号的结构了解清楚后,会对用户很快构成并调试好自己的图象处理系统;设计好自己的软件;充分提高CPU处理图象的效率等带来很大的好处

1-1、视频信号的概述 ?视频信号最初是用于广播电视的,也就是说是要经过传输,尤其是无线传输而送到观众接收机上,由于图象的信息量是如此巨大,如果不对视频信号作一定的处理,就会占据无线通讯很宽的宝贵频带,为此对全电视信号在清晰度、闪烁性、叠加彩色后的与黑白图象的兼容性、所占用的带宽等方方面面作了精心的权衡与安排,研究设计出目前的黑白/彩色全电视信号标准。例如隔行扫描就是考虑到带宽、抗闪烁、清晰度等方面而巧妙设计的;PAL或NTSC的彩色图象制式就是考虑到人眼对颜色的着色特性,与原黑白视频的兼容性,在不影响黑白灰度信息的前提下,而将彩色信息调制后插入黑白全电视信号频谱的缝隙之中的。而所谓的不影响仅仅是理论上的,由于技术上的局限性,在接收端将黑白信息与彩色信息分离时,在大多数情况下会大大影响黑白信息的分辨率。视频信号的这些特性在广播电视中带来了巨大的好处,但在图象处理的使用场合又会带来很大的不便与缺陷。

1-2、黑白全电视信号及采集 ?摄象机获取图象形成视频信号是用扫描的方式逐行顺序进行的,从景物的左上角开始扫描第一行,然后向下移动扫描第二行,直至这场扫描完312行(PAL制),到第313行的一半时,这一场结束,形成了一幅奇场图象;从图象的最上部中间开始第313行的后半部扫描,见图一,开始第二场即偶场的扫描,第二场的每一行夹在第一场的相邻行中间,直至625行结束,第二场图象结束,形成了一幅偶场图象,同时相邻行由奇场和偶场图象交叉形成了一帧图象。帧图象、奇偶场图象之间的关系见图二。从图一和图二可以看出,在水平方向一行中的像素从左到右是以纳秒级的速度顺序出现的,而一帧图象的上下二个相邻象素的相隔时间为一场的场周期,可达几十毫秒。这种隔行方式,在同样的分辨率、没有因人眼惰性有限而带来太大的闪烁性的情况下,视频信号的频带带宽几乎减低了一倍,节省了宝贵的通信资源。

常见的视频传输方式

常见的视频传输方式 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易 升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能 力和可扩展性都提高不少。 5、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境相对复杂、场合比较好的解决方式,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输; 双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 6、宽频共缆传输:视频采用调幅调制、伴音调频搭载、FSK数据信号调制等技术,将数十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,三十路音视频及控制信号在同一根电缆中双向传输、实

视频信号格式

视频端口/视频信号格式(2008-12-19 10:07:59) Y”表示明亮度(Luminance或Luma),C色度(Chrominance或Chroma), YPbPr是将模拟的Y、PB、PR信号分开,使用三条线缆来独立传输,保障了色彩还原的准确性,YPbPr表示逐行扫描色差输出.YPbPr接口可以看做是S端子的扩展,与S端子相比,要多传输PB、PR两种信号,避免了两路色差混合解码并再次分离的过程,也保持了色度通道的最大带宽,只需要经过反矩阵解码电路就可以还原为RGB三原色信号而成像,这就最大限度地缩短了视频源到显示器成像之间的视频信号通道,避免了因繁琐的传输过程所带来的图像失真,保障了色彩还原的准确,目前几乎所有大屏幕电视都支持色差输入。 YCbCr表示隔行分量端子. 所说的Y Cb Cr和Y Pb Pr只是为了方便新人快速区分国产电视上隔/逐行接口而已. Cb Cr 就是本来理论上的分量/色差的标识, C代表分量(是component的缩写)Cr、Cb分别对应r(红)、b(蓝)分量信号,Y除了g(绿)分量信号,还叠加了亮度信号. 至于Y Pb Pr,是后来为了强调逐行概念,显示其飞跃性的变化,这个概念,有一定知识背景的人很容易理解,但普通用户只会更糊涂 YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL)。YUV主要用于优化彩色视频信号的传输,使其向后兼容老式黑白电视。与RGB视频信号传输相比,它最大的优点在于只需占用极少的带宽(RGB要求三个独立的视频信号同时传输)。其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V”表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。“亮度”是通过RGB输入信号来创建的,方法是将RGB信号的特定部分叠加到一起。“色度”则定义了颜色的两个方面—色调与饱和度,分别用Cr和CB来表示。其中,Cr反映了GB输入信号红色部分与RGB信号亮度值之间的差异。而CB反映的是RGB输入信号蓝色部分与RGB 信号亮度值之同的差异。 *****U,V分别是与蓝,红的色差.范围是16-240 一、高频或射频信号 https://www.360docs.net/doc/5d8188600.html,/cword/3153.shtml 视频端口是背投电视和信号源(比如影碟机)连接的接口,通过这些端口,可以将电影等图像在背投设备上播放。视频端子有不同类型,购买背投电视时尽量挑接口齐全的产品,尤其是最常见的接口,这样可以更方便的和各种设备连接。目前最基本的视频端子是复合视频端子(也叫AV端子)、S端子;另外常见的还有色差端子、VGA端子、DV I端子、HDMI端口。 复合视频端子

视频信号规格及存储计算

D1:480i格式(525i):720×480(水平480线,隔行扫描),和NTSC模拟电视清晰度相同,行频为15.25kHz,相当于我们所说的4CIF (720×576) D2:480P格式(525p):720×480(水平480线,逐行扫描),较 D1隔行扫描要清晰不少,和逐行扫描DVD规格相同,行频为31.5kHz D3:1080i格式(1125i):1920×1080(水平1080线,隔行扫描),高清放松采用最多的一种分辨率,分辨率为1920×1080i/60Hz,行频 为33.75kHz D4:720p格式(750p):1280×720(水平720线,逐行扫描),虽然分辨率较D3要低,但是因为逐行扫描,市面上更多人感觉相对于1080I(实际逐次540线)视觉效果更加清晰。不过个人感觉来说,在最大分辨率达到1920×1080的情况下,D3要比D4感觉更加清晰,尤 其是文字表现力上,分辨率为1280×720p/60Hz,行频为45kHz D5:1080p格式(1125p):1920×1080(水平1080线,逐行扫描),目前民用高清视频的最高标准,分辨率为1920×1080P/60Hz,行频为67.5KHZ。 (1)存储容量计算 单个通道24小时存储1天的计算公式∑(GB)=码流大小(Mbps)÷8×3600秒×24小时×1天÷1024。 (2)标清D1(704*576)格式 按2Mbps码流计算,存放1天的数据总容量 2Mbps÷8 ×3600秒×24小时×(1天)÷1024=21GB。

30天需要的容量∑(GB)=21GB×30天=525GB (3)高清720P(1280*720)格式 按4Mbps码流计算,存放1天的数据总量4Mbps÷8 × 3600秒× 24小时×(1天)÷1024=42GB 30天需要的容量∑(GB)=42GB×30天=1050GB (4)高清1080P(1920*1080P)格式 按8Mbps码流计算,存放1天的数据总量8Mbps÷8 × 3600秒× 24小时×(1天)÷1024=84.375GB 30天需要的容量∑(GB)=84.375GB×30天=2531GB≈2.47TB (5)图片存储容量计算 对500万一台摄像机而言:一张图片按照0.6M计算,平均一天大约通过5000辆车,每条车道保存30天,则按照计算公式:0.6M*5000*30/1024/1024= 0.09T 对200万一台摄像机而言:一张图片按照0.3M计算,平均一天大约通过5000辆车,则每条车道按照计算公式:0.3M*5000*30/1024/1024=0.05T

常用视频信号接口与处理方法总结材料

常用视频信号接口与处理方法总结 学满2010-4-13 一、视频接口概述 视频接口,从颜色空间、数字/模拟、分离/复合(适用于模拟信号)、并行/串行(适用于数字信号)、单端/差分等类别可以分为如下几种,见下表:

二、模拟视频信号接口 1.接口设计 模拟信号由于其电压围很小,如果接口电路设计不当,很可能造成最终的信号质量下降。因此需要注意以下几个事项: 1)阻抗匹配:通常为75Ω,包括发送端,接收端以及传输路径上的阻抗。 2)隔直电容:为了防止不同设备间地电压差对信号造成的影响,此电容不宜过大或者过小。 3)滤波网络:尽可能地消除低频和高频纹波。 4)地平面:根据理论,地平面分隔可以防止数字信号对模拟地干扰,但从实际经验来看,分隔成小的地平面后,实际上会造成环流(AD9883资料中有叙述)。因此大部分情况下,还是用同一 个地。多层地平面,以及多打过孔,保持地电平的稳定是非常必要的。 5)PCB走线:等长是需要的,而且要确保三个器件经过不同的选择器/缓冲器之后的延时也相差不多,否则很难保证采样相位。 6)ESD保护:如果视频接口经常插拔,就需要加ESD保护二极管。 2.视频ADC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)A/D是否支持交流耦合方式输入

2)A/D部是否有信号增益调整功能 3)是否支持差分输入 4)A/D部是否有PLL等器件,采样相位是否可调整 5)A/D输出的信号格式(24bit RGB,YCbCr) 6)是否支持SOG或者SOY等同步信号输入 模拟信号在A/D转换时,通常需要进行一些调整,以达到最佳显示效果: 1)调整黑电平位置和最大辐值,通常可以配置A/D芯片有关offset和gain的寄存器,经过此番调整之后,实际上是校准了RGB三色,同时提高了灰度等级。 2)调整PLL锁相环,以达到合适的采样频率,并保证PLL在各种温度条件下均能稳定工作。 3)调整采样起始点和终止点,确保有效信号不丢失。 4)调整采样相位,使最终显示画质更清晰。 3.视频DAC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)D/A输出时,驱动方式是电压型的,还是电流型的?带负载与不带负载的电压是多少?是否合乎规要求。如果不合适,必要时加缓冲器或者放大器输出。 2)D/A的输入接口是多少位的?如果是8bit/10bit兼容,要注意最高2位和最低2位的接法。 3)输出同步信号是什么格式?是否需要输出CS或者SOG? 4.解码器 这里说的解码器是指针对CVBS(PAL、NTSC)或者Y/C信号的亮度色度解调和分离用的解码器,解码器输出的通常为BT656或者BT601格式的数字信号,此信号仍为隔行信号。 解码器使用中,接口部分设计与ADC相类似,对输入信号格式,输出信号格式的寄存器配置有一些差异,如果输入格式设置不当,虽然能输出信号,但显示不正确。 5.编码器 视频编码器特指从BT656/BT601格式转到CVBS/YC信号的转换器,一方面完成数字到模拟信号的转换,另一方面是完成亮度信号与色度信号的调制、复合。 解码器使用中,接口部分设计与DAC相类似,主要的不同也在于I2C寄存器配置不同。 6.缓冲器/放大器/选择器/分配器 模拟视频信号在传输和处理的过程中,通常需要一些缓冲/放大/选择/分配等处理。 在这些电路设计时,着重需要考虑的问题:

视频信号 控制信号的传输距离

信号传输距离 1、常见视频信号,包括复合视频信号、S-视频信号(或称Y/C)、VGA信号、RGBHV信号、超高质量数字信号等。 ⅰ复合视频信号:一般接头为BNC、RCA。(如下图) 75代表抗阻性,后面的3和5代表它的绝缘外径(3mm/5mm)。 SYV中S---同轴射频电缆,Y---聚乙烯,V---聚氯乙烯. SYV75-3传输在300米之内效果好. SYV75-5传输在800米内效果更好. 视频线分 75-3(约100米)传输距离 75-5(约300米)传输距离 75-7(约500--800米)传速距离 75-9(约1000---1500米)传速距离 75-12(约2000----3500米)传速距离 75代表电阻,-3代表线径 ⅱS-视频信号(或称Y/C) 传输距离短15M ⅲVGA信号 频率高 易衰减,传输距离短 易受干扰 3+4/6VGA15-30M ⅳRGBHV信号 75-2RGB30-50M 75-3RGB50-70M ⅴ超高质量数字信号-DVI DVI-D:只能接收数字信号 DVI-I:能同时接收数字信号和模拟信号 传输距离短7-15M ⅵ超高质量数字信号-HDMI 支持5Gbps的数据传输率,最远可传输15米 2、常见控制信号,RS232、RS422、RS485、IR、CR-NET(CREATOR控制信号) ⅰRS232传输速率较低,在异步传输时,波特率为20Kbps,接口使用一根信号线和一根信号返回线而构成共地的传输形式,这种共地传输容易产生共模干扰,所以抗噪声干扰性弱。传输距离15米~20米。采用150pF/m的通信电缆时,最大通信距离为15m;若每米电缆的电容量减小,通信距离可以增加。传输距离短的另一原因是RS-232属单端信号传送,存在共地噪

史上最全视频信号音频信号接口汇总,视频、音频工程师必备

信号接口1.S端子 标准S端子 标准S端子连接线

音频复合视频S端子色差常规连接示意图 S端子(S-Video)是应用最普遍的视频接口之一,是一种视频信号专用输出接口。常见的S端子是一个5芯接口,其中两路传输视频亮度信号,两路传输色度信号,一路为公共屏蔽地线,由于省去了图像信号Y与色度信号C的综合、编码、合成以及电视机机内的输入切换、矩阵解码等步骤,可有效防止亮度、色度信号复合输出的相互串扰,提高图像的清晰度。 一般DVD或VCD、TV、PC都具备S端子输出功能,投影机可通过专用的S端子线与这些设备的相应端子连接进行视频输入。 显卡上配置的9针增强S端子,可转接色差

S端子转接线 欧洲插转色差、S端子和A V

与电脑S端子连接需使用专用线,如VIVO线 2.VGA接口 DVI接口正在取代VGA,图为DVI转VGA的转接头 VGA是Video Graphics Adapter的缩写,信号类型为模拟类型,视频输出端的接口为15针母插座,视频输入连线端的接口为15针公插头。VGA端子含红(R)、黄(G)、篮(B)三基色信号和行(HS)、场(VS)扫描信号。VGA端子也叫D-Sub接口。VGA接口外形象“D”,其具备防呆性以防插反,上面共有15个针孔,分成三排,每排五个。VGA接口是显卡上输出信号的主流接口,其可与CRT显示器或具备VGA接口的电视机相连,VGA 接口本身可以传输VGA、SVGA、XGA等现在所有格式任何分辨率的模拟RGB+HV信号,其输出的信号已可和任何高清接口相貔美。

VGA转DVI线,可用在没有VGA接口的设备上 目前VGA接口不仅被广泛应用在了电脑上,投影机、影碟机、TV等视频设备也有很多都标配此接口。很多投影机上还有BGA输出接口,用于视频的转接输出。 3.分量视频接口 3RCA连接线

常用视频接口S端子

常用视频接口S端子、DVI、色差、D端子、HDMI解释 VGA输入接口:VGA 接口采用非对称分布的15pin 连接方式,其工作原理:是将显存内以数字格式存储的图像( 帧) 信号在RAMDAC 里经过模拟调制成模拟高频信号,然后再输出到等离子成像,这样VGA信号在输入端(LED显示屏内) ,就不必像其它视频信号那样还要经过矩阵解码电路的换算。从前面的视频成像原理可知VGA的视频传输过程是最短的,所以VGA 接口拥有许多的优点,如无串扰无电路合成分离损耗等。 DVI输入接口:DVI接口主要用于与具有数字显示输出功能的计算机显卡相连接,显示计算机的RGB信号。DVI(Digital Visual Interface)数字显示接口,是由1998年9月,在Intel开发者论坛上成立的数字显示工作小组(Digital Display Working Group简称DDWG),所制定的数字显示接口标准。 DVI数字端子比标准VGA端子信号要好,数字接口保证了全部内容采用数字格式传输,保证了主机到监视器的传输过程中数据的完整性(无干扰信号引入),可以得到更清晰的图像。 标准视频输入(RCA)接口:也称A V 接口,通常都是成对的白色的音频接口和黄色的视频接口,它通常采用RCA(俗称莲花头)进行连接,使用时只需要将带莲花头的标准A V 线缆与相应接口连接起来即可。A V接口实现了音频和视频的分离传输,这就避免了因为音/视频混合干扰而导致的图像质量下降,但由于A V 接口传输的仍然是一种亮度/色度(Y/C)混合的视频信号,仍然需要显示设备对其进行亮/ 色分离和色度解码才能成像,这种先混合再分离的过程必然会造成色彩信号的损失,色度信号和亮度信号也会有很大的机会相互干扰从而影响最终输出的图像质量。 A V还具有一定生命力,但由于它本身Y/C混合这一不可克服的缺点因此无法在一些追求视觉极限的场合中使用。 S视频输入:S-Video具体英文全称叫Separate Video,为了达到更好的视频效果,人们开始探求一种更快捷优秀清晰度更高的视频传输方式,这就是当前如日中天的S-Video(也称二分量视频接口),Separate Video 的意义就是将Video 信号分开传送,也就是在A V接口的基础上将色度信号C 和亮度信号Y进行分离,再分别以不同的通道进行传输,它出现并发展于上世纪90年代后期通常采用标准的4芯(不含音效) 或者扩展的7芯( 含音效)。带S-Video接口的显卡和视频设备( 譬如模拟视频采集/ 编辑卡电视机和准专业级监视器电视卡/电视盒及视频投影设备等) 当前已经比较普遍,同A V 接口相比由于它不再进行Y/C混合传输因此也就无需再进行亮色分离和解码工作,而且使用各自独立的传输通道在很大程度上避免了视频设备内信号串扰而产生的图像失真,极大地提高了图像的清晰度,但S-Video 仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb 和Cr 进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现) ,而且由于Cr Cb 的混合导致色度信号的带宽也有一定的限制,所以S -Video 虽然已经比较优秀但离完美还相去甚远,S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口。 视频色差输入接口:目前可以在一些专业级视频工作站/编辑卡专业级视频设备或高档影碟机等家电上看到有YUV YCbCr Y/B-Y/B-Y等标记的接口标识,虽然其标记方法和接头外形各异但都是指的同一种接口色差端口( 也称分量视频接口) 。它通常采用YPbPr 和YCbCr两种标识,前

相关文档
最新文档