储能技术研究进展

储能技术研究进展
储能技术研究进展

储能技术研究进展

能源短缺和环境恶化是全球性问题,开发可再生能源,实现能源优化配置,发展低碳经济,是世界各国的共同选择。但是,可再生能源受天气及时间段的影响较大,具有明显的不稳定、不连续和不可控性。需要开发配套的电能储存装置,来保证发电、供电的连续性和稳定性。国外有关研究表明,如果风电装机占装机总量的比例在10%以内,依靠传统电网技术以及增加水电、燃气机组等手段基本可以保证电网安全。但如果所占比例达到20%甚至更高,电网的调峰能力和安全运行将面临巨大挑战。储能技术在很大程度上解决了新能源发电的随机性、波动性问题,可以实现新能源发电的平滑输出,能有效调节新能源发电引起的电网电压、频率及相位的变化,使大规模风电及太阳能发电方便可靠地并人常规电网。

现有的储能技术主要包括物理储能、电化学储能、电磁储能、氢储能、相变储能和热化学储能等类型。其中,物理储能、电化学储能、电磁储能和氢储能主要储存电能,物理储能包括抽水储能、压缩空气储能级飞轮储能等;电化学储能包括铅酸、锂离子、镍镉、液流和钠硫等电池储能;电磁储能包括超导储能和超级电容储能;为了实现氢储能完整的转换链,就要从氢气的制取、储存、发电等方面整体规划,在关键技术上进一步突破。而相变储能和热化学储能主要储存热能或由电能转化的热能,相变储能按材料的组成成分可分为无机类、有机类(包括高分子类)以及复合类储能材料;热化学储能基于热化学反应,而热化学反应体系主要包括金属氢化物体系、氧化还原体系、有机体系、无机氢氧化物体系以及氨分解体系。

1. 物理储能

物理储能一般用于大规模储能领域,主要包括抽水储能、压缩空气储能、飞轮储能等,其中抽水储能是主要的储能方式。物理储能是利用天然的资源来实现的一种储能方式,因此更加环保、绿色,而且具有规模大、循环奉命长和运行费用低等优点。缺点是建设局限性较大,其储能实施的地理条件和场地有特殊要求。而且因为其一次性投资较高,一般不适用于小规模且较小功率的离网发电系统。

1.1 抽水储能

目前在电力系统中应用最广泛的一种物理储能技术,即为抽水储能。它是一种间接的储能方式,用来解决电网高峰与低谷之间的供需矛盾。水库中的水被下半夜过剩的电力驱动水从下水库抽到上水库储存起来,然后在第二天白天和前半夜将水闸打开,放出的水用来发电,并流入到下水库。即使在转化间会有一部分能量因此而流失,但在低谷时压荷、停机等情况下,使用抽水储能电站仍然比增建煤电发电设备来满足高峰用电而来得便宜,具有更佳的效果。除此以外,抽水

储能电站还可以作为电网运行管理的重要工具,不但能担负调频、调相还可以做事故备用等动态功能。

5

图1 抽水储能示意图

1.2 压缩空气储能

“压缩空气能源储备”的功能类似于一个大容量的蓄电池。在非用电高峰期,空气通过采用电机带动压缩机被压缩进一个特定的地下空间存储。然后,在用电高峰期,地下的压缩空气是通过一种特殊构造的燃气涡轮机,将其释放进行发电。虽然燃气涡轮机的运行仍然需要天然气或其他石化燃料作为动力,但是利用这种发电方法,将比正常的发电技术节省一半的能源燃料。

找到一个适合空气压缩存储的地质空间是建设压缩空气发电厂的必要条件之一。最终确定合适的空气存储空间需要经历一些过程:在厂址附近地区,严密的地震检测是必要环节;然后进行反复计算,用计算机模拟周围环境;并参考其他压缩空气发电厂相关数据,进行联合分析,最终确定合适的厂址。针对在准备相关设施时产生的费用较高这一现象,专家未置否认态度,但是从长远看来,专家一致认为这种形式的储存模式仍然要比制造电池便宜得多。

图2 压缩空气储能示意图

1.3 飞轮储能

飞轮储能突破了传统化学电池的局限,是一种用物理方法实现的储能方式。当飞轮以一定角速度旋转时,即就具有一定的动能,飞轮电池正是以其动能形式转换成电能的,且高技术型的飞轮用于储存电能,可以看作是标准电池。飞轮电池中有一个复合电机(电动机/发电机),充电时该电机作为电动机运转,在外界电源的驱动下,电机带动飞轮进行高速旋转,即用电给飞轮电池“充电”增加了飞轮的转速从而增大其功能进行能量存储;放电时,电机作为发电机运转,在飞轮的带动下对外输出电能,完成机械能(动能)到电能的转换过程。当飞轮电池发出电能时,飞轮电池的飞轮在真空环境下转速逐渐下降。

飞轮储能装置拥有传统化学电池无可比拟的优势,并且它的理论论证已经比较成熟,而且它的技术特点非常符合未来能源储存技术的发展方向,因此该技术已经逐渐被人们所认同。目前,航天航空设备和其它的一些领域中不断地有飞轮技术出现的身影,而且人们也正在不断地开发应用于更多领域的飞轮储能装置,飞轮储能装置的应用正在逐渐丰富我们的生活,可以预见,未来几年,飞轮储能装置将会占据很大一部分的储能装置市场。飞轮储能装置的能量密度甚至与超级电容与电池等储能装置比都要大。同时,由于飞轮储能是纯物理储能,具有稳定可靠,对使用环境(温度、压力等)的要求低的优势,相比于不具备环保优势的化学储能方式,具有明显的优势。

图3 飞轮储能示意图

2 电化学储能

电化学储能无疑是使用最多最广的一种储能方式,具有使用方便、环境污染小,并且能量不受卡诺循环限制及具有很高的转化效率等优点。其原理是利用电化学反应转化电能的装置/系统,是一种直接的储能方式。除铅酸、镍氢等常规电池技术外,还包括液流、钠硫、锂离子电池等大容量蓄电池储能技术,并在安全性、转换效率和经济性等方面取得重大突破,生产水平显著提高,产业化发展迅速。

2.1 铅酸电池

铅酸电池的工作原理是放电时,正极的二氧化铅与硫酸反应生成硫酸铅和水,负极的铅与硫酸反应生成硫酸铅;充电时,正极的硫酸铅转化为二氧化铅,负极的硫酸铅转化为铅。

图4 铅酸电池示意图

2.2 镍氢电池

镍氢电池的关键材料包括氢氧化镍正极活性材料和少量添加剂。负极活性材料为贮氢合金,电解液为氢氧化钾溶液。储氢合金是一种能与氢反应生成金属氢化物的物质,但是它与一般金属氢化物有明显的差异。即储氢合金必须具备高度的反应可逆性,而且,此可逆循环的次数必须足够多,循环次数超过5000次。实际上,它必须是能够在适当的温度、压力下大量可逆的吸收和释放氢的材料。

2.3 锂电池

锂电池的工作原理是在充电时锂原子变成锂离子,通过电解质向碳极迁移,在碳极与外部电子结合后作为锂原子储存;放电时整个过程逆转。

图5 锂电池示意图

2.4 液流电池

液流电池内的正、负极电解液由离子交换膜隔开,电池工作时,电解液中的活性物质离子在惰性电极表面发生价态的变化,进而完成充放电。

图6 液流电池示意图

2.5 钠硫电池

钠硫电池放电时钠离子通过电解质,而电子通过外部电路流动产生电压;充电时整个过程逆转,多硫化钠释放正钠离子,反向通过电解质重新结合为钠。

图7 钠硫电池示意图

3 电磁储能

电磁储能是直接以电磁能的方式存储电能的技术,主要包括超导储能、超级电容储能等。

3.1 超导储能

超导储能是将电流导入环形电感线圈,由于该环形电感线圈由超导材料制成,因此电流在线圈内可以无损失地不断循环,直到导出为止,进而达到储能的目的。

图8 超导储能示意图

3.2 超级电容储能

超级电容是基于多孔炭电极/电解液界面的双电层电容,或者基于金属氧化物或导电聚合物表面快速、可逆的法拉第反应产生的准电容来实现能量的储存。

图9 超级电容储能示意图

4 氢储能

氢储能系统利用清洁能源电力电解技术得到氢气,将氢气存储于高效储氢装置中,再利用燃料电池技术,将存储的能量回馈到电网,或者将存储的高纯度氢气送入氢产业链直接利用。氢能绿色无污染、能量密度高、运行维护成本低、可长时间存储,不存在类似蓄电池的自放电现象,被认为是极具潜力的新型大规模储能技术。

利用清洁能源电力电解技术得到氢气,将氢气存储于高效储氢装置中,再利用燃料电池技术,将存储的能量回馈到电网,或者将存储的高纯度氢气送入氢产业链直接利用。为了实现这一完整的能量转换链,就要从氢气的制取、储存、发电等方面整体规划,在关键技术上进一步突破。

4.1 制氢技术

电解水制氢是一种完全清洁的制氢方式,技术工艺过程简单、产品纯度高。根据电解槽生产技术的不同,电解水制氢方法可以分为碱性电解、固体高分子电解质电解和高温固体氧化物电解 3 种。

4.2 储氢技术

与其它燃料相比,氢的质量能量密度大,但体积能量密度低(汽油的1/3000),因此构建氢储能系统的一大前提条件就是在较高体积能量密度下储运氢气。尤其当氢气应用到交通领域时,还要求有较高的质量密度。此外,以氢的燃烧值为基准,将氢的储存运输所消耗的能量控制在氢燃烧热的10%内设为理想状态。目前

氢气的储存可分为高压气态储氢、低温液态储氢和金属固态储氢。对储氢技术的要求是安全、大容量、低成本和取用方便。

4.3 氢发电技术

与传统化石燃料一样,氢气也可以用于氢内燃机(ICE)发电。但由于燃料电池能将氢的化学能直接转化为电能,没有像普通火力发电机那样通过锅炉、汽轮机、发电机的能量形态变化,可以避免中间转换的损失,达到很高的发电效率,而且更高效环保,所以更具实用性。

燃料电池按其工作温度不同,把碱性燃料电池(AFC,100 ℃)、固体高分子型质子交换膜燃料电池(PEMFC,100 ℃以内)和磷酸型燃料电池(PAFC,200 ℃)称为低温燃料电池;把熔融碳酸盐型燃料电池(MCFC,650 ℃)和固体氧化型燃料电池(SOFC,1000℃)称为高温燃料电池。

5 相变储能

相变储能是利用材料在相变时吸热或放热来储能或释能的,具有储能密度高、体积小巧、相变温度选择范围宽、易于控制等优点。相变储能复合材料是相变储能技术的核心,它既能有效克服相变材料单独使用时易泄漏等缺点,又可以改善材料的应用效果以拓展其应用范围,在航空航天、采暖和空调、医学工程、军事工程、蓄热建筑和极端环境服装等众多领域具有重要的应用价值和广阔的前景。

变储能材料的种类很多,存在形式也多种多样。按相变温度的范围分为:高温(>250℃)、中温(100~250℃)和低温(<100℃)储能材料;按相变的方式分为固固相变、固液相变、固气相变和液气相变材料。虽然固气和液气转化时伴随的相变潜热远大于固固和固液转化时的相变潜热,但是由于固气和液气转化时有气体产生,相变材料体积变化非常大,故很难应用于实际工程中。按材料的组成成分可分为无机类和有机类(包括高分子类)储能材料。实际应用中的复合储能相变材料通常由多种组分构成,主要包括载体材料和相变材料。

5.1 无机相变材料

无机相变材料种类繁多,主要包括以结晶水合盐类为代表的中低温相变材料和以熔融盐类为代表的高温相变材料。结晶水合盐类用得较多的是碱金属及碱土金属的卤化物、硫酸盐、磷酸盐、硝酸盐、乙酸盐、碳酸盐的水合物。这类相变材料的优点是价格便宜、体积蓄能密度大、熔解热大、导热系数大。但是这类相变材料通常存在着两个问题。一是过冷现象,解决的方法有:①加成核剂,如加入微粒结构与盐类结晶物相类似的物质;②冷指法即保持一部分冷区,使未熔化的一部分晶体作为成核剂。二是相分离,解决的方法有:①加增稠剂;②加晶体结构改变剂;③盛装相变材料的容器采用薄层结构;④摇晃或搅动。高温融熔盐类主要是氟化盐、氯化物、硝酸盐、碳酸盐、硫酸盐等物质。

表1列出了具有最低共熔点的无机相变材料。

表 1 无机物共熔物

材料质量分数/% 熔点/℃潜热/J·g-1 CaCl2·6H2O /CaBr2·6H2O 45 / 55 14.7 140 CaCl2 /MgCl2·6H2O 50 /50 25 95 CaCl2·6H2O / MgCl2·6H2O 66.6 / 33.4 25 127 Mg(NO3)3·6H2O / Ca(NO3)·4H2O 53 / 47 30 136

Mg(NO3)3·6H2O / MgCl2·6H2O 58.7 / 41.3 59 132.2

Mg(NO3)3·6H2O / MgCl2·6H2O 50 / 50 59.1 144

Mg(NO3)3·6H2O / Al(NO3)2·9H2O 53 / 47 61 148

Mg(NO3)2·6H2O / MgBr2·6H2O 59 / 41 66 168 Mg(NO3)3·6H2O / NH4NO361.5 / 38.5 52 125.5

Mg(NO3)2·6H2O / LiNO386 / 14 72 >180

LiNO3 / NH4NO3 / NaNO325 / 65 / 10 80.5 113

LiNO3 / NH4NO3 / KNO326.4 / 58.7 / 14.9 81.5 116

LiNO3 / NH4NO3 / NH4Cl 27 / 68 / 5 81.6 108

CaCl2 / NaCl / KCl / H2O 48 / 4.3 / 0.4 / 47.3 26.8 188

5.2 有机相变材料

常用有机类相变材料有:高级脂肪烃类、脂肪酸或其酯或盐类、醇类、芳香烃类、芳香酮类、酰胺类、氟利昂类和多羟基碳酸类。另外,高分子类有:聚烯烃类、聚多元醇类、聚烯醇类、聚烯酸类、聚酰胺类以及其它一些高分子。有机相变材料的优点是固体成型好、不易发生相分离及过冷现象、腐蚀性较小、毒性小、成本低、性能较稳定,其缺点是导热系数小、密度小、易挥发、易老化和相变时体积变化大等。为了解决导热系数小的问题,可以加入导热系数高的金属粉末,但是如果用膨胀石墨作为支撑载体就不需考虑此问题,因为膨胀石墨的导热系数较高。

5.3 有机-无机复合相变材料

利用有机物相变材料与无机物相变材料制作混合材料,既可弥补单纯有机物材料的潜热低的遗憾,又能弥补单纯无机物材料的过冷度大的缺点,这是值得注意的相变储能材料发展的一个重要方向。

6 热化学储能

热化学反应储能的本质源于反应体系的正逆反应,反应体系的优劣是影响储能系统整体性能的关键。多数化学反应都伴随着大量的热效应,而选择作为储能系统的反应体系则需要满足6个要求:①反应具有较高的焓值和较大的储能密度;

②反应发生的温度和压力要在设备条件允许的范围之内,且操作条件要温和;③反应在动力学上能够快速进行,具有较高的储放热速率及储能效率;④反应过程可逆性好,无副产物;⑤反应物和产物在常温下稳定、无污染、无腐蚀性,便于长时间储存和运输;⑥反应材料来源丰富,价格便宜以降低反应成本。当前典型的热化学储能体系根据反应物的不同,可分为如图10所示的6个体系,相比而言碳酸盐体系的研究进展较少。

图10 热化学储能体系

6.1 金属氢化物体系

多数金属或合金在一定的温度和压力下与氢气接触时可将氢分子离析成氢

,并伴随着显著的热效应。利用该反应可实现氢离子,反应生成金属氢化物 MH

n

气的储存和能量的释放,相应的可以通过其逆反应将低位热能储存于固态金属中。

6.2 氧化还原体系

氧化还原体系是利用较活泼的金属与其氧化物之间或是不同价态的金属氧化物之间的互相转换来实现储能的,部分生成的金属产物和金属氧化物与水反应生成氢气,将储存的热能进一步转化为氢能,也是现今研究较多的热化学循环分解水制氢技术。

6.3 有机体系

有机体系储能是通过对有机物进行高温裂解、重整以及气化的方式达到能量存储的目的,多应用于氢气的制备和化石能源的高效利用。甲烷作为化工次产品的基础性原料,来源丰富,其重整体系反应热效应很大,能实现温室气体的循环利用,是目前工业上应用最广泛、技术最成熟的储能制氢方法,已成功实现规模化(>1000 M3/h)。根据反应物的不同可分为甲烷水蒸气重整储能、甲烷二氧化

碳重整储能以及甲烷水蒸气/二氧化碳混合重整储能。

6.4 无机氢氧化物体系

无机氢氧化物的分解伴随着大量的反应热,反应温度一般为523~873 K,适合中温储能,其反应过程为

M(OH)

y +?Hr MO

y/2

+y/2H

2

O

较常见的体系有 Ca(OH)

2/CaO、Mg(OH)

2

/MgO、Ba(OH)

2

/Ba、Sr(OH)

2

/SrO 等。

其中,Ca(OH)

2

/CaO体系原材料丰富便宜,对此体系有较多的研究。

6.5 氨分解体系

氨作为重要的无机化工产品之一,被广泛应用于化学肥料的生产以及作为冷冻、塑料、冶金、医药、国防等工业的原料。世界每年年产量达到1.25亿吨以上。目前工业上普遍采用的“循环法”直接合成氨技术是德国化学家哈伯于1909 年提出的。经过逾百年的发展,合成氨工业已趋于成熟。图11为氨基热化学储能系统原理图。

图11 氨基热化学储能原理图

7 总结

纳米流体研究进展_李云翔

doi :10.3969/j.issn.2095-4468.2013.04.111 纳米流体研究进展 李云翔,解国珍*,安龙,田泽辉 (北京建筑大学,北京 100044) [摘 要] 本文综述了纳米流体的研究进展。1995年美国Argonne 国家实验室的 Choi 等提出将纳米级金属或非金属氧化物颗粒添加到换热工质中制备出新型换热工质“纳米流体”的方法,而且指出纳米流体的稳定性是纳米流体能否进行科学研究和实际应用的关键问题。纳米流体的导热系数、粘度等物性是反映介质流动与换热的关键因素。为使纳米流体成功地应用于工业实际,必须对其传热特性做深入研究。研究发现,目前诸多文献对纳米流体强化沸腾传热存在争议,部分研究成果证明纳米流体能强化传热,而另外的研究成果则认为纳米颗粒的添加非但不能强化传热甚至出现恶化现象。 [关键词] 纳米流体;导热系数;粘度;分散稳定性 Review on Research of Nanofluid LI Yun-xiang, XIE Guo-zhen *, AN Long, TIAN Zei-hui (Beijing University of Civil Engineering and Arthitecture, Beijing 100044, China) [Abstract] The research status of nanofluid was reviewed in the present study. Nanofluid was firstly proposed by Choi et al. of U.S. Argonne National Laboratory in 1995, and it was prepared by adding nanoscale metal or nonmetal oxide into heat transfer fluid. Choi et al. also pointed out that, the stability of nanofluids is the key factor for scientific research and practical application. The thermal conductivity coefficient, viscosity and other physical properties of nano-fluids are the key factors reflecting the flow and heat transfer characteristics. In order to successfully apply nanofluids in industrial practice, the heat transfer chacteristics of nanofluids should be investigated deeply. The existing researches show that, the enhancement effect of nano-fluids is controversial; some research results show that nanofluids may enhance the heat transfer, while some other research results show that there is deterioration effect rather than enhancement effect due to the presence of nano particles. [Keywords] Nanofluid; Thermal conductivity; Viscosity; Dispersivity and stability *解国珍(1954-),男,教授,博士。主要研究方向:制冷与空调设备关键节能新技术研究、CFCs 和HFCs 替代技术研究、纳米微粒对空调制冷系统流体特性影响研究等。联系地址:北京市西城区展览馆路一号北京建筑大学,邮编;100044。 基金项目:国家自然科学基金项目(编号:51176007);北京供热、供燃气、通风与空调工程重点实验室资助。 0 前言 20世纪90 年代以来,随着能源、化工、汽车、建筑、微电子、信息等领域的飞速发展,使得传统的传热介质在传热性能等方面受到严重的挑战。研究人员开始探索将纳米材料技术应用于强化传热领域,研究新一代高效传热冷却技术。 1995年美国Argonne 国家实验室的Choi 等[1]提出将纳米级金属或非金属氧化物颗粒添加到换热工质中制备出新型换热工质“纳米流体”。由于金属及其氧化物的导热系数远大于液体,而且由于纳米颗粒的小尺度和强表面效应使得其在液体中能够稳定地分散,所以既使得传热工质的换热性能大大提高,也避免了传统微米级材料添加剂沉降造成管路阻塞等不良后果。 本文对目前国内外有关纳米流体研究的几个主要方向进行了概括,包括:纳米流体稳定性的研究、纳米流体物性的研究、纳米流体传热特性的研究,其中既包括实验方面的研究进展也对纳米流体物性以及传热特性的理论研究进行了系统的总结。一方面,这对纳米流体在工业生产中的应用起到参考和提示的作用;也对分析相关实验现象及数据给出合理的解释具有指导意义,对探寻纳米流体传热的物理机制及建立相关模型给出借鉴。另一方面,通过综合考虑目前的研究进展可看出这个领域存在的缺点和不足,以便于对后续的研究提供一定的指导作用。 1 纳米流体的稳定性 为了制备热物理性优良的纳米流体,首先要研究纳米流体的稳定性。美国Argonne 国家实验室KeblinskI 等人[2]指出纳米流体的稳定性是纳米流体 45

纳米流体研究进展

纳米流体研究进展 摘要:纳米流体作为一种新型换热工质展现出异常良好的换热性能和良好的稳定性目前,人们对于纳米流体的研究还不够深入,纳米流体各种特性的机理尚不清楚。进一步开展纳米流体各种特性的机理研究,有助于加深人们对纳米流体的认知,能够促进纳米流体的工程应用,是非常有意义的工作。本文综述了纳米流体制备、纳米流体的稳定性、传热特性、导热系数研究进展。并对其在应用上作出了展望。 关键词:纳米流体;稳定新;传热特性;导热系数 1引言: 随着科学技术的飞速发展和能源问题的日益突出,热交换设备的传热负荷和传热强度日益增大,传统的纯液体换热工质已很难满足一些特殊条件下的传热与冷却要求,低传热性能的换热工质已成为研究新一代高效传热冷却技术的主要障碍。随着纳米科学与技术的进步,纳米尺度材料和技术越来越多地进入强化传热工作者的视野。1995年美国Argonne国家实验室的Choi等[1]率先提出了纳米流体的概念。所谓纳米流体,是指以一定的方式在液体介质中添加纳米粒子或纳米管而形成的悬浮液。纳米流体与传统换热介质相比,在增强传热方面有着优良的特性。研究表明:纳米流体能显著提高传统换热介质的导热系数[2]。此外纳米流体在氨水鼓泡吸收实验中也表现出了很好的强化氨气吸收效果。制备导热系数高、换热性能好、传质效果强的纳米流体也必定会促进其在能源、化工、微电子、信息等领域的发展[3]。纳米流体概念的提出给强化传热技术的研究带来了新的希望。开展纳米流体强化传热机理研究,搞清楚影响纳米流体强化传热的主要因素,对于促进纳米流体在传热领域的应用有重要的意义。基于此,本文主要从纳米流体制备、纳米流体的稳定性、传热特性、导热系数等方面的最新进展及存在的问题进行叙述。 2纳米流体的制备 关于纳米流体的制备,己有许多相关综述可以参考,文献中采用的制备方法主要有两步法和一步法[4, 5]: 两步法是最为便利、经济的制备方法。纳米粉体工业已经较为成熟,可以通过物理或化学方法制备出金属或非金属的纳米颗粒、纳米管等纳米材料。两步法是指直接将纳米粒子分散到基液中的方法。首先,通过气相沉积法、化学还原法、机械球磨法或其它方法制备出纳米粒子、纳米纤维或纳米管,然后通过超声波振动、添加活性剂或分散剂、改变溶液pH值的方法,使纳米颗粒均匀地分散到基

纳米流体传热性能研究进展与问题

纳米流体传热性能研究进展与问题 李新芳,朱冬生 华南理工大学传热强化与过程节能教育部重点实验室, 广州 510641 E-mail xtulxf@https://www.360docs.net/doc/5d8588703.html, 摘要:介绍了纳米流体的制备技术,重点阐述了纳米流体传热性能特异性研究进展和存在的问题,同时对今后纳米流体研究的发展方向提出了展望。 关键词:纳米流体;制备;传热性能 1. 引言 随着科学技术的飞速发展和能源问题的日益突出[1,2],热交换设备的传热负荷和传热强度日益增大,传统的纯液体换热工质已很难满足一些特殊条件下的传热与冷却要求,低传热性能的换热工质已成为研究新一代高效传热冷却技术的主要障碍。提高液体传热性能的一种有效方式是在液体中添加金属、非金属或聚合物固体粒子。由于固体粒子的导热系数比液体大几个数量级,因此,悬浮有固体粒子的液体的导热系数要比纯液体大得许多。自从Maxwell 理论发表以来,许多学者进行了大量关于在液体中添加固体粒子以提高其导热系数的理论和实验研究,并取得了一些成果。然而,这些研究都局限于用毫米或微米级的固体粒子悬浮于液体中,由于这些毫米或微米级粒子在实际应用中容易引起热交换设备磨损及堵塞等不良结果,而大大限制了其在工业实际中的应用。 自20世纪90年代以来,研究人员开始探索将纳米材料技术应用于强化传热领域,研究新一代高效传热冷却技术。1995年,美国Argonne国家实验室的Choi等[3]提出了一个崭新的概念-纳米流体:即将1~100nm的金属或者非金属粒子悬浮在基液中形成的稳定悬浮液,这是纳米技术应用于热能工程这一传统领域的创新性研究。研究表明[4-6],在液体中添加纳米粒子,可以显著增加液体的导热系数,提高热交换系统的传热性能,显示了纳米流体在强化传热领域具有广阔的应用前景。由于纳米材料的小尺寸效应,其行为接近于液体分子,不会像毫米或微米级粒子易产生磨损或堵塞等不良结果。因此,与在液体中添加毫米或微米级粒子相比,纳米流体更适于实际应用。 总之,由于纳米流体在各类科学研究和工程技术部门能够产生新的变革,加上它的运动方式新颖、能耗小、无污染和使用范围广等特点,因此受到人们极大关注。目前我国和世界上许多国家都在积极的开展这项研究,有关其基础理论和应用等方面的报道越来越多。本文简要介绍了纳米流体的制备,重点论述了纳米流体传热性能特异性研究的进展和存在的问题。 本课题得到高等学校博士学科点专项科研基金(No.20050561017)和教育部新世纪优秀人才支持计划(No. NCET-04-0826)项目资助. - 1 -

储能技术的三类价值体现

储能技术的三类价值体现 在过去相当长一段时间,储能在电网的应用技术主要是抽水蓄能,应用领域主要是移峰填谷、调频及辅助服务等。近年来,随着新能源发电技术的发展,风电、太阳能光伏发电等波动性电源接入电网的规模不断扩大,以及分布式电源在配网应用规模的扩大,储能及其在电网的应用领域和应用技术都发生了很大变化。储能技术类型不断增多,应用范围也在扩大,本文就从储能技术的类型与应用范围谈起。 储能技术即能量存储和再利用的技术,按其基本原理分类,可分为物理储能、化学储能以及一些前沿储能技术,其中物理储能包括抽水蓄能、压缩空气储能、飞轮储能、超导储能等,化学储能有铅炭电池、锂离子电池、液流电池、钠硫电池、超级电容器等,液态金属电池、铝空气电池、锌空气电池等属于比较前沿的技术。不同的储能技术其特征和应用范围也有所区别。单从储能技术评价指标来看,就包括功率规模、持续时间、能量密度、功率密度、循环效率、寿命、自放电率、能量成本、功率成本、技术成熟度、环境影响等。可以说,没有一种单一储能技术可以适应所有的储能需求,应按需选择合适的储能技术或技术组合。 1、储能技术简介 1.1抽水蓄能电站 抽水蓄能使用两个不同水位的水库。谷负荷时,将下位水库中的水抽入上位水库;峰负荷时,利用反向水流发电。抽水储能电站的最大特点是储存能量大,可按任意容量建造,储存能量的释放时间可以从几小时到几天,其效率在70%——85%。 1.2压缩空气储能 压缩空气储能系统主要由两部分组成:一是充气压缩循环,二是排气膨胀循环。在夜间负荷低谷时段,电动机—发电机组作为电动机工作,驱动压缩机将空气压入空气储存库;白天负荷高峰时段,电动机—发电机组作为发电机工作,储存的压缩空气先经过回热器预热,再与燃料在燃烧室里混合燃烧后,进入膨胀系统中(如驱动燃气轮机)发电。 1.3飞轮储能系统 飞轮储能利用电动机带动飞轮高速旋转,将电能转化成机械能储存起来,在需要时飞轮带动发电机发电。近年来,一些新技术和新材料的应用,使飞轮储能技术取得了突破性进展,例如:磁悬浮技术、真空技术、高性能永磁技术和高温超导技术

飞轮储能技术的现状和发展前景

飞轮储能技术的现状和发展前景 飞轮储能系统(FESS)又称飞轮电池或机械电池,由于它与化学电池相比所具有 的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。 飞轮电池的发展开始于20 世纪70 年代,当时正处于石油禁运和天然气危机时期。此时,美国能量研究发展署(ERDA) 及其后的美国能源部(DoE) 资助飞轮系统的应用开发,包括电动汽车的超级飞轮的研究。 Lewis 研究中心(LeRC) 在ERDA 的 协助和美国航空航天局(NASA) 的资助下专门研究用于真空下的机械轴承和用于复合车辆的飞轮系统的传动系统。NASA 同时也资助Goddard 空间飞行中心(GSFC) 研究适用于飞行器动量飞轮的电磁轴承。80 年代,DoE 削减了飞轮储能研究的资助,但NASA 继续资助GSFC 研究卫星飞轮系统的电磁轴承,同时还资助了Langley 研 究中心(LaRC) 及Marshall 空间飞行中心(MSFC) 关于组合能量储存和姿态控制的动量飞轮构形的研究。 近10 年来,一大批新型复合材料和新技术的诞生和发展,如高强度的碳素纤维 复合材料(抗拉强度高达8. 27 GPa) 、磁悬浮技术和高温超导技术、高速电机/ 发电机技术以及电力电子技术等,使得飞轮能够储存大量的能量,给飞轮的应用带来了新的活力。它可应用于国防工业(如卫星、电磁炮和电热化学枪、作战侦察车辆等) 、汽车工业(电动汽车) 、电力行业(如电力质量和电力负载调节等) 、医疗和电信业(作UPS 用) 等1NASA 的应用有航天器(宇宙飞船) 、发射装置、飞行器动力系统、不间断电源(UPS) 和宇宙漫步者。

储能技术及其在现代电力系统中的应用

储能技术及其在现代电力系统中的应用 内容摘要 从电力系统安全高效运行的角度论述了电能存储技术的重要性,介绍了目前常用的几种储能技术的发展现状,指出了该领域当前的热点研究问题。 现代电力系统中的新问题 安全、优质、经济是对电力系统的基本要求。近年来,随着全球经济发展对电力需求的增长和电力企业市场化改革的推行,电力系统的运行和需求正在发生巨大的变化,一些新的矛盾日显突出,主要的问题有:①系统装机容量难以满足峰值负荷的需求。②现有电网在输电能力方面落后于用户的需求。③复杂大电网受到扰动后的安全稳定性问题日益突出。④用户对电能质量和供电可靠性的要求越来越高。⑤电力企业市场化促使用户则需要能量管理技术的支持。⑥必须考虑环境保护和政府政策因素对电力系统发展的影响。 2000年到2001年初,美国加州供电系统由于用电需求的增长超过电网的供电能力,出现了电力价格大范围波动以及多次停电事故;我国自2002年以来,已连续四年出现多个省市拉闸限电的状况;在世界上的其他国家和地区,也不同程度地出现了电力供应短缺的现象。系统供电能力,尤其是在输电能力和调峰发电方面的发展已经落后于用电需求的增长,估计这种状况还会在一段时间内长期存在,对电力系统的安全运行将带来潜在的威胁。 加强电网建设(新建输电线路和常规发电厂),努力提高电网输送功率的能力,可以保证在满足系统安全稳定运行的前提下向用户可靠地输送电能。但是,由于经济、环境、技术以及政策等方面因素的制约,电网发展难以快速跟上用户负荷需求增长的步伐,同时电网在其规模化发展过程中不可避免地会在一段时间甚至长期存在结构上的不合理问题;另一方面,随着电力企业的重组,为了获取最大利益,企业通常首先选择的是尽可能提高设备利用率,而不是投资建设新的输电线路和发电厂。因此,单靠上述常规手段难以在短时间内有效地扭转电力供需不平衡的状况。 长期以来,世界各国电力系统一直遵循着一种大电网、大机组的发展方向,按照集中输配电模式运行。在这种运行模式下,输电网相当于一个电能集中容器,系统中所有发电厂向该容器注入电能,用户通过配电网络从该容器中取用电能。对于这种集中式输配电模式,由于互联大系统中的电力负荷与区域交换功率的连续增长,远距离大容量输送电能不可避免,这在很大程度上增加了电力系统运行的复杂程度,降低了系统运行的安全性。 目前,电力系统还缺乏高效的有功功率调节方法和设备,当前采用的主要方法是发电机容量备用(包括旋转备用和冷备用),这使得有功功率调控点很难完全按系统稳定和经济运行的要求布置。某些情况下,即使系统有充足的备用容量,如果电网发生故障导致输电能力下降,而备用机组又远离负荷中心,备用容量的电力就难以及时输送到负荷中心,无法保证系统的稳定性。因此,在传统电力系统中,当系统中出现故障或者大扰动时,同步发电机并不总是能够足够快地响应该扰动以保持系统功率平衡和稳定,这时只能依靠切负荷或者切除发电机来维持系统的稳定。但是,在大电网互联的模式下,局部的扰动可能会造成对整个电网稳定运行的极大冲击,严重时会发生系统连锁性故障甚至系统崩溃。美国和加拿大2003年8月14日发生的大停电事故就是一个惨痛的教训。如果具有有效的有功和无功控制手段,快速地平衡掉系统中由于事故产生的不平衡功率,就有可能减小甚至消除系统受到扰动时对电网的冲击。 在现代电力系统中,用户对于电能质量和供电可靠性的要求越来越高。冲击过电压、电压凹陷、电压闪变与波动以及谐波电压畸变都不同程度地威胁着用户设备特别是敏感性负荷的正常运行。电力市场化的推行也促使电力供应商和用户一起共同寻求新的能量管理技术支

储能技术应用和发展前景

储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

由于我国的能源中心和电力负荷中心距离跨度大,电力系统一直遵循着大电网、大电机的发展方向,按照集中输配电模式运行,随着可再生能源发电的飞速发展和社会对电能质量要求的不断提高,储能技术应用前景广阔。储能技术主要的应用方向有:风力发电与光伏发电互补系统组成的局域网,用于偏远地区供电、工厂及办公楼供电;通信系统中作为不间断电源和应急电能系统;风力发电和光伏发电系统的并网电能质量调整;作为大规模电力存储和负荷调峰手段;电动汽车储能装置;作为国家重要部门的大型后备电源等。随着储能技术的不断进步,安全性好、效率高、清洁环保、寿命长、成本低、能量密度大的储能技术将不断涌现,必将带动整个电力行业产业链的快速发展,创造巨大的经济效益和社会效益。 国家电网公司近期确定的智能电网重点投资领域中包括了大量储能应用领域,如发电领域的风力发电和光伏发电中应用储能技术项目,配电领域储能技术,电动汽车充放电技术等。无论是风电还是太阳能发电,其自身都具有随机性和间歇性特征,其装机容量的快速增长必对电网调峰和系统安全带来不利影响,所以,必须要有可靠的储能技术作为支撑和缓冲。先进储能技术能够在很大程度上解决新能源发电的波动性问题,使风电及太阳能发电大规模的安全并入电网。 并网逆变器作为光伏电池与电网的接口装置,将光伏电池的直流电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用。并网逆变器性能对于系统的效率、可靠性,系统的寿命及降低光伏发电成本至关重要。 储能技术发展有利于推进风电就地消纳,在当前产业梯度转移的大背景下,可考虑在大型风电基地附近布局供热、高耗能产业,同时加快建立风电场与这些大电力用户和电力系统的协调运行机制。国家电网近期确定的智能电网重点投资

全球储能技术发展现状与应用情况

全球储能技术发展现状与应用情况 一、储能技术分类、技术原理、主要特征 针对电储能的储能技术主要分为三类:电化学储能(如钠硫电池、液流电池、铅酸电池、锂离子电池、镍镉电池、超级电容器等) 、物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)和电磁储能(如超导电磁储能等)。 也可以分为功率型和能量型,功率型的特点是功率密度大、充放电次数多、响应速度快、能量密度小的特点,例如飞轮、超级电容、超导;能量型的特点是能量密度大、响应时间长、充放电次数少、功率密度低等特点。例如蓄电池。 从目前的情况来看,两种储能设备混用会产生更大的效果,混用比单一使用更有利于降低成本。(最近的一篇论文介绍的模型计算结果是在微网中使用超级电容和蓄电池两种混合储能成本是单一储能成本的33.8%。) (一)电化学储能技术 1、钠硫电池 钠硫电池的正极活性物质是液态的硫(S);负极活性物质是液态金属钠(Na),中间是多孔性瓷隔板。它利用熔融状态的金属钠和硫磺在300℃以上高温条件下,进行氧化-还原反应,完成充放电过程。 钠硫电池的主要特点是能量密度大(是铅蓄电池的3倍)、充电效率高(可达到80%)、可大电流、高功率放电、循环寿命比铅蓄电

池长。然而钠硫电池在工作过程中需要保持高温,有一定安全隐患。由于钠硫电池中所用的储能介质金属钠和硫磺均为易燃、易爆物质,对电池材料要求十分苛刻,目前只有日本(NGK)公司实现产品的产业化生产。 图1 钠硫电池储能系统原理 (来源:美国储能协会) 2、液流电池 液流氧化还原电池(Redox flow cell energy storage systems),简称液流蓄电站或液流电池,与通常蓄电池活性物质包含在阳极和阴极不同,液流电池作为氧化-还原电对的活性物质分别溶解于装在两个大储液罐中的溶液里,各用一个泵使溶液流经液流电池堆中高选择性离子交换膜的两侧,在其多孔炭毡电极上发生还原和氧化反应。电池堆通过双极板串联,结构类似于燃料电池。目前还发展有在一个或两个电极上发生金属离子(及非金属离子)溶解/沉积反应的液流电池。 由于液流电池的储能容量由储存槽中的电解液容积决定,而输出功率取决于电池的反应面积,通过调整电池堆中单电池的串连数量和电极面积,能够满足额定放电功率要求。两者可以独立设计,因此系

全球储能技术的发展现状及前景分析

全球储能技术的发展现状及前景分析 北极星储能网讯:一直以来,储能技术的研究和发展备受各国能源、交通、电力、电讯等部门的高度关注,尤其对发展新能源产业具有重大意义。受 环境约束,各国纷纷大力提倡发展新能源,然而由于新能源发电具有不稳定性 和间歇性,大规模开发和利用将使供需矛盾更加突出,全球弃风、弃光问题普遍存在,严重制约了新能源的发展。因此,储能技术的突破和创新就成为新能源能 否顺利发展的关键。从某种意义上说,储能技术应用的程度将决定新能源的发 展水平。 (一)全球各储能技术装机情况 近年来,储能市场一直保持较快增长。据美国能源部全球储能数据库(DOEGlobalEnergyStorageDatabase)2016 年8 月16 日的更新数据显示,全球累计运行的储能项目装机规模167.24GW(共1227 个在运项目),其中抽水蓄能161.23GW(316 个在运项目)、储热3.05GW(190 个在运项目)、其他机械储能1.57GW(49 个在运项目)、电化学储能1.38GW(665 个在运项目)、储氢 0.01GW(7 个在运项目),具体见全球累计运行的储能项目装机量以抽水蓄能占 比最大,约占全球的96%。按照总装机量,中国成为装机位列第一的国家,日 本和美国次之,三国装机分别为32.1GW、28.5GW 和24.1GW,共占全球装机 总量的50%。全球累计运行储能项目装机排名前十的主要是亚洲和欧洲国家, 详见表1。 (二)全球储能技术区域分布情况 全球的储能项目装机主要分布在亚洲、欧洲和北美,见按照储能技术类 型分布来看,抽水蓄能装机占比最大,主要分布在中国、日本和美国。与2014

(完整word版)关于表面活性剂对水基纳米流体特性影响的研究进展

关于表面活性剂对水基纳米流体特性影 响的研究进展 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 在能量传递研究及应用技术方面,纳米流体作为一种新型换热工质已获得关注。目前,关于纳米流体,主要从其制备、稳定性、热物性及传热传质等方面研究。稳定的纳米流体是进行各种研究及应用的基础。由于悬浮于流体中的纳米粒子有热力学不稳定性、动力学稳定性和聚集不稳定性的特点,因此如何保持粒子在液体中均匀、稳定地分散是非常关键的问题。常用的纳米流体分散技术里表面活性剂对纳米流体特性的影响是研究的热点之一。 表面活性剂的分子结构具有不对称性,即亲水性的极性基团和憎水性的非极性基团。根据其在水中能否电离将其分为离子型和非离子型表面活性剂,根据离子型表面活性剂生成的活性基团,又将其分为阴离子和阳离子表面活性剂。纳米流体中表面活性剂的选择主要考虑基液、表面活性剂的种类和浓度。在水基纳米流体中,常见的表面活性剂有阴离子型的十二烷基硫酸钠(SDS)和十二烷基苯磺酸钠(SDBS)、阳离子

型的十六烷基三甲基溴化铵(CTAB)、非离子型的辛基苯酚聚氧乙烯醚(OPE)和聚乙烯吡咯烷酮(PVP)。表面活性剂对纳米流体特性的影响主要从种类和浓度来考虑。针对已有的研究,总结和分析表面活性剂对纳米流体稳定性和热物性影响的实验研究,并从机理对其进行更深层次的研究。同时针对目前的研究现状,提出了未来相应的研究方向。 1 表面活性剂对流体稳定性的影响 表面活性剂对纳米流体稳定性起着重要作用。已发表的文献中,重点研究其种类和浓度对纳米流体稳定性的影响。由于影响纳米流体稳定性的因素非常多,各因素之间的相互影响不同,实验所得的研究结果存在一些差异。 李金平等提出了水基纳米流体中选择表面活性剂的一些建议,研究了表面活性剂聚乙烯醇(PV A)和SDBS 对Cu、Ag 和TiO2纳米粒子悬浮液分散稳定性的影响,得出PV A、SDBS 及两者的混合能够使Cu、Ag 纳米流体稳定悬浮,而不能使TiO2纳米流体保持1h 以上的稳定悬浮。作者分析认为TiO2纳米流体中粒子吸收光能后,在表面生成的两种化学性质很活泼的自由基抑制了表面活性剂的吸附,即表面活性剂在粒子表面没有发挥作用。PV A 和SDBS 的混

纳米流体的合成及应用的研究进展

纳米流体的合成及应用的研究进展 纳米流体具有导电性、催化活性等特性,离子液体有宽电化学窗口和导电性,以两者合成的离子液体基纳米流体在生物医学、光催化、电化学等领域有着广阔的应用。本文介绍了纳米流体常用的两种制备方法,并讨论了各制备方法的优缺点。 标签:离子液体;纳米流体 纳米流体自20世纪90年代提出后广受关注,离子液体基纳米流体是离子液体及纳米材料在一定条件下用特定方法合成的复合物,不仅具有离子液体的性质,也具有纳米流体的性质。离子液体因其特性,能够对纳米粒子进行表面修饰,并且能够阻止纳米粒子团聚特性,为纳米流体的合成提供了新的研究方向,离子液体基纳米流体的研究逐渐被报导。目前较成熟制备纳米流体的方法有:一步合成法和两步合成法。 1 一步合成法 一步法是直接在纳米颗粒制备的同时把金属颗粒沉积到液体基质中。一步法中,纳米颗粒通过气相沉积制得再混溶于基液中。此方法制得的流体中纳米微粒稳定且粒径小,分散性好并不易团聚,不加分散剂也能长期稳定。能用在金属纳米流体的合成,但是此方法条件苛刻,要求在低蒸气压条件下且必须在流体介质中反应。此方法适用于对纯度要求高的少量產物合成,但是此法产量低且对设备要求高,不适合工业化生产。 2 两步合成法 两步法是将纳米微粒的制备与流体的合成过程分开首先,是目前比较普遍的合成方法。主要采用气相沉积法或别的方法如机械球磨法和化学还原法,将制备出的纳米颗粒,通过超声、搅拌、加入分散剂等其他方法,使纳米颗粒稳定、均匀地分散到基液中。由于纳米微粒制备的技术日趋完善已达工业化水平,使得两步法在工业中应用有明显优势。两步法合成纳米流体的缺点就是,制得的纳米流体不够稳定,还需要不断研究改善。 合成纳米流体后,需要对其稳定性、形貌、性质等进行表征。表征纳米流体的方法主要有:通过扫描电镜(SEM)和透射电子显微镜(TEM)对纳米颗粒大小及形貌进行表征,此方法需要将纳米颗粒分离,在分离过程中会造成纳米微粒形貌改变以及因为分子间的范德华力发生团聚现场。利用分光光度计对纳米流体的吸光度表征,吸光度越大,纳米流体越稳定或紫外可见光光谱的最大吸收波长发生蓝移,纳米流体的颗粒越小,纳米流体越稳定。使用专业的纳米粒度仪,纳米流体稳定性越好Zeta电位的绝对值之差越大;利用纳米粒度仪对纳米流体的粒度大小进行测量,平均粒径较小的纳米流体较稳定。还可通过沉降分析、激光衍射等多种方法进行表征。

储能技术应用和发展前景

储能技术应用和发展前景 深圳市中美通用电池有限公司网址:WWW+中美通用电池首字母+COM General Electronics Battery Co., Ltd. 网址:WWW+中美通用电池首字母+COM 储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

纳米流体储能研究进展

龙源期刊网 https://www.360docs.net/doc/5d8588703.html, 纳米流体储能研究进展 作者:贾亚峰尚玉明何向明李建军 来源:《新材料产业》2017年第06期 近年来,能源的不断消耗使能源短缺和环境问题呈现在人们面前,利用储能技术来提高能源利用率是一种有效的缓解方法。其中制冷设备通过相变蓄冷技术采用“移峰填谷”来进行能量高效利用的方式成为了储能领域的热门话题。纳米流体作为一种新型的储能蓄冷材料也备受人们的关注。 1995年,“纳米流体”的概念由美国学者Choi等[1]提出,即在基液中添加特定纳米材料的方式形成的一种具有高导热系数、高换热系数的均匀稳定悬浮液。制备性能稳定、优异的纳米流体是近年来国内外储能领域的研究热点。拥有高导热系数和强换热性能的纳米流体作为一种新型的相变材料,在储能领域中占有一席之地,本文主要介绍纳米流体的分散稳定性和导热机理以及纳米流体在储能领域的优势等,并阐述纳米流体在储能蓄冷领域的应用进展。 一、储能技术及相变储能材料 1.储能技术 储能技术是高效利用能量的途径之一。储能技术常见方法:抽水储能、飞轮储能、压缩空气储能、超级电容器储能、超导磁储能、化学电源储能、相变储能。 相变储能可通过吸收、释放相变材料的相变过程中产生的热量来进行储能和释能。常用在冰蓄冷空调技术、蓄热供暖技术等方面。冰蓄冷可以在低负荷的夜间采用电动制冷机实行,使蓄冷介质结冰蓄能,然后在负荷高的白天融冰,释放出储存的冷量。这种储能方式具有能量密度高,所需装置构造简单、设计灵活、使用方便且易于管理的优点。纳米流体因高导热系数纳米颗粒的添加,在传统换热工质的基础上提高了其导热系数和换热性能[2-6],使其成为国内外储能材料的研究热点。 2.相变储能材料 相变储能材料[7]主要分为无机相变材料和有机相变材料。 (1)无机相变储能材料 无机相变材料主要包括无机水合盐[8]和金属相变材料。无机水合盐相变材料主要包括硝 酸盐、磷酸盐以及碱金属的卤化物等,有较高潜热,属于低温储热材料。金属类相变材料具有导热系数高、储能密度大、热稳定差等特点,属于中高温储能材料。无机相变材料具有潜热高、热导率高、温度范围宽、成本低等优点,但也存在一些问题:溶剂蒸发造成脱水盐沉积,

新能源储能系统发展现状及未来发展趋势

新能源储能系统发展现状及未来发展趋势 目录 第一章新能源储能系统相关论述 (1) 1.1新能源相关论述 (1) 1.1.1新能源定义 (1) 1.1.2新能源分类 (1) 1.2储能技术相关论述 (1) 1.2.1储能技术的定义 (1) 1.2.2储能技术的分类 (1) 第二章国内外新能源储能系统的发展动态分析 (2) 2.1日本新能源储能系统的发展动态分析 (2) 2.1.1新能源储能电池的发展现状及未来发展趋势 (2) 2.1.2新能源储能系统的未来发展趋势 (3) 2.1.3新能源储能系统在实际中的应用 (3) 2.2美国在新能源储能系统的应用中漫漫求索 (4) 2.2.1政策与投资力度 (4) 2.2.2储能技术的经济性瓶颈 (5) 2.3我国新能源储能系统的现状 (5) 2.3.1储能是构建智能电网的关键环节 (6) 2.3.2商业模式不成熟制约储能发展 (6) 第三章国内外在相关新能源储能技术上的发展现状 (8) 3.1新能源储能系统的实际应用 (8) 3.2创能、节能与储能的完美搭配 (9) 3.3国内新能源储能技术瓶颈解析 (10) 3.3.1新能源科技发展的核心—储能技术 (10) 3.3.2新能源无"仓库储能"的尴尬 (10) 3.3.3储能技术的突破效应 (11) 3.3.4"不能等肚子饿了才去种麦子" (12) 第四章新能源储能系统的发展趋势 (13) 4.1日本新能源储能系统的发展趋势 (13) 4.1.1储能电池的发展趋势 (13) 4.2我国新能源储能系统的发展趋势 (13) 4.2.1我国智能电网带动储能产业发展态势研究分析 (13) 4.2.2新能源并网储能市场发展前景预测分析 (14)

详解智能电网中的6种储能技术

详解智能电网中的6种储能技术 储能技术在包括电力系统在内的多个领域中具有广泛的用途,近年来世界范围内的电力工业重组给各种各样的储能技术带来了新的发展机遇,采用这些技术可以更好地实现电力系统的能量管理,尤其是在可再生能源和分布式发电领域,这种作用尤为明显,在传统的发电和输配电网络中,这些新技术同样可以得到应用。以下简要介绍各种储能技术的基本原理及其发展现状。 1 抽水储能 抽水蓄能电站在应用时必须配备上、下游两个水库。在负荷低谷时段,抽水储能设备工作在电动机状态,将下游水库的水抽到上游水库保存。在负荷高峰时,抽水储能设备工作于发电机的状态,利用储存在上游水库中的水发电。一些高坝水电站具有储水容量,可以将其用作抽水蓄能电站进行电力调度。利用矿井或者其他洞穴实现地下抽水储能在技术上也是可行的,海洋有时也可以当作下游水库用,1999年日本建成了第一座利用海水的抽水蓄能电站。 抽水储能最早于19世纪90年代在意大利和瑞士得到应用,1933年出现了可逆机组(包括泵水轮机和电动与发电机),现在出现了转速可调机组以提高能量的效率。抽水蓄能电站可以按照任意容量建造,储存能量的释放时间可以从几小时到几天,其效率在70%至85%之间。 抽水储能是在电力系统中得到最为广泛应用的一种储能技术,其主要应用领域包括能量管理、频率控制以及提供系统的备用容量。目前,全世界共有超过90GW的抽水储能机组投入运行,约占全球总装机容量的3%。限制抽水蓄能电站更广泛应用的一个重要制约因素是建设工期长,工程投资较大。 2 先进蓄电池储能 据估计,全球每年对蓄电池的市场需求大约为150亿美元,在工业用蓄电池方面,如:用于UPS、电能质量调节、备用电池等,其市场总量可达50亿美元。在美国、欧洲以及亚洲,

熔融盐储能技术及应用现状汇总

熔融盐储能技术及应用现状 随着全球新能源产业的快速发展,风力发电与太阳能等随机性和间歇性很强的发电方式对电网的正常运行管理提出了相当高的挑战,相应地,各类储能(储热)技术也逐渐纳入了人们的视角。熔融盐储能技术是利用硝酸盐等原料作为传热介质,通过新能源发出的热能与熔盐的内能转换来存储或发出能量,一般与太阳能光热发电系统结合,使光热发电系统具备储能和夜间发电能力,满足电网调峰需要,具有很强的经济优势,已经在西班牙、意大利等欧洲地区和部分北美地区等发达国家得到了实际的商业化应用。 一、熔融盐介绍 1.1 熔融盐的特性 熔融盐是盐的熔融态液体,通常说的熔融盐是指无机盐的熔融体,广义上的熔融盐还包括氧化物熔体及熔融有机物。除了单一无机盐外,将同一类熔融盐按照一定比例混合,或者将不同种类的熔融盐按照一定的配方混合,可以形成多种新型混合共晶熔融盐。这些混合熔融盐可以根据成分配比的不同,获得各种熔点和使用温区的熔融盐工质,能够避免硝酸盐使用温度低、氯化盐熔点温度高等缺点,同时保留熔融盐热稳定性和化学稳定性好、饱和蒸汽压低、比热容大等一系列优点,因此在工业上获得了广泛应用。目前,寻找性能优越的混合熔融盐成为熔融盐传热蓄热研究的主要方向之一。 熔融盐有不同于水溶液的诸多性质,主要包括:①熔融盐为离子熔体,通常由阳离子和阴离子组成,具有良好的导电性能,其导电率比电解质溶液高1个数量级;②具有广泛的使用温度范围,通常的熔融盐使用温度在300~1000℃之间,新研发的低熔点混合熔融盐使用温度更是扩大到了60~1000℃;③饱和蒸汽压低,保证了高温下熔融盐设备的安全性;④热容量大;⑤对物质有较高的溶解能力;⑥低粘度;⑦化学稳定性好;⑧原料易获得,价格低廉,与常见的高温传热蓄热介质——导热油和液态金属相比,绝大多数熔融盐的价格都非常低廉,且容易获得。这些优异的特性使熔融盐被广泛用作热介质、化学反应介质以及核反应介质,尤其近些年来在太阳能热发电系统中,熔融盐得到了广泛的应用。

电力储能技术

电力储能技术 摘要:一方面,随着我国经济的高速发展,用电量的需求逐年增长;另一方面,环境和资源的压力使得新能源的大量并网已成大势所趋,由此带来的电网安全稳定性问题和电能质量问题也越来越受到重视。电力储能技术为解决这些问题提供了一条解决之道,围绕电力储能技术的相关研究和应用不断涌现,目前已经出现了一系列比较成熟可实际应用的或者尚在研究阶段的储能方法。本文介绍了一些常见的电力储能方法。关键词:电力储能,特性,现状,应用; 0 引言 近年来,随着国民经济的迅猛发展,我国的电力需求也迅速增加,带动了电力行业的急剧扩张,电网装机容量实现了飞跃式增长。与此同时,一系列的问题也不断出现。 受自然环境和人类生产生活习惯的影响,我国的电力负荷需求存在着巨大的峰谷差。往往在一年中的某几个月或者一天中的某几个小时,电力负荷需求急剧增大,给电网和发电厂带来巨大的运行压力。而在其他时间,用电量较少,机组运行在低负荷状态,不能发挥出高效的性能,使电力设备利用率和运行经济性受到较大影响。如何进行大规模的电能削峰填谷,实现负荷平稳运行,成为我国电力行业需要面对的挑战之一。 目前全世界都面临环境问题和资源压力,我国也不例外。一方面严重的环境污染和巨大的碳排放量已经对社会发展造成了巨大的困扰,另一方面煤炭石油等能源缺口也限制了我国经济的发展。有鉴于此,开发清洁可再生能源迫在眉睫,表现在电力行业,就是风能、光伏发电在近年来得到了蓬勃发展。然而这些能源随自然条件的变化而变化,呈现间歇的特性,不能提供稳定的电力供应。因此存在大量的“弃风”、“弃光”现象,造成了资源的浪费。 电动汽车是新型负荷,也是新型家电,具有较好的调控性,可以纳入需求侧管理、电网调度,并与新能源发电配合,而且在保护环境和节约资源等方面具有传统汽车难以企及的优势。然而如何快速有效充电、如何保证电池的续航能力成为限制电动汽车发展的重要因素。 以上种种都表明电力行业目前存在巨大的机遇和挑战。而电力储能技术是解决上述问题的关键技术之一。目前电力储能技术的研究和发展越来越受到各国能源、交通、国防等部门的重视,电力储能的大规模应用将对现代化的电能生产、输送、分配和利用产生深刻的影响和重要的作用,已成为电力生产利用中的关键环节。 经过长时间的研究和探索,目前已经有一些储能方法投入了实际运行,例如抽水蓄能和压缩空气储能,还有一些储能方法具有较好的应用前景,但距离大规模实际应用尚有一段距离,例如飞轮储能、超导储能等。 1 储能技术分类 按照不同的分类方法,储能技术可以分为以下几类: 1)按照储能原理分类可以分为三类:物理储能,如抽水蓄能、压缩空气储能、飞轮储能等;化学储能,主要是电池储能,如铅蓄电池、钒流体电池、钠硫电池和锂电池等;电磁储能,如超级电容储能和超导储能等。 2)按照储能时间划分可以分为三类:短时储能,通常放电时间为秒级到分钟级;中期储能,通常放电时间为数分钟到数小时;长期储能,通常放电时间为数小时至数天。 3)按照功能划分,可以分为可分为能量型储能(Energy-usage energy storage,EES)和功率型储能(Power-usage energy storage,PES)两种。能量型储能特点是比能量高,主要用

储能技术的发展及分析

【摘要】储能技术已被视为电网运行过程中中的重要组成部分。系统中引入储能环节后可以有效地利用电力设备,降低供电成本,提高系统运行稳定性、调整频率、补偿负荷波动。储能技术的应用将在电力系统设计、规划、调度、控制等方面带来重大变革。 【关键词】储能技术;现状;前景;应用 1 储能技术在电力系统中的应用 储能技术已被视为电网运行过程中“采――发――输――配――用――储”六大环节中的重要组成部分。系统中引入储能环节后,可以有效地实现需求侧管理,消除昼夜间峰谷差,平滑负荷,可以更有效地利用电力设备,降低供电成本,也可作为提高系统运行稳定性、调整频率、补偿负荷波动的一种手段。储能技术的应用必将在传统的电力系统设计、规划、调度、控制等方面带来重大变革。 2 储能技术原理及特点 储能系统一般由两大部分组成:由储能元件(部件)组成的储能装置;由电力电子器件组成的电网接入系统。主要实现能量的储存、释放或快速功率交换。 储能系统的容量范围宽,从几十千瓦到几百兆瓦;放电时间跨度大,从毫秒级到小时级;应用范围广,贯穿发输变配用电系统。 储能系统的主要作用如下:(1)用于电力调峰,解决用电矛盾;(2)用于用户侧,提高供电可靠性;(3)用于可再生能源优化,推动可再生能源开发应用;(4)用于电力系统稳定控制,提高电网安全性。 大规模储能技术是对传统“即发即用”的电力模式的革命性突破,它可以减少用于发电设备的投资,提高电力设备的利用率,安装在用电设备附近可以降低线损,安装在大城市附近可以提高供电可靠性。 3 储能技术研究现状 电能储存的形式可分为四类:机械储能(如抽水蓄能、压缩空气储能、飞轮储能等)、化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)、电磁储能(如超导电磁储能等)和相变储能(如冰蓄冷等)。 长久以来,电力系统中储能技术的研究集中于大规模储能技术以解决系统调峰问题。近来,储能电池、超级电容器、超导电磁储能和高效率飞轮等中小规模储能技术取得长足的进步,有力拓展了储能技术的应用范围。凭借这些不同规模的储能技术,其应用可贯穿电力系统发输变配用电各个环节,以全面提升电力系统的运行效率、可靠性、电能质量和资产价值。 4 电力储能方式和发展现状 4.1 压缩空气储能电站 4.2 超导磁储能系统 超导磁储能系统(superconducting magnetic energy storage,smes)利用超导体制成的线圈储存磁场能量,功率输送时无需能源形式的转换,具有响应速度快,转换效率高、比容量/比功率大等优点,可以实现与电力系统的实时大容量能量交换和功率补偿。smes可以充分满足输配电网电压支撑、功率补偿、频率调节、提高系统稳定性和功率输送能力的要求。 4.3 飞轮储能 飞轮储能系统由高速飞轮、轴承支撑系统、电动机/发电机、功率变换器、电子控制系统和真空泵、紧急备用轴承等附加设备组成。谷值负荷时,飞轮储能系统由工频电网提供电能,带动飞轮高速旋转,以动能的形式储存能量;出现峰值负荷时,高速旋转的飞轮作为原动机拖动电机发电,经功率变换器输出电流和电压。飞轮储能功率密度大,效率高,循环使用寿命长,无污染,维护简单,可连续工作,主要用于不间断电源/ 应急电源、电网调峰和频率控制。

相关文档
最新文档