建立时序模型步骤

建立时序模型步骤
建立时序模型步骤

建立ARIMA模型分析时序步骤:

1.画出原始数据的时序图

从时序图可以看出数据的基本趋势:围绕某水平线波动;围绕某直线波动;呈指数上升或下降趋势;显示出季节性等。

根据图形特征初步判断序列为平稳或非平稳的。

2.如序列非平稳,通过相应的变换将其变为平稳序列

线性趋势:差分;指数趋势:先取对数再差分;季节性:季节差分(建立季节模型)

3.检验变换后序列是否平稳

看变换后序列的时序图,相关图,单位根检验,综合分析序列是否平稳。

如非平稳,考虑再作一次差分。

4.对平稳序列建立ARMA模型

从上一步的相关图初步识别序列应拟合那种模型。

通常序列可以选择三种模型中的任意一种,因此要建立三种模型,再从残差平方和,AIC 准则函数,DW统计量等指标综合判断最终选定那种模型。

(注:建立每种模型时,要从低阶到高阶依次建立,直到增加模型的阶数系数不显著。)列出最终选定模型的估计结果,并画出真实值、拟合值和残差的时序图,分析拟合效果。

5.根据选定模型进行预测

根据模型计算递推预测值,如果模型是对变换后的序列建立的,要预测原始序列需对模型的预测结果进行逆变换,从而得到原始序列的预测值。

建立组合模型

1.画出原始数据的时序图

从时序图可以看出数据的基本趋势:围绕某直线波动;呈指数上升或下降趋势;显示出季节性或上面各趋势的组合等。

2.对序列建立组合模型

拟合步骤:

a.先拟合长期趋势(指数函数的加权、多项式函数),直至增加阶数无显著改进;

b.对剔除长期趋势的残差序列再拟合循环趋势,直至增加阶数无显著改进;

c.对剔除长期趋势和循环趋势的残差序列再拟合ARMA模型;

d.将上述三个步骤建立的函数形式组合在一起,估计整个组合函数的参数。

最终估计结果就是我们对原始数据拟合的模型,列出估计结果,并画出真实值、拟合值和残差的时序图,分析拟合效果。

3.根据模型进行预测

预测结果就是原始序列的预测值。

1602介绍时序图

简介 工业字符型液晶,能够同时显示16x02即32个字符。(16列2行) 注:为了表示的方便,后文皆以1表示高电平,0表示低电平。 管脚功能 引脚说明 1602字符型LCD通常有14条引脚线或16条引脚线的LCD,多出来的2条线是背光电源线 VCC(15脚)和地线GND(16脚),其控制原理与14脚的LCD完全一样,其中: 引脚符号功能说明 1VSS一般接地 2VDD接电源(+5V) 3V0液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高(对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度)。 4RS RS为寄存器选择,高电平1时选择数据寄存器、低电平0 时选择指令寄存器。 5R/W R/W为读写信号线,高电平(1)时进行读操作,低电平(0) 时进行写操作。 6E E(或EN)端为使能(enable)端,下降沿使能。7DB0低4位三态、双向数据总线 0位(最低位)

8DB1低4位三态、双向数据总线 1位9DB2低4位三态、双向数据总线 2位10DB3低4位三态、双向数据总线 3位11DB4高4位三态、双向数据总线 4位12DB5高4位三态、双向数据总线 5位13DB6高4位三态、双向数据总线 6位 14DB7高4位三态、双向数据总线 7位(最高位)(也是busy flag) 15BLA背光电源正极 16BLK背光电源负极 寄存器选择控制表 RS R/W操作说明 00写入指令寄存器(清除屏等) 01读busy flag(DB7),以及读取位址计数器 (DB0~DB6)值 10写入数据寄存器(显示各字型等) 11从数据寄存器读取数据 注:关于E=H脉冲——开始时初始化E为0,然后置E为1,再清0. busy flag(DB7):在此位为被清除为0时,LCD将无法再处理其他的指令要求。 字符集 1602液晶模块内部的字符发生存储器(CGROM)已经存储了160个不同的点阵字符图形,这些字符有:阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,每一个字符都有一个固定的代码,比如大写的英文字母“A”的代码是01000001B(41H),显示时模块把地址41H 中的点阵字符图形显示出来,我们就能看到字母“A”。 因为1602识别的是ASCII码,试验可以用ASCII码直接赋值,在单片机编程中还可以用字符型常量或变量赋值,如'A’。 以下是1602的16进制ASCII码表:

建立能力素质模型的基本步骤

建立能力素质模型的基本步骤 能力素质模型的定义和结构 能力素质模型(Competencemodel)就是用行为方式来定义和描述员工完成工作需要具备的知识、技巧、品质和工作能力,通过对不同层次的定义和相应层次的具体行为的描述,确定核心能力的组合和完成特定工作所要求的熟练程度。这些行为和技能必须是可衡量、可观察、可指导的,并对员工的个人绩效以及企业的成功产生关键影响。 能力素质模型通常包括三类能力:全员核心能力、职系序列通用能力、专业技术能力。全员核心能力是指适用于公司全体员工的工作胜任能力,它是公司企业文化的表现,是公司内对员工行为的要求,体现公司公认的行为方式;职系序列通用能力是指在企业内一个职系多个角色都需要的技巧和能力,但重要程度和精通程度有所不同;专业技术能力指某个特定角色和工作所需要的特殊的技能,通常情况下,专业技术能力大多是针对岗位来设定的。 建立和实施能力素质模型的目的 建立和发展企业内部员工的核心能力体系,其最终目的是为了支持企业的经营发展需要。 经营目标的达成是企业的最终目的之一,企业内任何规划和行动都应该支持这一目的。在企业内部建立和发展能力素质模型是为了帮助企业找到合适的人员来完成其经营目标,与此同时,内部人员也得到个人相关的能力发展和培养。人员的能力支持企业的经营,企业的经营要求人员不断成长。两者相辅相成,不断更新。而企业的经营发展目标,无论是短期的还是长期的目标,始终是企业内部进行人员能力体系发展的指导原则。 企业在市场中要形成自身的核心竞争力,为企业获取持续竞争优势提供来源和基础,而要实现企业的核心竞争力,员工就必须具有相应的核心能力。因此,在建立能力素质模型时,必须首先了解整个企业的中长期经营目标和经营策略,从中我们可以分析整个企业的关键竞争优势,即:企业在哪些方面的核心竞争能力最终能够支持企业的市场地位。企业的关键能力要靠内部的人员来达到,这就是企业对内部人员的整体要求:什么样的人员能够在企业内生存和发展,并且能够支持企业的生存和发展。 因此,找到对经营结果最有帮助的行为和能力,了解如何有计划地建立和培养这样的能力,才能建立能力素质模型。根据能力素质模型的具体内容对人员的能力进行评估,找出人员现有能力与所要求的能力之间的差距,采取针对性的措施,才能最终形成具有企业特色的以能力素质模型为核心的人才规划、选拔、发展、激励和储备的人力资源管理体系,为经营目标的实现提供切实的保障。 能力素质模型的作用 以能力素质模型为核心构建人力资源管理体系,能力体系成为企业人力资源管理各项活动的基础,给企业的管理和员工的发展带来很多的益处。

实验三+时序图和协作图

实验三时序图和协作图 [实验目的] 1.掌握时序图、协作图的绘制方法。 2.验证Rose的交互图自动生成功能。 [实验内容] 1.用Rose绘制图书馆管理系统的时序图与协作图。 2.利用Rose的交互图自动生成功能,将已经设计好的时序图转换成协作图。 [实验要点及说明] 一、时序图建模技术 按时间顺序对控制流建模,要遵循如下策略。 ①设置交互的语境。 ②通过识别对象在交互中扮演的角色,设置交互的场景。 ③为每个对象设置生命线。 ④从引发某个消息的信息开始,在生命线之间画出从顶到底依次展开的消息,显示每个消息的特性(如参数)。 ⑤如果需要可视化消息的嵌套或实际计算发生时的时间点,可以用激活修饰每个对象的生命期。 ⑥如果需要说明时间或空间的约束,可以用时间标记修饰每个消息,并附上合适的时间和空间约束。 ⑦如果需要更形式化的说明某控制流,可以为每个消息附上前置和后置条件。 实例1——图书馆管理系统的时序图 1.使用Rational Rose绘制时序图的步骤。 ①创建时序图。 在浏览器窗口中,在“Use Case View”的图标上单击鼠标右键,在弹出的菜单中选择New →Sequence Diagram。此时,在“Use Case View”树形结构下多了一个名为“New Diagram”的图标,右键单击此图标,在弹出的菜单中选择Rename菜单项,可以更改新创建的时序图的名字。 双击时序图图标,出现时序图的编辑区和编辑工具栏。 ②时序图工具栏按钮简介。 时序图工具栏中各个按钮的图标及其作用如图3-1所示。 ③添加对象。 向时序图添加对象。首先点击工具栏中的对象图标按钮,然后在编辑区要放置对象的位置单击鼠标左键。

建立数学模型的方法、步骤、特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

saber建立模型的步骤

使用下载的模型 在许多IC厂商的网站上,会有一些基于Saber软件的模型可供下载使用。 当下载完基于Saber软件的模型(*.sin文件)以后,所需要做的事情就是为这个模型建立一个同名的符号(*.ai_sym文件),并设置两个属性值,就可以在SaberSketch中使用了。但需要注意的是使用的时候,符号(*.ai_sym文件)和模型(*.sin文件)都要放在工作目录下。 下面简单举一个例子,假定从网上下载的模型文件为irf620.sin,利用文本编辑器打开该文件,一般能看到如下一段定义:template irf620 d g s; electrical d,g,s; 其中irf620后面的g d s定义了模型有三个管脚,分别为g、d、s,第二行定义了这三个管脚都是electrical的,看到这里就足够了,我们可以根据这个在SaberSketch中为模型建立符号,步骤如下:(一)、在SaberSketch中调用New-symbol命令创建一个新符号,然后运用Drawing Tool工具绘制符号的轮廓图形;

(二)、单击鼠标右键,在弹出菜单中选择Create-Analog Port,这里要与electrical属性对应,为符号添加3个端口(port),即所谓的管脚; (三)、选中所添加的端口并单击鼠标右键,在弹出菜单中选择Attributes命令,在弹出的Port Attributes对话框中,设置Name分别为g、d、s(注意:3个端口的Name各对应一个,相当于对应器件的管脚); (四)、在New Symbol窗口单击鼠标右键,在弹出菜单中选择Properties命令,会弹出Symbol Properties 对话框,在对话框中添加

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

器件时序图的作用与使用方法

器件时序图的作用与使用方法 操作时序永远是使用任何一个IC芯片的最主要内容。以LCD1602为例对时序进行介绍。首先要先了解LCD1602的引脚定义: 图1 如图1所示: 1 VSS 一般接地 2 VDD 接电源 +5V 3 V0 液晶显示器对比度调整端 接正电源时对比度最弱 接地电源时对比度 最高 对比度过高时会产生“鬼影” 使用时可以通过一个10K的电位器调整对比度 。 4 RS为寄存器选择 高电平1时选择数据寄存器、低电平0时选择指令寄存器。 5 R/W为读写信号线 高电平1时进行读操作 低电平0时进行写操作。 6 E (或EN)端为使能(enable)端 下降沿使能。 7 DB0 低4位三态、双向数据总线0位 最低位 8 DB1 低4位三态、双向数据总线1位 9 DB2 低4位三态、双向数据总线2位 10 DB3 低4位三态、双向数据总线3位 11 DB4 高4位三态、双向数据总线4位 12 DB5 高4位三态、双向数据总线5位 13 DB6 高4位三态、双向数据总线6位 14 DB7 高4位三态、双向数据总线7位 最高位 需要关注以下几个管脚: 3脚:VO,液晶显示偏压信号,用于调整LCD1602的显示对比度,一般会外接电位器用以调整偏压信号,注意此脚电压为0时可以得到最强的对比度。 4脚:RS,数据/命令选择端,当此脚为高电平时,可以对1602进行数据字节的传输操作,而为电平时,则是进行命令字节的传输操作。命令字节,即是用来对LCD1602的一些工作方式作设置的字节;数据字节,即使用以在1602上显示的字节。值得一提的是,LCD1602的数据是8位的。 5脚:R/W,读写选择端。当此脚为高电平可对LCD1602进行读数据操作,反之进行写数据操作。笔者认为,此脚其实用处不大,直接接地永久置为低电平也不会影响其正常工作。但是尚未经过复杂系统验证,保留此意见。 6脚:E,使能信号,其实是LCD1602的数据控制时钟信号,利用该信号的

ANSYS有限元分析与实体建模

第五章实体建模 5.1实体建模操作概述 用直接生成的方法构造复杂的有限元模型费时费力,使用实体建模的方法就是要减轻这部分工作量。我们先简要地讨论一下使用实体建模和网格划分操作的功能是怎样加速有限元分析的建模过 程。 自下向上地模造有限元模型:定义有限元模型顶点的关键点是实体模型中最低级的图元。在构造实体模型时,首先定义关键点,再利用这些关键点定义较高级的实体图元(即线、面和体)。这就是所谓的自下向上的建模方法。一定要牢记的是自下向上构造的有限元模型是在当前激活的坐标系内 定义的。 图5-1自下向上构造模型 自上向下构造有限元模型:ANSYS程序允许通过汇集线、面、体等几何体素的方法构造模型。当生成一种体素时,ANSYS程序会自动生成所有从属于该体素的较低级图元。这种一开始就从较高级的实体图元构造模型的方法就是所谓的自上向下的建模方法。用户可以根据需要自由地组合自下向上和自上向下的建模技术。注意几何体素是在工作平面内创建的,而自下向上的建模技术是在激活的坐标系上定义的。如果用户混合使用这两种技术,那么应该考虑使用CSYS,WP或CSYS,4命令强迫坐标 系跟随工作平面变化。 图5-2自上向下构造模型(几何体素) 注意:建议不要在环坐标系中进行实体建模操作,因为会生成用户不想要的面或体。

运用布尔运算:可以使用求交、相减或其它的布尔运算雕塑实体模型。通过布尔运算用户可直接用较高级的图元生成复杂的形体。布尔运算对于通过自下向上或自上向下方法生成的图元均有效。 图5-3使用布尔运算生成复杂形体。 拖拉或旋转:布尔运算尽管很方便,但一般需耗费较多的计算时间。故在构造模型时,如果用拖拉或旋转的方法建模,往往可以节省计算时间,提高效率。 图5-4拖拉一个面生成一个体〔VDRAG〕 移动和拷贝实体模型图元:一个复杂的面或体在模型中重复出现时仅需要构造一次。之后可以移动、旋转或拷贝到所需的地方。用户会发现在方便之处生成几何体素再将其移动到所需之处,这样 往往比直接改变工作平面生成所需体素更方便。 图5-5拷贝一个面 网格划分:实体建模的最终目的是为了划分网格以生成节点和单元。在完成了实体建模和建立了单元属性,网格划分控制之后,ANSYS程序可以轻松地生成有限元网格。考虑到要满足特定的要求,用户可以请求映射网格划分生成全部都是四边形、三角形或块单元。

建立计量经济模型的基本步骤

1、建立计量经济模型的基本步骤 (1)理论模型的建立(2)数据的收集(3)参数的估计 2、模型检验的四个方面 (1)经济意义检验(2)统计检验(3)计量经济学检验(4)模型的预测检验 3、相关关系的类型 (1)按变量之间相互关系的方向,可以分为正相关与负相关 (2)按相关关系涉及变量的多少,可分为单相关、复相关及偏相关 (3)按变量之间相关关系的表现形式,可以分为直线相关和曲线相关 (4)按相关的程度可以分为完全相关、不完全相关和不相关三类 4、古典回归模型的基本假定 假设1模型的设定是正确的 假设2解释变量是确定性变量,不是随机变量,在重复抽样中取固定值 假设3随机干扰项的均值为零,即 假设4随机干扰项的方差是常数,即 假设5随机干扰项不存在序列相关性,即 假设6随机干扰项与解释变量不相关,即 假设7随机干扰项服从正态分布,即 5、最小二乘估计量的性质(1)线性性(2)无偏性(3)有效性 6、多元线性总体回归模型:如果总体回归模型描述了一个被解释变量与多个解释变量之间的线性关系,由此而设定的回归模型 7、多元线性样本和二元线性样本的区别 8、多元线性回归模型的基本假定 (1)零均值假定,即 (2)同方差假定,即 (3)无自相关假定,即 (4)随机扰动项与每个解释变量都不相关,即 9、多重共线性的概念:如果模型中某两个或多个解释变量之间出现了相关性 10、多重共线性产生的原因: (1)经济变量之间的内在联系(2)经济变量具有相关的共同趋势 (3)模型中引进滞后变量(4)样本资料的局限 11、检验多重共线性的方法: 12、异方差性的概念:异方差指的是被解释变量Y所有观测值的分散程度随解释变量X的变化而变化。 13、异方差性产生的原因:(1)模型省略某些重要的解释变量(2)模型函数形式设定有误(3)由测量误差引起(4)截面数据中总体各单位的差异 14、异方差性产生的后果:(1)参数的最小二乘估计仍是线性无偏的,不再是有效估计(2)无法正确估计参数的标准误差和估计区间(3)参数显著性检验失效 (4)预测的精确度降低 15、(1)格里瑟检验法的步骤 (2)怀特检验法的步骤

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

建筑模型手工制作方法

建筑模型手工制作方法 建筑模型手工制作方法2010-05-08 16:32 介绍一下基本工具:界刀,切圆器,45度切割刀,U胶,切割板,剪刀, 尺子,乳胶,双面胶。接着介绍一下基本材料:各色卡纸,KT板,航模木板, 塑料棒,透明胶片,磨砂胶片,人,草屑,色纸,树,粘土,丙烯颜料。 下来,我们就讲讲的方法。 一计划 在着手制作模型时,首先必须考虑的恐怕是模型的"利用方法"或者说"表现方法"问题,按照"利用方法"便可确定方针,比例等。城市规划,住宅区规划等大范围的模型,比例一般为1/3000--1/5000,楼房等建筑物则常为1/200--1/50,通常是采用与设计图相同的比例者居多。另外,若是住宅模型,这与其他建筑 物的情况稍有不同,如果建筑物不是很大,则采用1/50,竟可能让人看得清楚。一般情况下,制作顺序是先确定比例,比例确定后,先做出建筑用的场地模型,模型的制作者也必须清楚地形高差,景观印象等,通过大脑进行计划立意处理,然后再多作几次研究分析,就可以着手制作模型了。 二底座与建筑场地 比例决定之后,随后,就可着手做模型了,我一般习惯先做模型底座与基地。如果建筑场地是平坦的,则制作模型也简单易行。若场地高低不平,且表 现要求上也有周围邻近的建筑物,则依测量方法的不同,模型的制作方法也有 相应的区别。尤其是针对复杂地形和城市规划等大场地时,常常是先将地形模 型事先做成,一边看着模型一边进行方案设计的情况较多,因而必须在地形模 型的制作上多下些功夫,但也不需把地形做的过细。 等高线做法(多层粘帖法) 场地场地高差较大,用等高线制作模型时,要事先按比例做成与等高线符 合的板材,沿等高线之曲线切割,粘帖成梯田形式的地形。在这种情况下,所

solidworks进行有限元分析的一般步骤说课材料

s o l i d w o r k s进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆ COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要,

(即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。 ▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks 会自动地创建曲面几何体)。 ▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools →Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。

模型构建的原则和主要步骤

1.试述模型的概念、特征和分类。 概念:模型是对现实世界某些属性的抽象 特征:(1)模型是现实世界一部分的抽象或模仿; (2)模型是由那些与问题有关的因素组成; (3)模型表明了有关因素之间的关系 分类:图形与实物模型;分析模型;仿真模型;博弈模型;判断模型2.模型构建的原则和主要步骤是什么? 原则:(1)建立方框图;(2)考虑信息相关性; (3)考虑信息准确性;(4)考虑信息结集性 步骤:(1)形成问题;(2)确定系统的特征因素;(3)确定模型的结构; (4)构建模型;(5)模型真实性检验 3.建立模型必须有赖于反映系统特征的各种因素,根据因素在模型中所起的作用不同,可以将因素划分为哪3类? (1)可忽略其影响的因素;(2)对模型起作用但不属于模型描述范围的因素;(3)模型所需研究的因素 4.试说明结构模型具有什么样的基本性质。 (1)结构模型是一种图形模型 (2)结构模型是一种定性分析为主的模型 (3)结构模型可以用矩阵形式来描述,从而使得定性分析和定量分析得到有效结合 (4)结构模型作为对系统进行描述的一种形式,正好处在自然科学领域用的数学模型形式和社会科学领域用的以文字表现的逻辑分析形式之间5.试分析邻接矩阵和可达矩阵各自的特点以及二者的区别。 邻接矩阵的特点:(1)矩阵中元素全为零的行对应的节点称作汇点,即只有有向边进入而没有有向边离开该节点;(2)矩阵中元素全为零的列对应的节点称作源点,即只有有向边离开而没有有向边进入该节点;(3)对应每一节点的行中,其元素值为1的数量,就是离开该节点的有向边数;(4)对应每一节点的列中,其元素值为1的数量,就是进入该节点的有向边数。

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

建筑模型制作流程

建筑制作项目流程 1、制作前期策划 根据甲方提供的平面图、立面图、效果图及模型要求,制定模型制作风格。 2、模型报价预算 预算员根据[1]、模型比例大小、材料工艺及图纸深度确定模型收费、签订制作服务订单。 3、制作组织会审 技术人员将核对分析图纸,确定模型材质、处理工艺、制作工期及效果要求。 (1)建筑制作进程: 建筑制作师根据甲方提供的图纸施工制作,效果以真实、美观为原则。所有建筑均采用AutoCAD绘图,电脑雕刻机切割细部、建筑技师手工粘接的流水线作业法,既保证了各部件的质量又保证了工期。 (2)环境景观设计制作进程: 总体环境将由专业景观设计师进行把控。专业制作人员结合图纸进行设计制作。原则是根据甲方的设计图纸再现设计师的设计意图。切不可胡乱操作,自由发挥。同时使用仿真树木、小品、雕塑等进行点缀,使得整个景观部分美观精致。 (3)建筑环境灯光组装: 灯光系统根据甲方要求进行设计制作,体现沙盘的夜景效果。 4、制作完工检验 质检部经理及项目负责人对照图纸,进行细部检查和调整。 5、模型安装调试 模型服务人员在模型展示地现场调试安装清洁,达到甲方满意后离开。 编辑本段 建筑模型分类 黏土模型 黏土材料来源广泛取材方便价格低廉经过“洗泥”工序和“炼熟过程其质地更加细腻。黏土具有一定的粘合性可塑性极强在塑造过程中可以反复修改任意调整修刮填,补比较方便。还可以重复使用是一种比较理想的造型材料,但是如果黏土中的水分失去过多则容易使黏土模型出现收缩龟裂甚至产生断裂现象不利于长期保存。另外,在黏土模型表面上进行效果处理的方法也不是很多,黏土制作模型时一定要选用含沙量少,在使用前要反复加工,把泥和熟,使用起来才方便。一般作为雕塑、翻模用泥使用。 油泥模型 油泥是一种人造材料。凝固后极软,较软,坚硬。油泥可塑性强,黏性、韧性比黄泥(黏土模型)强。它在塑造时使用方便,成型过程中可随意雕塑、修整,成型后不易干裂,可反复使用。油泥价格较高,易于携带,制作一些小巧、异型和曲面较多的造型更为合适。一般像车类、船类造型用油泥极为方便。所以选用褐油泥作为油泥的最外层是很明智的选择。油泥的材料主要成分有滑石粉62%、凡士林30%、工业用蜡8%。 石膏模型 石膏价格经济,方便使用加工,用于陶瓷、塑料、模型制作等方面。石膏质地细腻,成型后易于表面装饰加工的修补,易于长期保存,适用于制作各种要求的模型,便于陈列展示。 塑料模型 塑料是一种常用制作模型的新材料。塑料品种很多,主要品种有五十多种,制作模型应

2D实体模型及有限元模型的建立

2D实体模型及有限元模型的建立 1. 设定分析模块:main menu: preferences: structural-OK (结构静解析选择) 2. 创建实体模型:main menu: preprocessor>modeling-create-areas-rectangle(矩形例) -by 2 corners(三种方法) 输入:x,0; y,0: W,10; H,20; OK 或,拾取2对角点(拾取栏同时显示2点的坐标)-OK 3. 材料属性定义:main menu: preprocessor>material properties>constant-isotropic(各向同性, 各向异性两种),指定材料1-OK, 定义EX=某常数(15)-OK 4. 定义单元类型:main menu: preprocessor>element type>add/edit/delet 选择add,单元类型选择solid(实体)-quad 4node 42-OK-close 5. 网格划分:main menu: preprocessor>meshtool-smart sizing-Mesh, Pick拾取区域,OK (智能网格划分,多种划分方法) 6. 加载约束载荷:main menu: solution>loads-apply-structural-displacement>symmetry B.C. >on lines, 拾取约束线,对称约束,OK 实体模型加载:main menu: solution>loads-apply>pressure(应为拉应力)>on lines Pick,拾取顶线,Apply, p=30, OK (施加均布压力于拾取线上,输入均布压力值,apply, OK) 7. 进行求解:main menu: solution>solve-current LS, OK 8. 结果的绘图和列表: (1)绘变形图:main menu: general postprocessor>plot results>deformed shape(变形/原形)(2)变形动画:utility menu: plotctrls>animate> deformed shape(变形/原形) (3)节点反力列表:main menu: general postprocessor>list results>reaction solution (4)应力等值线:main menu: general postprocessor>plot results>contour plot nodal solution (5)应力等值线动画:utility menu: plotctrls>animate> deformed results 均布载荷p 对称性1/4解析 注:各向同性材料薄板拉伸,均布载荷p=50N/cm,材料E=15Mpa,交互模式下分析。

建立计量经济学模型的步骤和要点

建立计量经济学模型的步骤和要点 | [<<][>>] 一、理论模型的设计 对所要研究的经济现象进行深入的分析,根据研究的目的,选择模型中将包含的因素,根据数据的可得性选择适当的变量来表征这些因素,并根据经济行为理论和样本数据显示出的变量间的关系,设定描述这些变量之间关系的数学表达式,即理论模型。例如上节中的生产函数 就是一个理论模型。理论模型的设计主要包含三部分工作,即选择变量、确定变量之间的数学关系、拟定模型中待估计参数的数值范围。 1. 确定模型所包含的变量 在单方程模型中,变量分为两类。作为研究对象的变量,也就是因果关系中的“果”,例如生产函数中的产出量,是模型中的被解释变量;而作为“原因”的变量,例如生产函数中的资本、劳动、技术,是模型中的解释变量。确定模型所包含的变量,主要是指确定解释变量。可以作为解释变量的有下列几类变量:外生经济变量、外生条件变量、外生政策变量和滞后被解释变量。其中有些变量,如政策变量、条件变量经常以虚变量的形式出现。 严格他说,上述生产函数中的产出量、资本、劳动、技术等,只能称为“因素”,这些因素间存在着因果关系。为了建立起计量经济学模型,必须选择适当的变量来表征这些因素,这些变量必须具有数据可得性。于是,我们可以用总产值来表征产出量,用固走资产原值来表征资本,用职工人数来表征劳动,用时间作为一个变量来表征技术。这样,最后建立的模型是关于总产值、固定资产原值、职工人数和时间变量之间关系的数学表达式。下面,为了叙述方便,我们将“因素”与“变量”间的区别暂时略去,都以“变量”来表示。 关键在于,在确定了被解释变量之后,怎样才能正确地选择解释变量。

(完整版)手工建筑模型制作工具、材料及步骤概要

模型手工制作工具及主要材料 ?常用刀具 1?常用美工刀 又称为墙纸刀,主要用于切割纸板、卡纸、吹塑纸、软木板、即时贴等较厚的材料。2?美工钩刀 切割有机玻璃、亚克力板、胶片和防火胶版的主要工具。 美工刀美工钩刀 3?手术 刀 单、双面刀片的刀片最薄,极为锋利,用于切割薄型材料。 5?木刻 刀 用于刻或切割薄型的塑料板材。

6?剪刀 用于裁剪纸张、双面胶带、薄型胶片和金属片的工具。根据用途通常需要几把不同型号。 7?微型机床、切割机 相比手工切割,使用小型或者微型机床进行切割能够更好地提升工作效率,同时,使用高精度的锯片,能够使切割面更加整齐、平整。微型切割机搭配不同的锯片,能够用于切割比较厚、硬的板材。 ?常用度量工具 1.T形尺 用于测量尺寸,同时辅助切割。 2?三角板、圆规、量角器等 用于测量平行线、平面、直角,画圆、曲线等。 三角板钢直角尺 3?钢角直尺 画垂直线、平行线与直角,也用于判断两个平面是否相互垂直,辅助切割。 4.卷尺 用于测量较长的材料。 三.修整工具 1.砂纸 用于研磨金属、木材等表面,以使其光洁平滑。根据不同的研磨物质,有干磨砂纸、耐水砂纸等多种。干磨砂纸(木砂纸)用于磨光木、竹器表面。耐水砂纸用于在水中或油中磨光金属表面。

2 .锉 用于修平和打磨有机玻璃和木料。分为木锉与钢锉,木锉主要用于木料加工,钢锉用于 金属材料与有机玻璃加工。 按锉的形状与用途,可分为方锉、半圆锉、圆锉、三角锉、扁锉、针锉,可视工件的形 状选用。 按锉的锉齿分粗锉、中粗锉和细锉。锉的使用方法有横锉法、直锉法和磨光锉法。 四.其他工具 2.镊子 制作细小构件时需要用镊子来辅助工作。 3.鸭嘴笔、勾线笔 画墨线的工具。 4?清洁工具 模型制作过程中,模型上会落有很多毛屑和灰尘,还会残留一些碎屑。可以用板刷、清 洁用吹气球等工具来清洁处理。 砂纸 锂 1.各种铅笔 用于做记号,在卡纸材料上通常用较硬的铅笔( H —3H )。

第三章 模型建立的具体步骤

3.1 ANSYS软件介绍及转向节有限元模型建立 3.1.1 ANSYS的发展 ANSYS公司是由美国匹兹堡大学力学系教授、有限元法权威、著名专家John Swanson 博士于1970年创建而发展起来的,其总部位于美国宾夕法尼亚匹兹堡市,目前是世界CAE行业最大的公司之一。 经过30多年的发展,如今ANSYS软件更加趋于完善,功能更加强大,使用也更加方便。 3.1.2 ANSYS功能简介 软件主要包括3个部分,前处理模块、分析计算模块和后处理模块。前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。 3.1.3 前处理模块PREP7 双击“实用”菜单中的Preprocessor,进入ANSYS的前处理模块。这个模块主要有两部分内容;实体建模和网络划分。 (1)实体建模。 ANSYS程序提供了两种实体建模方法:自顶向下与自底向上。 自顶向下进行建模时,用户定义一个模型的最高级图元,如球、棱柱,称为基元,程序则自动定义相关的面、线及关键点。用户利用这些高级图元直接构造几何模型,如二维的圆和矩形以及三维的块、球、锥和柱。无论实用自顶向下还是自底向上方法建模,用户均能使用布尔运算来组合数据集,从而雕塑出来一个实体模型。在创建复杂实体模型。ANSYS程序提供了完整的布尔运算,诸如相加、相减、相交、分割、粘结和重叠。在创建复杂实体模型时,对线、面、体、基元的布尔运算操作能减少相当可观的建模工作量。ANSYS程序提供了拖拉、

相关文档
最新文档