LPG300型喷雾干燥机设计计算演示

LPG300型喷雾干燥机设计计算演示
LPG300型喷雾干燥机设计计算演示

目录

PLG400型喷雾干燥器设计任务书

一、设计任务

二、设计任务说明

PLG400型喷雾干燥器设计说明书

一、设计内容说明:

二、设计内容一览表:

三、工艺条件计算

四、工艺设计计算结果汇总表

五、附图(均为CAD截图,原图见CAD文件)

六、本设计设计公式书目来源

七、参考文献

干燥设备网https://www.360docs.net/doc/5d8779465.html,

LPG300型喷雾干燥器设计任务书

一、设计任务:

设计一喷雾干燥装置以干燥某种物料悬浮液。干燥介质为空气,热源为蒸汽和燃油,雾化器采用离心式喷嘴,选用热风—雾滴(或颗粒)并流向下的操作方式。

二、设计任务说明

1.工艺设计条件

料液处理量:400kg/h;料液含水量:70%;

料液密度:1100 kg/m3;热风入塔温度:200℃;料液入塔温度:85℃;

产品平均粒径:125μm;加热蒸汽压力:0.6Mpa;年平均空气温度:20℃;产品含水量:3.5%(湿基);产品密度:800 kg/m3;

热风出塔温度:95℃;

产品出塔温度:65℃;

干物料比容热:2.5kJ/ kg℃年平均空气湿度:80%。

2.设计要求

2.1画出工艺流程;

2.2进行工艺计算:

包括物料衡算、热量衡算、雾滴干燥所需时间、离心式喷嘴主要尺寸的确定、干燥塔主要尺寸的确定、主要附属设备的设计或选型、工艺设计计算结果汇总。

PLG300型喷雾干燥器设计说明书

一、设计内容说明:

1-液料储罐; 2-液料过滤器 3-传动泵 4-空气过滤管

1

2

3

4

5

7

8

9

10

11

12

6

5-鼓风机6-蒸汽加热器 7-燃油加热器8-离心式雾化器9-干燥塔 10-旋风分离器11-布袋过滤器12-引凤机

1.干燥工艺流程设计:

本干燥装置设计采用开放式系统工艺流程(如上图),主要包含干燥介质(即空气)加热器、干燥装置、产品回收设备、干燥介质输送装置、加料卸料装置等。

二、设计内容一览表:

三、工艺条件计算

1.物料横算

1.产品产量G 2=G 1h kg /35.12435

.0.017.01400112

1=--?=--?ωω ○2.水分蒸发量W h kg G G /65.27535.12440021=-=-=

○3.物料含有干物料量G h kg G /00.120)7.01(400)1(11=-?=-?=ω

2.热量横算 热量横算公式: Q ∑+=+L Q Lh Lh 210

其中:Q 0为物料降温释放的热量,h kj ;1Lh 为入塔空气带入的热量,

h kj ;2Lh 为出塔废气带出的热量,h kj ;∑L Q 为热损失,h kj 。

物料降温释放的热量Q 0=()=-?12t t c G m =-??)6585(5.21206000 h kj 热损失∑L Q 根据经验∑L Q =210 h kj

则()12h h L -= Q 0-∑L Q =6000-210=5790h kj ——A

根据年平均空气温度为20C 0,年平均相对湿度为80%,查湿空气的焓湿图(h-d 图)得:d 0=.0.012 干空气水kg kg 在干燥塔入口处湿含量d 1= d 0=0.012 干空气水kg kg 则其焓1h

()kg

kj d T d h 63.234012.02500200)012.093.10.1(250093.10.11111=?+??+=++=干燥塔出口空气的湿含量2d 则其焓2h

()()22222225009593.10.1250093.10.1d d d T d h +?+=++== 95+2683.352d

又水份蒸发量:()w d d L =-12=h kg /65.275 ——B

有 A 、B 式联立方程将 2h 带入方程可解得 干空气消耗量

L =6722h kg /

干燥塔出口空气的湿含量 2d =0.053 干空气水kg kg 3.离心喷嘴主要尺寸的选定

料液低速进料,故采用型号为RW2T,离心转盘直径为D=180mm ,转盘转速为:n=15000r/min

则离心式喷雾的喷雾幔最大半径16

.02

.021.03

.3n q D R m

mas ?=

其中D---转盘直径,m

m q —— 进料流量,kg/h

n ---转盘转速r/min

将以上数值带入得mas R =4.30

则塔径R D =2.25mas R =9.8m 取整数10m 塔高可由经验公式h =(1.1~1.2)R D =12m 4.干燥所需时间τ的计算:

(1)汽化潜热γ的确:由I-H 焓湿图查得空气入塔状态下的湿球温度=w t 47℃,该温度下水的汽化潜热 r= 2384.88 KJ/kg (2)热导率λ的确定:平均气膜温度为1/2×(45+95)=71℃,在

该温度下空气的热导率)/(1097.25c m kW ??=-λ

(3)初始滴径: 根据已知条件物料密度为1100kg/m 3,产品密度为800kg/m 3

干物料)水干物料)水kg kg w w X kg kg w w X /(04.0965.0/035.01/(3.23.0/7.012

2

21

1

1==-=

==-=

可得:)(9.165125)04

.013

.211100800()11(31

31211m d X X d p p po μρρ=?++?=++?

= (4)雾滴临界直径 )(125

m d d p pc μ== (5)雾滴临界湿含量

)

/(296.0110010009.16512517.07.011111

3313311

干空气水kg kg d d w w X w po p c =???????????????? ?????*--?-=???????

??????????? ??????*---=

(6)空气临界湿含量c H

)

/(048.06563

)

296.03.2()7.01(400012.0))(1(1111干空气水kg kg L X X w G H H c c =-?-?+

=--+

= (7)空气临界温度查焓湿图得 C t c 05.105= (8)传热温度差

)

(6.42659547

5.105ln )6595()475.105(ln )()()

(5.8347

5.10585200ln

)

475.105()85200(ln

)

()(2

2222

11111c t t t t t t t c t t t t t t t o m w

c m w c m o w

c m w c m m t t t =-----=-----=?=-----=

-----=

?

(9)雾滴干燥所需时间τ由公式得

()

s t X X t d m c pc p m pc

p d d 09.252.057.16

.421097.212)0363.0296.0(1025.180088.23845.831097.2810)25.166.1(110088.238412)(8)(58258222

22

1

2

201=+=???-????+

????-??=?-+

?-=

----λγρλγρτ5.主要附属设备的设计和选型

1.蒸汽加热器:

初选SRZ10×6D 型加热器,散热面积Aa=25.13m 通风净截面积Af=0.382m 受风面积As=0.622m

0.6Mpa 下的蒸汽温度h t =158C 0 空气平均温度=(130+20)/2=75C 0该温度下空气密度为ρ=1.009kg/2m

()()h kj t t C V Q P /109420130009.12.105.16722412?=-????=-=ρ

实际风速 u=6277×1.05/3600×0.38=5.16h m /3 质量流速h kg u r /20.5009.116.5=?= K=48.9()49.0r u =109.7)/(2C h m kj O 传热温差 传热温差为

△1m t =

69130

15020150ln

20

130=---℃

所需传热面积为c A =

11m t K Q ?12469

7.10910943=??= m 2

所需管数为94.413

.25124

=,取5片,实际传热面积为5×25.13=125.65m 2 性能校核

s m s m U S /8.3/16.3360062.0/05.16277<=??=由此,可选SRZ10×6D 翅

片式散热器共5片 合适

2.燃油加热器

()()875.0120

06.020013084.012006.020084.0=?--=?--

=T η

h kj T t Lc Q p /1043.5875.0/)130200(009.16722/)(51?=-??=-=η

重油的低热值取41866kJ/kg 油计,故需油量为51043.5?/41866 =13(kg 油/h )

3.旋风分离器

出口温度:80℃ 空气密度 ρ=1.0kg/ m 3 80℃下的3/08.1273/)80273()053.0244.1773.0(m kg V H =+??+=

h m LV V H /726008.1672233=?==选选切线式入口的旋风分离器,取入

口风速为20m/s 进口截面积A=

231008.020

36007260

3600m V V =?= A=0.2D ×0.4D=0.082D =0.10082m D=1.12m 取整后取D=1.2m=1200mm 圆柱高度L 1=D=1200mm

圆锥体高度L 2=1.8D=2160mm (圆柱体高度) 进口宽度b=0.2D=240mm 进口高度a=0.4D=480mm 排气管直径d=0.3D=360mm 排粉管直径1d =0.1D=120mm

旋风压降Pa u p 1640200.11.41.422=??==?ρ 故选用CLK-12.0型旋风分离器较合适

4.袋滤器选型

取进入袋滤器的气体温度为65℃

干空气kg m V H /04.1273/)80273()053.0244.1773.0(34=+??+=

h m LV V H /699104.16722343=?==

取过滤气速为3.0m/min,则所过滤器面积 F=6991/3×60=38.8取整后取F=402m

根据《喷雾干燥》查得选择MC60-1型袋滤器较合适。

5.鼓风机选型

鼓风机入口处的空气温度为20℃,湿含量为0.012

273/)20273()012.0244.1773.0(273/)20273()244.1773.0(00+??+=+??+=d V H 干空气kg m /84.03=

h m V /564684.0672230=?=

从《常用化工单元设备设计》中喷雾干燥系统选取6-46-11型通风机

6.鼓风机选型

鼓风机入口处的空气温度为80℃,湿含量为0.053

273/)80273()053.0244.1773.0(273/)80273()244.1773.0(25+??+=+??+=d V H 干空气kg m /08.13=

h m V /726008.1672230=?=

系统后段平均风温按80℃计算,密度为1.03/m kg

从《常用化工单元设备设计》中喷雾干燥系统选取9-27-11型通风机

四、工艺设计计算结果汇总表

通过上述工艺设计计算,结果汇总表如下所示。

五、附图(均为CAD 截图,原图见CAD 文件)

附图1 喷雾干燥塔的工艺条件

1- 热风入口接管 2- 热风分配器 3- 离心雾化器 4- 物料入口 5- 干燥室 6- 物料出口 7- 热风出口

尺寸:塔径:10m 塔高:12m

1

2

3

5

4

6

7

附图2 旋风分离各部分尺寸示意图

=D=1200mm

圆柱高度L

1

=1.8D=2160mm (圆柱体高度) 圆锥体高度L

2

进口宽度b=0.2D=240mm

进口高度a=0.4D=480mm

排气管直径d=0.3D=360mm

排粉管直径

d=0.1D=120mm

1

六、本设计设计公式书目来源

其他的设备的确定和公式参考《喷雾干燥》和《常用化工单元设备设计》

高速公路沥青路面设计实例

高速公路沥青路面设计实例 一、设计资料: 本公路等级为高速公路,经调查得,近期交通量如下表所示。交通量年平均 区。 增长率为9.5%,设计年限为15年,该路段处于Ⅳ 2 二、交通分析: 轴载分析路面设计以BZZ-100为标准轴载。 1、以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 (1)累计当量轴次 注:轴载小于25KN的轴载作用不计。 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。

2、验算半刚性基层层底拉应力中的累计当量轴次 (1)轴载换算 车型i P(KN) C1C2i N(次/日) 小客车 前轴16.5 1 18.5 6750 0.0686 后轴23.0 1 1 6750 0.05286 中客车 SH130 前轴25.55 1 18.5 2000 0.67194 后轴45.10 1 1 2000 3.42328 大客车 CA50 前轴28.70 1 18.5 1250 1.06448 后轴68.20 1 1 1250 58.5039 小货车 BJ130 前轴13.40 1 18.5 4250 0.00817 后轴27.40 1 1 4250 0.13502 中货车 CA50 前轴28.70 1 18.5 1500 1.27737 后轴68.20 1 1 1500 70.2047 中货车 EQ140 前轴23.70 1 18.5 2125 0.39131 后轴69.20 1 1 2125 111.74 大货车 JN150 前轴49.00 1 18.5 2125 130.647 后轴101.60 1 1 2125 2412.73 特大车日野 KB222 前轴50.20 1 18.5 1500 111.916 后轴104.30 1 1 1500 2100.71 拖挂车 五十铃 前轴60.00 1 18.5 187.5 58.2617 后轴100(3轴) 3 1 187.5 562.5 5624.304 注:轴载小于50KN的轴载作用不计 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。 三、设计指标的确定 8 2 1 ? ? ? ? ? ' ' P P n C C i i 8 2 1 1 ? ? ? ? ? ' ' ='∑ = P P n C C N i i i i

吊装中吊耳的选择与计算

钢结构吊装吊耳的选择与计算

前言 在钢结构吊装过程中,构件吊耳的计算、制作、形式的选择是一个很重要的环节。在以往的工程中构件吊装中吊耳的制作、选择并没有明确的理论依据和计算过程,常凭借吊装经验来制作吊耳,这样常常会出现大吊耳吊装小构件的现象,造成一些人力、物力等方面的资源浪费,而且未经计算的吊耳也会给吊装带来无法预计的安全隐患。因此,通过科学计算确定吊耳的形式是保证施工安全的重要条件。 由于吊耳与构件母材连接的焊缝较短、短距离内多次重复焊接就会造成线能量过大,易使吊耳发生突发性脆断。因此,吊耳与构件连接处焊缝的形式以及强度的计算对整个吊装过程同样起到决定性作用。 结合钢结构吊装的难点、重点以及形式的差别,同时为积累经验,适应钢结构在建筑市场的发展方向,现将吊耳形式的选择、制作安装、以及吊耳焊缝的计算做一下阐述。

一、钢结构构件吊耳的形式 钢结构构件的吊耳有多种形式,构件的重量、形状、大小以及吊装控制过程的不同都影响构件吊耳的选择。下面根据构件在吊装过程中的不同受力情况总结一下常用吊耳的形式: 图例1为方形吊耳,是钢构件在 吊装过程中比较常用的吊耳形式,其 主要用于小构件的垂直吊装(包括立 式和卧式) 图例2为D型吊耳,是吊耳的普 遍形式,其主要用于吊装时无侧向力较 大构件的垂直吊装。这一吊耳形式比较 普遍,在构件吊装过程中应用比较广 泛。 图例3为可旋转式垂直提升吊耳, 此吊耳的形式在国外的工程中应用比 较多,它可以使构件在提升的过程中沿 着销轴转动,易于使大型构件在提升过 程中翻身、旋转。

图例4为斜拉式D型吊耳,此 吊耳主要用于构件在吊装时垂直方 向不便安装吊耳,安装吊耳的地方与 吊车起重方向成一平面角度。 图例5为组合式吊耳之一,在 吊装过程中比较少见,根据其结构 和受力形式可用于超大型构件的吊 装,吊耳安装方向与构件的起重方 向可成一空间角度。 图例6为D型组合式吊耳,可 用于超大型构件的垂直吊装, 在D型吊耳的两侧设置劲板 可抵抗吊装过程中产生的瞬 间弯距,此外劲板还可以增加 吊耳与构件的接触面积,增加焊缝长度,增加构件表面的受力点。减少吊装过程中构件表面因过度应力集中而将母材撕裂的现象。 图例7为民建钢结构中钢骨柱安装时常用的吊耳,其特点为吊耳与钢骨柱连接耳板合二为一,快皆、方便、经济便于安装和施工,是民建钢结构中钢骨柱安装时最为常见的吊耳形式之一。如下图所示:

路面结构设计计算示例

课程名称: 学生: 学生学号: 专业班级: 指导教师: 年月日

路面结构设计计算 1 试验数据处理 1.1 路基干湿状态和回弹模量 1.1.1 路基干湿状态 路基土为粘性土,地下水位距路床顶面高度0.98m~1.85m。查路基临界高度参考值表可知IV5区H1=1.7~1.9m,H2=1.3~1.4m,H3=0.9~1.0m,本路段路基处于过湿~中湿状态。 1.1.2 土基回弹模量 1) 承载板试验 表1.1 承载板试验数据 承载板压力(MPa) 回弹变形 (0.01mm) 拟合后的回弹变形 (0.01mm) 0.02 20 10 0.04 35 25 0.06 50 41 0.08 65 57 0.10 80 72 0.15 119 剔除 0.20 169 剔除 0.25 220 剔除 计算路基回弹模量时,只采用回弹变形小于1mm的数据,明显偏离拟合直线的点可剔除。拟合过程如图所示:

路基回弹模量: 210101 1000 (1)4 n i i n i i p D E l πμ===-=∑∑ 2)贝克曼梁弯沉试验 表1.2 弯沉试验数据 测点 回弹弯沉(0.01mm ) 1 155 2 182 3 170 4 174 5 157 6 200 7 147 8 173 9 172 10 207 11 209 12 210 13 172 14 170 根据试验数据: l = ∑ll l = 155+?+170 14 =178.43

15.85(0.01mm)S = =s = √∑(ll ?l )2l ?1 =20.56(0.01mm) 式中:l ——回弹弯沉的平均值(0.01mm ); S ——回弹弯沉测定值的标准差(0.01mm ); l i ——各测点的回弹弯沉值(0.01mm ); n ——测点总数。 根据规要求,剔除超出(2~3)l S ±的测试数据,重新计算弯沉有效数据的平均值和标准差。计算代表弯沉值: 1174.79 1.64515.85200.86(0.01mm)a l l Z S - =+=+?=l 1=l +l l l =178.43+ 1.645×20.56=21 2.25 Z a 为保证率系数,高速公路、一级公路取2.0,二、三级公路取1.645,四级公路取1.5。 土基的回弹模量: 220201220.70106.5 (1)(10.35)0.71246.3(MPa)200.860.01 p E l δμα??= -=?-?=? 1.2 二灰土回弹模量和强度 1. 2.1 抗压回弹模量 二灰土抗压回弹模量为:735MPa 。 1.2.2 f50mm×50mm试件劈裂试验 表1.3 二灰土试件劈裂试验数据 f50mm×50mm试件劈裂试验 最大荷载(N ) 2t P Dh σπ= (kPa ) 处理结果 有效数据平均值t σ(kPa ) 250.57 有效数据样本标准差S (kPa ) 12.07 变异系数C v (%) 4.82 变异系数应小于6%,否则可在剔除偏差较大的数据后,重新计算平均值和标准差。设计

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

焊接吊耳的设计计算

焊接吊耳的设计计算 焊接吊耳的设计计算及正确使用方法 1. 目的 规范工程施工中吊耳的设计和使用,确保吊耳使用安全可靠, 保证安全施工。 2. 编制依据 《钢结构设计规范》(GB-1986) 3. 适用范围 我公司各施工现场因工作需要,需自行设计吊耳的作业。 4. 一般规定 4.1 使用焊接吊耳时,必须经过设计计算。 4.2 吊耳孔中心距吊耳边缘的距离不得小于吊耳孔的直径。 4.3 吊耳孔应用机械加工,不得用火焊切割。 4.4 吊耳板与构件的焊接,必须选择与母材相适应的焊条。 4.5 吊耳板与构件的焊接,必须由合格的持证焊工施焊。 4.6 吊耳板的厚度应不小于6mm,吊耳孔中心至与构件连接焊缝的距 离为1.5~2D(D为吊耳孔的直径)。 4.7 吊耳板与构件连接的焊缝长度和焊缝高度应经过计算,并满足要 求;焊缝高度不得小于6mm。 4.8 吊耳板可根据计算或构造要求设置加强板,加强板的厚度应小于 或等于吊耳板的厚度。 5 吊耳计算 5.1拉应力计算 如图所示,拉应力的最不利位置在A,A断面,其强度计算公式为: σ,N,S σ?,σ, 1

式中:σ――拉应力 N――荷载 S――A-A断面处的截面积 1 ,σ,――钢材允许拉应力 σ单位:N/mm2 δ ? 20 δ >20-40 δ >40-50 Q235 170 155 155 Q345 240 230 215 附:钢丝绳6×37,11.0,170,I 它的代表是什么?钢丝绳粗细是多少? 6股,每股37根绞成。外径11毫米。公称抗拉强度每平方毫米170公斤。钢丝的机械性能为I级。 吊装某一构件,重约55KN,现采用6*37钢丝绳作捆绑吊索,其极限抗拉强度为1700N/m?,求钢丝绳的直径. 1.捆绑吊索——钢丝绳有2根承重。则单根钢丝绳的载荷是55KN/2=27.5KN 取安全系数为4.5(6)(8)倍时,钢丝绳的最小破断拉力为27.5×4.5(或6)(或 8),123.75KN(或165KN)(或220KN) 经查GB20118-2006,6×37结构的纤维芯钢丝绳的破断拉力换算系数为0.295 则钢丝绳的直径为:D=((123.75×1000)/(0.295×1700))^0.5,15.7mm 同理,可以算出安全系数为6和8时的钢丝绳直径为:18.14和20.9mm 结论:当安全系数取4.5倍时,可采用……其他说明参见 2.根据国标规范6×37的钢丝绳的破断强度是4.5d×d 得出:1700N/m?,4.5d×d,19.4mm 得出钢丝绳直径为19.4mm 起重吊运钢丝绳的破断拉力慨约计算公式: 钢丝绳直径(mm)的平方乘以50等于破断拉力(公斤)

(全过程精细讲解)路面结构设计及计算

路面结构设计及计算 7.1 轴载分析 路面设计以双轴组单轴载100KN 作为标准轴载 a.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次。 (1)轴载换算 轴载换算采用如下的计算公式:35 .421? ? ? ??=P P N C C N i i (7.1) 式中: N —标准轴载当量轴次,次/日 i n —被换算车辆的各级轴载作用次数,次/日 P —标准轴载,KN i p —被换算车辆的各级轴载,KN K —被换算车辆的类型数 1c —轴载系数,)1(2.111-+=m c ,m 是轴数。当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,应考虑轴数系数。 2c :轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。

轴载换算结果如表所示: 注:轴载小于25KN 的轴载作用不计。 (2)累计当量轴数计算 根据设计规,一级公路沥青路面的设计年限为15年,四车道的车道系数η取0.40,γ =4.2 %,累计当量轴次: ][γ η γ13651)1(N N t e ??-+= [] 次)(.5484490042 .040 .0327.184********.0115 =???-+= (7.2) 验算半刚性基层层底拉应力的累计当量轴次 b.轴载换算 验算半刚性基底层底拉应力公式为 8 1 ' 2' 1' ) (∑==k i i i P p n c c N (7.3) 式中:'1c 为轴数系数,)1(21' 1-+=m c '2c 为轮组系数,单轮组为1.85,双轮组为1,四轮组为0.09。 计算结果如下表所示: 表7.3

注:轴载小于50KN 的轴载作用不计。 [] γ η γ'13651)1(N N t e ??-+= ? [] 次3397845% 042.040 .0313.13473651%) 042.01(15 =???-+= 7.2 结构组合与材料选取 由上面的计算得到设计年限一个行车道上的累计标准轴次约为700万次左右,根据规推荐结构,路面结构层采用沥青混凝土(15cm )、基层采用石灰粉煤灰碎石(厚度待定)、底基层采用石灰土(30cm )。 规规定高速公路一级公路的面层由二至三层组成,查规,采用三层沥青面层,表面层采用细粒式密级配沥青混凝土(厚4cm ),中间层采用中粒式密级配沥青混凝土(厚5cm ),下面层采用粗粒式密级配沥青混凝土(厚6cm )。 7.3 各层材料的抗压模量与劈裂强度 查有关资料的表格得各层材料抗压模量(20℃)与劈裂强度

路面结构设计计算书有计算过程的样本

公路路面结构设计计算示例 一、 刚性路面设计 交通组成表 1) 轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 : s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、 单轴—双轮组、 双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数, 单轴—双轮组时, i δ=1; 单轴—单轮时, 按 式43.031022.2-?=i i P δ计算; 双轴—双轮组时, 按式22.05 1007.1--?=i i P δ; 三轴—双轮组时, 按式22.08 1024.2--?=i i P δ计算。

轴载换算结果如表所示 车型 i P i δ i N 16)(P P N i i i δ 解放CA10B 后轴 60.85 1 300 0.106 黄河JN150 前轴 49.00 43.03491022.2-?? 540 2.484 后轴 101.6 1 540 696.134 交通SH361 前轴 60.00 43.03601022.2-?? 120 12.923 后轴 2?110.00 22.052201007.1--?? 120 118.031 太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注: 轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范, 一级公路的设计基准期为30年, 安全等级为二级, 轮迹横向分布系数η是0.17~0.22取0.2, 08.0=r g , 则 [][] 362 .69001252.036508 .01 )08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其 交通量在4 4102000~10100??中, 故属重型交通。 2) 初拟路面结构横断面 由表3.0.1, 相应于安全等级二级的变异水平为低~中。根据一级公路、 重交通等级和低级变异水平等级, 查表 4.4.6 初拟普通混凝土面层厚度为24cm, 基层采用水泥碎石, 厚20cm; 底基层采用石灰土, 厚20cm 。普通混凝土板的平面尺寸为宽3.75m, 长5.0m 。横缝为设传力杆的假缝。 3) 确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=, 水泥碎石a MP E 15001=, 石灰土

沥青路面结构厚度计算

沥青路面结构厚度计算 路等级 : 一级公路新建路面的层数 :5 标准轴载 : BZZ-100 路面设计弯沉值 : 24、9 (0、01mm) 路面设计层层位 :4 设计层最小厚度 :150 (mm)层位结构层材料名称厚度20℃平均抗压标准差15℃平均抗压标准差容许应力 (mm) 模量(MPa) (MPa) 模量(MPa) (MPa) (MPa) 1 细粒式沥青混凝土401400 02000 0 、47 2 中粒式沥青混凝土601200 01800 0 、34 3 粗粒式沥青混凝土801000 01200 0 、27 4 水泥稳定碎石 ?1500 03600 0 、25 5 石灰土250550 01500 0 、1 6 新建路基36 按设计弯沉值计算设计层厚度 : LD= 24、9 (0、01mm) H(4 )=200 mm LS= 26、3 (0、01mm) H(4 )=250 mm LS= 23、4 (0、01mm)

H(4 )=224 mm(仅考虑弯沉) 按容许拉应力计算设计层厚度 : H(4 )=224 mm(第1 层底面拉应力计算满足要求) H(4 )=224 mm(第2 层底面拉应力计算满足要求) H(4 )=224 mm(第3 层底面拉应力计算满足要求) H(4 )=224 mm(第4 层底面拉应力计算满足要求) H(4 )=274 mm σ(5 )= 、101 MPa H(4 )=324 mm σ(5 )= 、087 MPa H(4 )=277 mm(第5 层底面拉应力计算满足要求) 路面设计层厚度 : H(4 )=224 mm(仅考虑弯沉) H(4 )=277 mm(同时考虑弯沉和拉应力) 验算路面防冻厚度 : 路面最小防冻厚度500 mm 验算结果表明 ,路面总厚度满足防冻要求、通过对设计层厚度取整, 最后得到路面结构设计结果如下:-------------------------------------- 细粒式沥青混凝土40 mm-------------------------------------- 中粒式沥青混凝土60 mm-------------------------------------- 粗粒式沥青混凝土80 mm-------------------------------------- 水泥稳定碎石280 mm-------------------------------------- 石灰土250 mm-------------------------------------- 新建路基

焊接吊耳的设计计算

焊接吊耳的设计计算及正确使用方法 1.目的 规范工程施工中吊耳的设计和使用,确保吊耳使用安全可靠,保证安全施工。 2.编制依据 《钢结构设计规范》(GB-1986) 3.适用范围 我公司各施工现场因工作需要,需自行设计吊耳的作业。4.一般规定 4.1使用焊接吊耳时,必须经过设计计算。 4.2吊耳孔中心距吊耳边缘的距离不得小于吊耳孔的直径。 4.3吊耳孔应用机械加工,不得用火焊切割。 4.4吊耳板与构件的焊接,必须选择与母材相适应的焊条。 4.5吊耳板与构件的焊接,必须由合格的持证焊工施焊。 4.6吊耳板的厚度应不小于6mm,吊耳孔中心至与构件连接焊缝的距 离为1.5~2D(D为吊耳孔的直径)。 4.7吊耳板与构件连接的焊缝长度和焊缝高度应经过计算,并满足要 求;焊缝高度不得小于6mm。 4.8吊耳板可根据计算或构造要求设置加强板,加强板的厚度应小于 或等于吊耳板的厚度。

5 吊耳计算 5.1拉应力计算 如图所示,拉应力的最不利位置在A-A断面,其强度计算公式为: σ=N/S1σ≤[σ] 式中:σ――拉应力 N――荷载 S1――A-A断面处的截面积 [σ]――钢材允许拉应力 σ单位:N/mm2 δ ≤ 20 δ >20-40 δ >40-50 Q235 170 155 155 Q345 240 230 215 附:钢丝绳6×37-11.0-170-I 它的代表是什么?钢丝绳粗细是多少? 6股,每股37根绞成。外径11毫米。公称抗拉强度每平方毫米170公斤。钢丝的机械性能为I级。

吊装某一构件,重约55KN,现采用6*37钢丝绳作捆绑吊索,其极限抗拉强度为1700N/m㎡,求钢丝绳的直径. 1.捆绑吊索——钢丝绳有2根承重。则单根钢丝绳的载荷是55KN/2=27.5KN 取安全系数为4.5(6)(8)倍时,钢丝绳的最小破断拉力为27.5×4.5(或6)(或8)=123.75KN (或165KN)(或220KN) 经查GB20118-2006,6×37结构的纤维芯钢丝绳的破断拉力换算系数为0.295 则钢丝绳的直径为:D=((123.75×1000)/(0.295×1700))^0.5=15.7mm 同理,可以算出安全系数为6和8时的钢丝绳直径为:18.14和20.9mm 结论:当安全系数取4.5倍时,可采用……其他说明参见 2.根据国标规范6×37的钢丝绳的破断强度是4.5d×d 得出:1700N/m㎡=4.5d×d=19.4mm 得出钢丝绳直径为19.4mm 起重吊运钢丝绳的破断拉力慨约计算公式: 钢丝绳直径(mm)的平方乘以50等于破断拉力(公斤) 此公式二十年前在一本起重机方面的书上学的,工作中运用较方便。对照钢丝绳表查,基本上符合6乘19纤维芯钢丝绳公称抗拉强度1670兆帕的钢丝绳最小破断拉力。 起重吊运用时应将破断拉力除以安全系数6倍等于安全负荷。 圆形钢丝绳直径20mm,公称抗拉强度1700,求最小破断拉力???? 给你说个简单的估算公式:P=50*D*D 式中P---钢丝绳的破断拉力,单位:Kgf;D ---钢丝绳的直径,单位:毫米.适用在钢丝强度为1600-1700MPa的情况下.在吊装作业中,钢丝绳的许用拉力不能等于破断拉力,应低于破断拉力,许用拉力可按下式求得:〔P〕=P/K 式中,:〔P〕---钢丝绳的许用拉力,亦叫安全拉力,单位:Kgf;P---钢丝绳的破断拉力,单位:Kgf;K---安全系数(一般取3-6,特殊情况下,按施技术工要求去执行). 实例:寸绳:直径26-28之间,10倍安全系数可吊3.3T P=26*26*50=33800kg/10=3380kg ≈3.3T P= 10*10*50=5000kg/10=500kg

路面结构设计

5.路面结构设计 5.1沥青路面 5.1.1交通量及轴载计算分析 路面设计以单轴载双轮组100KN 为标准轴载。 1) 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次: ①轴载换算: 轴载换算采用如下的计算公式:=N ∑=k i i i P P n C C 135.421)/( 计算结果如下表所示: 表5.1轴载换算表 ②累计当量轴次

根据《公路沥青路面设计规范JTG D50-2006》,高速公路沥青路面的设计年限取15年,四车道的车道系数是取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]18918830 5.060.430336506449 .0365106449.0115 =????-+= (次) 2) 验算半刚性基层层底拉应力中的累计当量轴次 ①轴载换算 验算半刚性基层层底拉应力轴载换算公式:812'1')/('P P n C C N i k i i ∑== 计算结果如下表所示: 表5.2 轴载换算结果(半刚性基层层底拉应力) ②累计当量轴次 参数取值同上,设计年限是15年,车道系数取0.5。

累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]321652575.087.731636506449 .0106449.0115 =???-+= (次) 5.1.2结构组合设计及材料选取 1) 拟订路面结构组合方案 根据规定推荐结构,并考虑到公路沿途有大量碎石且有石灰供应,路面结构面层采用沥青混凝土(取18cm ),基层采用水泥碎石(取20cm ),下基层采用石灰土(厚度待定)。 另设20cm 厚的中粗砂垫层。 2) 拟订路面结构层的厚度 由于计算所得的累计当量轴载达到了500万次,按一级路的路面来设计,由设计规范《公路沥青路面设计规范JTG D50-2006》规定高速公路、一级公路的面层由二层至三层组成。采用三层式沥青面层,表面层采用细粒式密级配沥青混凝土(厚度为4cm ),中面层采用中粒式密级配沥青混凝土(厚度为6cm ),下面层采用粗粒式密级配沥青混凝土(厚度为8cm )。 5.1.3设计指标及设计参数确定 1) 确定路面等级和面层类型 由上面的计算得到设计年限内一个行车道上的累计标准轴次约为大于500万次。根据规范《公路沥青路面设计规范JTG D50-2006》和设计任务书的要求可确定路面等级为高级路面,面层类型采用沥青混凝土,设计年限为15年。 2) 确定土基的回弹模量 ① 此路为新建路面,根据设计资料可知路基干湿状态为干燥状态。 ② 根据设计资料,由设计规范《公路沥青路面设计规范JTG D50-2006》,该路段处于II 2a 区,为粉质土,确定土基的稠度为1.05。 ③ 查设计规范《公路沥青路面设计规范JTG D50-2006》中“二级自然区划各土组土基回弹模量参考值(MPa)”表并作提高得土基回弹模量为 MPa E 0.370=. 3)各层材料的设计参数(抗压模量与劈裂强度)

路面结构设计计算书(有计算过程的)DOC.doc

公路路面结构设计计算示例 一、刚性路面设计 交通组成表 车型 前轴重 后轴重 后轴数 后轴轮组数 后轴距 交通量 ( m ) 小客车 1800 解放 CA10B 19.40 60.85 1 双 — 300 黄河 JN150 49.00 101.60 1 双 — 540 交通 SH361 60.00 2× 110.00 2 双 130.0 120 太脱拉 138 51.40 2× 80.00 2 双 132.0 150 吉尔 130 25.75 59.50 1 双 — 240 尼桑 CK10G 39.25 76.00 1 双 — 180 1)轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: n 16 P i N s i N i 100 i 1 式中 : N s —— 100KN 的单轴—双轮组标准轴载的作用次数; P i —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型 i 级轴载的总重 KN ; N i —各类轴型 i 级轴载的作用次数; n —轴型和轴载级位数; i —轴—轮型系数,单轴—双轮组时, i =1;单轴—单轮时,按式 i 2.22 103 P i 0.43 计算; 双轴—双轮组时,按式 i 1.07 10 5 P i 0. 22 ;三轴—双轮组时,按式 i 2.24 10 8 P i 0. 22 计算。 轴载换算结果如表所示 车型 P i N i P i 16 i i N i ( P ) 解放 CA10B 后轴 60.85 1 300 0.106 黄河 JN150 前轴 49.00 2.22 103 49 0.43 540 2.484 后轴 101.6 1 540 696.134 交通 SH361 前轴 60.00 2.22 103 60 0.43 120 12.923 后轴 2 110.00 1.07 10 5 220 0.22 120 118.031

沥青路面结构设计

第四章路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构, 设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃ ω=1.3;因此该路基(1月),年平均降水量685毫米。道路沿线土质路基稠度c Ⅱ区,根据【JTG 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C ' ——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

沥青路面设计计算实例

沥青混凝土路面计算书 一、轴载分析 路面设计以双轮组单轴载100kN 为标准轴载。 1.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 3)轴载换算: 轴载换算的计算公式:N= 4.35121 ()k i i i P C C n P =∑ 2)累计当量轴次: 根据设计规范,二级公路沥青路面的设计年限取15年,双车道的车道系数取0.6 累计当量轴次: () '111365t e N N γηγ??+-???=()151 5.4%1365 ×885.380.65.4% ??+-???=? =(次) 3)验算半刚性基层层底拉应力中的累计当量轴次 注:轴载小于50kN 的轴载作用不计 验算半刚性基层层底拉应力的轴载换算公式: N=8121 ()k i i i P C C n P =∑ (2)累计当量轴次: ()'111365t e N N γηγ??+-???==()151 5.4%1365×505.650.65.4% ??+-????=2462767.6(次) 二、结构组合与材料选取 根据规范推荐结构,并考虑到公路沿途筑路材料较丰富,路面结构采用沥青混凝土(15cm ),基层采用二灰碎石(20cm ),基底层采用石灰土(厚度待定)。 二级公路面层采用三层式沥青面层, 表面层采用细粒式密级配沥青混凝土 (厚度3cm ), 中间层采用中粒式密级配沥青混凝土 (厚度5cm ), 下层采用粗粒式密级配沥青混凝土 (厚度7cm )。 三、各层材料的抗压模量与劈裂强度 抗压模量取20℃的模量,各值均取规范给定范围的中值,因此得到20℃的抗压模量: 细粒式密级配沥青混凝土为 1400MPa , 中粒式密级配沥青混凝土为 1200MPa , 粗粒式密级配沥青混凝土为 1000MPa , 二灰碎石为 1500MPa , 石灰土为 550MPa 。 各层材料的劈裂强度: 细粒式密级配沥青混凝土为 1.4MPa , 中粒式密级配沥青混凝土为 1.0MPa , 粗粒式密级配沥青混凝土为 0.8MPa , 二灰碎石为 0.5MPa ,

工艺吊耳设计规范

欢迎阅读工艺吊耳设计作业标准 1、吊耳材质要求 一般用Q345(结构钢)或AH36(船板)或同级别的钢板,不使用Q235及A级钢板; 2、下料 吊耳用数控下料; 3、坡口 5 P 进行设计,舱盖二线5.5m。并在翻身方案里规定钢丝绳长度,也不小于6m,通常取8m。钢结构产品无特殊情况,吊耳开档设计也小于6m。 吊耳受力示意图 吊耳垂直安装,在正应力一定的情况下,吊耳另增加了剪应力和弯曲应力。 图2 吊耳与钢丝绳同轴线倾斜安装后消除了剪应力和弯曲应力,仅受正应力作用,受力显着改善。

7、吊耳选型计算 两个吊耳均匀受力,倾斜安装状态: 吊耳选型重量=构件重量/2/sinα。 A、舱盖产品吊耳 如侧移式舱盖对于小于36t的舱盖,钢丝绳与构件夹角60度,主吊耳选型 =36/2/sin600=25T,需要在侧板上设置标明2个翻身主吊耳(标准吊耳D25t)标准吊耳;如钢丝绳与构件夹角68度(吊耳开档6m,钢丝绳8m),主吊耳选型=36/2/sin680=20T(标准 要保 舱盖选图3

30mm, 图5 吊离式舱盖翻身可参照上述。 折叠式舱盖按照NE系列MCG吊耳设计,见附图。最终如吊耳保留不切割,需要得到设计师及船东的确认。 B、钢结构产品吊耳 a.平面分段翻身吊耳

一般平面分段重量较小,翻身选用下面型式的B型吊耳,安装根据钢丝绳与构件的夹角,一般倾斜20~30度,吊耳反面要增加硬档。 20~30 吊耳, -1~-500 9、吊耳设计存在问题示例: 1、上下盖板尺寸过大,与卸扣干涉; 2、吊耳开档跨距过大,且没有倾斜安装,造成吊耳拉弯; 3、吊耳上部没有加三角板,吊耳拉弯。

沥青路面结构设计示例

7.2 路面结构设计 7.2.1 路面结构设计步骤 新建沥青路面按以下步骤进行路面结构设计: (1) 根据设计任务书和路面等级及面层类型,计算设计年限一个车道的累计当量轴次和设计弯沉值。 (2) 按路基土类型和干湿状态,将路基划分为几个路段,确定路段回弹模量值。 (3) 根据已有经验和规推荐的路面结构,拟定几中可能的路面结构组合及厚度方案,根据选用的材料进行配合比实验及测定结构层材料的抗压回弹模量、抗拉强度,确定各结构层材料设计参数。 (4) 根据设计弯沉值计算路面厚度。对二级公路沥青混凝土面层和半刚性基层材料的基层、底基层,应验算拉应力是否满足容许拉应力的要求。如不满足要求,或调整路面结构层厚度,或变更路面结构层组合,或调整材料配合比,提高材料极限抗拉强度,再重新计算。 7.2.2 路面结构层计算 该路位于中原黄河冲积平原区,地质条件一般为a)第一层:冲积土;b)第二层:粘质土;c)第三层:岩石。平原区二级汽车专用沥青混凝土公路,路面使用年限为12年,年预测平均增长率为6%。 (1)轴载分析 本设计的累计当量轴次的计算以双轮组单轴载100kN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表7-1确定。 表7-1 标准轴载计算参数

① 轴载换算 各级轴载换算采用如下计算公式: 4.351121( )k i i i p N c c n p ==∑ (7-1) 式中:N 1—标准轴载的当量轴次,次/日; n i —被换算车辆的各级轴载作用次数,次/日; P —标准轴载,kN ; P i —被换算车辆的各级轴载,kN ; k —被换算车辆类型; C 1—轴数系数,C 1=1+1.2(m-1),m 是轴数。当轴间距大于3m 时,按单独的一个轴载计算,当轴间距小于3m 时,应考虑轴系数; C 2—轮组系数,单轮组为6.4,双轮组为1.0,四轮组为0.38。 计算结果如下表7-3所示。 表7-3 轴载换算结果表(弯沉)

水泥混凝土路面计算书

首页 一、计算题目 地道引路水泥混凝土路面结构计算。 二、设计选用的规范及依据 1、《公路水泥混凝土路面设计规范》(JTG D40-2002); 2、《城市道路设计规范》(CJJ37-90) 3、本工程地质勘查资料。 三、计算采用程序 公路与城市道路路面设计程序系统2003版。 四、拟采用的计算步骤 1、由于本工程无现状交通量资料,根据道路通行能力换算为标准轴载,然后计算出设计弯沉值。 2、拟订路面结构,对其进行荷载应力分析及温度应力分析,并验算防冻厚度。

水泥混凝土路面设计 设计内容: 新建水泥混凝土路面设计 变异水平的等级: 低级 可靠度系数: 1.33 面层类型: 普通混凝土面层 序路面行驶单轴单轮轴载单轴双轮轴载双轴双轮轴载三轴双轮轴载交通量号车辆名称组的个数总重组的个数总重组的个数总重组的个数总重 (kN) (kN) (kN) (kN) 1 标准轴载0 0 1 100 0 0 0 0 2050 行驶方向分配系数 1 车道分配系数.55 轮迹横向分布系数.2 交通量年平均增长率 5 % 混凝土弯拉强度 5 MPa 混凝土弯拉模量31000 MPa 混凝土面层板长度 5 m 地区公路自然区划Ⅱ 面层最大温度梯度88 ℃/m 接缝应力折减系数.87 基(垫)层类型----新建公路土基上修筑的基(垫)层 层位基(垫)层材料名称厚度(mm) 回弹模量(MPa) 1 贫混凝土180 17000 2 水泥稳定粒料180 1600 3 级配碎砾石150 300 4 土基30

混凝土基层材料弯拉强度FJ= 4 MPa 基层顶面当量回弹模量(不包栝混凝土基层) ET= 154.3 MPa HB= 280 rg= .922 SPS1= .82 SPR1= 2.25 BX1= .5 STM1= 1.92 KT= .5 STR1= .96 SCR1= 3.21 GSCR1= 4.27 RE1=-14.6 % SPS2= .29 SPR2= 1.03 GSPR2= 1.37 RE2=-65.75 %设计车道使用初期标准轴载日作用次数: 1128 路面的设计基准期: 30 年 设计基准期内标准轴载累计作用次数: 5470841 路面承受的交通等级:重交通等级 基层顶面当量回弹模量(不包栝混凝土基层) : 154.3 MPa 混凝土面层设计厚度: 280 mm 验算路面防冻厚度: 路面最小防冻厚度500 mm 新建基(垫)层总厚度510 mm 验算结果表明, 路面总厚度满足路面防冻要求. 通过对设计层厚度取整, 最后得到路面结构设计结果如下: 普通混凝土面层280 mm 贫混凝土180 mm 水泥稳定粒料180 mm 级配碎砾石150 mm

相关文档
最新文档