动态几何型压轴题

动态几何型压轴题
动态几何型压轴题

C

动态几何型压轴题

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题 (一)点动问题.

1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,

以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;

(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长.

[题型背景和区分度测量点] 本题改编自新教材九上《相似形》24.5(4)例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E 点在AB 边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系

(相切问题)的存在性的研究形成了第三小题.区分度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解.

[区分度性小题处理手法]

1.直线与圆的相切的存在性的处理方法:利用d=r 建立方程.

2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R ±r(r R >)建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解]

解:(1) 证明CDF ?∽EBD ?∴

BE CD

BD CF =

,代入数据得8=CF ,∴AF=2 (2) 设BE=x ,则,10==AC d ,10x AE -=利用(1)的方法

x CF 32

=

相切时分外切和内切两种情况考虑: 外切,

x x 32

1010+

-=,24=x ;

A

B

C

D

E

O

l A ′

A

B

C

D

E

O l

F 内切,

x x 32

1010-

-=,17210±=x .100<

∴当⊙C 和⊙A 相切时,BE 的长为24或17210-.

(3)当以边AC 为直径的⊙O 与线段DE 相切时,

320=

BE .

类题 ⑴一个动点:09杨浦25题(四月、五月)、09静安25题、

⑵两个动点:09闸北25题、09松江25题、09卢湾25题、09青浦25题. (二)线动问题

在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E.(1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长;

(2)若直线l 与AB 相交于点F ,且AO =41

AC ,设AD 的长为x ,五边形BCDEF

的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;

②探索:是否存在这样的x ,以A 为圆心,以-x 43

长为半径的圆与直线l

相切,若存在,请求出x 的值;若不存在,请说明理由. [题型背景和区分度测量点]

本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到.第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线l 沿AB 边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二. [区分度性小题处理手法]

1.找面积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法.

2.直线与圆的相切的存在性的处理方法:利用d=r 建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解]

(1)∵A ’是矩形ABCD 的对称中心∴A ’B =AA ’=21

AC

∵AB =A ’B ,AB =3∴AC =6 33=BC

(2)①92

+=x AC ,9412+=x AO ,)9(1212

+=x AF ,

x x AE 492+= ∴

AF 2

1

?=?AE S AEF

x x 96)9(22+=

,x x x S 96)9(322+-=

x x x S 968127024-+-=

(333<

②若圆A 与直线l 相切,则

941432+=-

x x ,01=x (舍去),582=x ∵358

2<=x ∴

不存在这样的x ,使圆A 与直线l 相切.

[类题]09虹口25题. (三)面动问题

如图,在ABC ?中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG . (1)试求ABC ?的面积;

(2)当边FG 与BC 重合时,求正方形DEFG 的边长;

(3)设x AD =,ABC ?与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;

(4)当BDG ?是等腰三角形时,请直接写出AD 的长.

[题型背景和区分度测量点]

例七,典型的共角相似三角形问题,试题为了形成坡度,在原题的基础上改编出求等腰三角形面积的第一小题,当D 点在AB 边上运动时,正方形DEFG 整体动起来,GF 边落在BC 边上时,恰好和教材中的例题对应,可以说是相似三角形对应的小高比大高=对应的小边比大边,探寻正方形和三角形的重叠部分的面积与线段AD 的关系的函数解析式形成了第三小题,仍然属于面积类习题来设置区分测量点一,用等腰三角形的存在性来设置区分测量点二. [区分度性小题处理手法]

图3-5

图3-4

图3-3

图3-1

C C C C

C

1.找到三角形与正方形的重叠部分是解决本题的关键,如上图3-1、3-2重叠部分分别为正

方形和矩形包括两种情况.

2.正确的抓住等腰三角形的腰与底的分类,如上图3-3、3-4、3-5用方程思想解决. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解]

C

解:(1)

12

=?ABC S .

(2)令此时正方形的边长为a ,则446

a a -=,解得512

=

a . (3)当20≤x 时, 22

253656x

x y =???

??=,

当52 x 时,

()2

252452455456x x x x y -=-?=

.

(4)

720,1125,73125=

AD .

[类题]改编自09奉贤3月考25题,将条件(2)“当点M 、N 分别在边BA 、CA 上时”,去掉,同时加到第(3)题中.

已知:在△ABC 中,AB=AC ,∠B=30o,BC=6,点D 在边BC 上,

点E 在线段DC 上,DE=3,△DEF 是等边三角形,边DF 、EF 与

边BA 、CA 分别相交于点M 、N . (1)求证:△BDM ∽△CEN ;

(2)设BD=x ,△ABC 与△DEF 重叠部分的面积为y ,求y 关

于x 的函数解析式,并写出定义域. (3)当点M 、N 分别在边BA 、CA 上时,是否存在点D ,使以M 为圆心, BM 为半径的圆与直线EF 相切, 如果存在,请求出x 的值;如不存在,请说明理由.

例1:已知⊙O 的弦AB 的长等于⊙O 的半径,点C 在⊙O 上变化(不与A 、B )重合,求∠ACB 的大小 . 分析:点C 的变化是否影响∠ACB 的大小的变化呢?我们不妨将点C 改变一下,如何变化呢?可能在优弧AB 上,也可能在劣弧AB 上变化,显然这两者的结果不一样。那么,当点C 在优弧AB 上变化时,∠ACB 所对的弧是劣弧AB ,它的大小为劣弧AB 的一半,因此很自然地想到它的圆心角,连结AO 、BO ,则由于AB=OA=OB ,即三角形ABC 为等边三角形,则∠

AOB=600,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=21

∠AOB=300,

当点C 在劣弧AB 上变化时,∠ACB 所对的弧是优弧AB ,它的大小为优弧AB 的一半,由∠AOB=600得,优弧AB 的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=1500, 因此,本题的答案有两个,分别为300或1500.

反思:本题通过点C 在圆上运动的不确定性而引起结果的不唯一性。从而需

要分类讨论。这样由点C 的运动变化性而引起的分类讨论在解题中经常出现。 变式1:已知△ABC 是半径为2的圆内接三角形,若32=AB ,求∠C 的大小.

A B F E

M

N

本题与例1的区别只是AB 与圆的半径的关系发生了一些变化,其解题方法与上面一致,在三

角形AOB 中,23

2121sin ==∠OB AB

AOB ,则06021=∠AOB ,即0

120=∠AOB ,

从而当点C 在优弧AB 上变化时,∠C 所对的弧是劣弧AB ,它的大小为劣弧AB 的一半,即

060=∠C ,

当点C 在劣弧AB 上变化时,∠C 所对的弧是优弧AB ,它的大小为优弧AB

的一半,由∠AOB=1200得,优弧AB 的度数为3600-1200=2400,则由同弧所对的圆心角与圆周角的关系得出:∠C=1200, 因此0

60=∠C 或∠C=1200.

变式2: 如图,半经为1的半圆O 上有两个动点A 、B ,若AB=1,

判断∠AOB 的大小是否会随点A 、B 的变化而变化,若变化,求出变化范围,若不变化,求出它的值。

四边形ABCD 的面积的最大值。 解:(1)由于AB=OA=OB ,所以三角形AOB 为等边三角形,则∠AOB=600,即∠AOB 的大小不会随点A 、B 的变化而变化。

(2)四边形ABCD 的面积由三个三角形组成,其中三角形AOB 的面积为43

,而三角

形AOD 与三角形BOC 的面积之和为)

(21

2121BG AF BG OC AF OD +=?+?,又由梯形 的中位线定理得三角形AOD 与三角形BOC 的面积之和EH

BG AF =+)(21

,要四边形 ABCD 的面积最大,只需EH 最大,显然EH ≤OE=23

,当AB ∥CD 时,EH=OE ,因此 四边形ABCD 的面积最大值为43+23=43

3.

对于本题同学们还可以继续思考:四边形ABCD 的周长的变化范围.

变式3: 如图,有一块半圆形的木板,现要把它截成三角形板块.三角形的两个顶点分

别为A 、B ,另一个顶点C 在半圆上,问怎样截取才能使截出的三角形的面积最大?要求说明理由(广州市2000年考题)

分析:要使三角形ABC 的面积最大,而三角形ABC 的底边AB 为圆

的直径为常量,只需AB 边上的高最大即可。过点C 作CD ⊥AB 于点D ,连结CO ,

由于CD ≤CO ,当O 与D 重合,CD=CO ,因此,当CO 与AB 垂直时,即C 为半圆弧

的中点时,其三角形ABC 的面积最大。

本题也可以先猜想,点C 为半圆弧的中点时,三角形ABC 的面积最大,故只需另选一个位置C1(不与C 重合),,证明三角形ABC 的面积大于三角形ABC1的面积即可。如图

显然三角形 ABC1的面积=21AB ×C1D ,而C1D< C1O=CO,则三角形 ABC1的面积=21AB ×C1D<21

AB ×C1O=三角形 ABC 的面积,因此,对于除点C 外的任意点C1,都有三角形 ABC1的面

积小于三角形三角形 ABC 的面积,故点C 为半圆中点时,三角形ABC 面积最大. 本题还可研究三角形ABC 的周长何时最大的问题。

提示:利用周长与面积之间的关系。要三角形ABC 的周长最大,AB 为常数,

只需AC+BC 最大,而(AC+BC )2=AC2+CB2+2AC ×BC=AB2+4×ΔABC 的面积,因此ΔABC 的面积最大时,AC+BC 最大,从而ΔABC 的周长最大。

从以上一道题及其三个变式的研究我们不难发现,解决动态几何问题的常见方法有:

特殊探路,一般推证

例2: 如图,⊙O1和⊙O2内切于A ,⊙O1的半径为3,⊙O2的半径为2,点P 为⊙O1上

的任一点(与点A 不重合),直线PA 交⊙O2于点C ,PB 切⊙O2于点B ,则PC BP

的值为 (A )2 (B )3 (C )23

(D )26

分析:本题是一道选择题,给出四个答案有且只有一个是正确的,因此可以取一个特殊位置进行研究,当点P 满足PB ⊥AB 时,可以通过计算得出PB=22132

2

=- BC ×AP=BP ×AB ,因此

BC=

6246

2288

16282

2=

=

+=

+?BP AB BP

AB ,

在三角形BPC 中,PC=

36222=

-BC BP ,

所以,PC BP

=3选(B )

当然,本题还可以根据三角形相似得BP AP

PC BP =

,即可计算出结论。

作为一道选择题,到此已经完成,但如果是一道解答题,我们得出的结论只是一个特殊情况,还要进一步证明对一般情况也成立。

A

A

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

七年级数学下册平面直角坐标系压轴题

七年级数学下册平面直角坐标系压轴题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 平面直角坐标系压轴题(1) ①能熟练解平面直角坐标系中的面积存在性问题; ②能将几何问题代数化,并能运用数形结合思想解题. 探究案 【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△ABC 的面积; (2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表 示四边形ABOP 的面积; (3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由. y x P O C B A 【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD ,连AC 、BD . 图1 y x D O C B A 图2y x D O C B A 图3 y x O B A 图4 y x O B A (1)如图1,直接写出图中相等的线段,平行的线段; (2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标; (3)若点C 在y 轴的正半轴上,点D 在第一象限内,且S △ACD =5,求C 、D 的坐标; (4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P 、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q 的坐标,若不存在,说明理由; 【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2, 3),C (-3,0). (1)求△ABC 的面积; (2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度, 得到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使 2ACP ABC S S =; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQ ABC S S =. 【例4】如图1,在平面直角坐标系中,A (a ,0),C (b , 2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B . (1)求三角形ABC 的面积; (2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分 ∠CAB ,∠ODB ,如图2,求∠AED 的度数; (3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由. 训练案

中考数学几何证明压轴题之令狐文艳创作

北京优学教育中考专题训练 令狐文艳 1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC , DE=BF ,试判断△ECF 的形状,并证明你的结论; (3) 在(2)的条件下,当 BE :CE=1: 2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交 于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3FE 的延长线与AB 的延长线相交于点线与GF 的延长线相交于点N E B F C D A

4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若sin ∠BAD =35 ,求CD 的长; (2)若∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留π)。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=3 1∠OAC . 8、如图1,一架长4米的梯子AB 斜靠在 与 C A B D O E

中考数学几何综合圆的综合大题压轴题

圆的综合大题 1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP. (1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由; (2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F. (I)如图①,若∠F=50°,求∠BGF的大小; (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF. (1)求证:∠ACD=∠F; (2)若tan∠F= ①求证:四边形ABCD是平行四边形; ②连接DE,当⊙O的半径为3时,求DE的长. 6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.

七年级几何证明压轴题

一、选择 1.如图,已知:在△ABC 中,AB=AC ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( ) A .50°B.65°C.70°D.75° 2.下列判断错误的是( ) A.一条线段有无数条垂线; B.过线段AB 中点有且只有一条直线与线段AB 垂直; C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直; D.若两条直线相交,则它们互相垂直. 3.下列判断正确的是( ) A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离; B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离; C.画出已知直线外一点到已知直线的距离; D.连接直线外一点与直线上各点的所有线段中垂线段最短. 二、压轴题 1.(11分)如图12-1,点O 是线段AD 上的一点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . (1)求∠AEB 的大小; (2)如图12-2,△OAB 固定不动,保持△OCD 的形状和大小不变,将△OCD 绕着点O 旋转(△OAB 和△OCD 不能重叠),求∠AEB 的大小. 2.(本题9分)如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点, PE ⊥AD 交直线BC 于点E. ⑴若∠B=35°,∠ACB=85°,求∠E 的度数; ⑵当P 点在线段AD 上运动时,猜想∠E 与∠B 、∠ACB 的数量关系.写出结论无需证明. 3如图1,△ABC 的边BC 直线l 上,AC ⊥BC ,且AC=BC ;△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且 EF=FP . O 图 12-1 A 图12-2 P E D C B A

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

中考数学超好几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1)求证:DC=BC; (2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状, 并证明你的结论; (3)在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于 G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什 么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中 点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM , FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留)。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=31∠OAC . 8、如图1,一架长4米的梯子AB 斜靠在与地 面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为 60. E B F C D A 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13-1 A ( E ) C O D F C A B D O E

几何压轴题

中考数学动态几何、类比探究专项训练方法指导中考数学第22题常考查动态几何、类比探究。本讲重点对动态几何、类比探究进行专项训练。 一、动态几何动点问题: 速度已知的几何问题。 1. 研究基本图形; 2. 分析起点、终点、状态转折点,确定分段; 3. 根据几何特征表达线段长,建等式求解 二、几何综合问题常以三角形、四边形为背景,结合几何变换、几何模型、几何结构等进行考查。 1. 找特征(中点、特殊角、折叠等)、找模型(相似结构、三线合 一、面积等); 2. 借助问与问之间的联系,寻找条件和思路。 三、类比探究图形结构类似、问法类似,常含探究、类比等关键词。 1. 照搬:照搬上一问的方法、思路解决问题。如照搬字母、照搬辅助线、照搬全等、照搬相似。 2. 找结构:寻找不变的结构,利用不变结构的特征解决问题。 常见不变结构及方法: ① 直角,作横平竖直的线,找全等或相似; ② 中点,作倍长,通过全等转移边和角; ③ 平行,找相似,转比例。

中考几何压轴题2017辅导 1、如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系: (1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α, 得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否 仍然成立,并选取图2证明你的判断. (2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由. (3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=1 2 ,求22 BE DG +的值.

中考数学压轴题精选(几何综合题)

中考数学压轴题(几何综合题) 1、如图1,△ABC中,∠ACB=90°,AC=4厘米,BC=6厘米,D是BC的中点.点E从A 出发,以a厘米/秒(a>0)的速度沿AC匀速向点C运动,点F同时以1厘米/秒的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值; (2)当a=1 2 时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值; (3)当a=2时,是否存在某个时间,使△DFG是直角三角形?若存在,请求出t的值; 若不存在,请说明理由. 解:(1)∵t=2,∴CF=2厘米,AE=2a厘米, ∴EC=(4-2a ) 厘米. ∵△ECF∽△BCA.∴EC CF CB AC = ∴422 64 a - =.∴ 1 2 a=. (2)由题意,AE=1 2 t厘米,CD=3厘米,CF=t厘米. ∵EG∥CD,∴△AEG∽△ACD.∴EG AE CD AC =, 1 2 34 t EG =.∴EG= 3 8 t. ∵以点E、F、D、G为顶点的四边形是平行四边形,∴EG=DF. 当0≤t<3时,3 3 8 t t =-, 24 11 t=. 当3<t≤6时,3 3 8 t t=-, 24 5 t=. 综上 24 11 t=或 24 5 (3)由题意,AE=2t厘米,CF=t厘米,可得:△AEG∽△ACD AG=5 2 t厘米,EG= 3 2 t,DF=3-t厘米,DG=5- 5 2 t(厘米). G D B A C F E (第27题) D B A C 备用图 图1

2020年中考数学压轴题精讲:几何证明及几何计算

2020年中考数学压轴题精讲:几何证明及几何计算例题1:如图1,在△ABC中,BC>AC,∠ACB=90°,点D在AB边上,DE⊥AC于点E. (1)若 1 3 AD DB =,AE=2,求EC的长; (2)设点F在线段EC上,点G在射线CB上,以F、C、G为顶点的三角形与△EDC 有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高还是中线?或两者都有可能?请说明理由. 图1 满分解答 (1)由∠ACB=90°,DE⊥AC,得DE//BC. 所以 1 3 AE AD EC DB ==.所以 21 3 EC =.解得EC=6. (2)△CFG与△EDC都是直角三角形,有一个锐角相等,分两种情况: ①如图2,当∠1=∠2时,由于∠2与∠3互余,所以∠2与∠3也互余. 因此∠CPF=90°.所以CP是△CFG的高. ②如图3,当∠1=∠3时,PF=PC. 又因为∠1与∠4互余,∠3与∠2互余,所以∠4=∠2.所以PC=PG. 所以PF=PC=PG.所以CP是△CFG的中线. 综合①、②,当CD是∠ACB的平分线时,CP既是△CFG的高,也是中线(如图4). 图2 图3 图4 例题2:如图1,正六边形ABCDEF的边长为a,P是BC边上的一动点,过P作PM//AB 交AF于M,作PN//CD交DE于N. (1)①∠MPN=_______°; ②求证:PM+PN=3a; (2)如图2,点O是AD的中点,联结OM、ON.求证:OM=ON. (3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊的四边形,并说明理由.

图1 图2 图3 满分解答 (1)①∠MPN=60°. ②如图4,延长F A、ED交直线B C与M′、N′,那么△ABM′、△MPM′、△DCN′、 △EPN′都是等边三角形. 所以PM+PN=M′N′=M′B+BC+CN′=3a. 图4 图5 图6 (2)如图5,联结OP. 由(1)知,AM=BP,DN=CP. 由AM=BP,∠OAM=∠OBP=60°,OA=OB, 得△AOM≌△BOP.所以OM=OP. 同理△COP≌△DON,得ON=OP. 所以OM=ON. (3)四边形OMGN是菱形.说理如下: 由(2)知,∠AOM=∠BOP,∠DON=∠COP(如图5). 所以∠AOM+∠DON=∠BOP+∠COP=60°.所以∠MON=120°. 如图6,当OG平分∠MON时,∠MOG=∠NOG=60°. 又因为∠AOF=∠FOE=∠EOD=60°,于是可得∠AOM=∠FOG=∠EON. 于是可得△AOM≌△FOG≌△EON. 所以OM=OG=ON. 所以△MOG与△NOG是两个全等的等边三角形. 所以四边形OMGN的四条边都相等,四边形OMGN是菱形. 例题3:已知二次函数y=-x2+bx+c的图像经过点P(0, 1)与Q(2, -3). (1)求此二次函数的解析式; (2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形. ①求正方形的ABCD的面积;

最新七年级下册数学几何压轴题集锦

在矩形ABCD 中,点E 为BC 边上的一动点,沿AE 翻折,△ABE 与△AFE 重合,射线AF 与直线CD 交于点G 。 1、当BE :EC=3:1时,连结EG ,若AB=6,BC=12,求锐角AEG 的正弦值。 2、以B 为原点,直线BC 和直线AB 分别为X 轴、Y 轴建立平面直角坐标系,AB=5,BC=8,当点E 从原点出发沿X 正半轴运动时,是否存在某一时刻使△AEG 成等腰三角形,若存在, 求出点E 的坐标。 1、 2 a b m b a-+b+3=0=14.ABC A S 如图,已知(0,),B (0,),C (,)且(4), o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标 (2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。求证:平分; (3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,

MPQ ECA ∠∠的大小是否发生变化,若不变,求出其值。 2、如图1,AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE; (2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。 图1 图2 3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。 x B C B C

(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。 4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为? 5、已知∠A=∠C=90°. (1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关 B C A C F A

七年级数学下册平面直角坐标系压轴题

平面直角坐标系压轴题(1) ①能熟练解平面直角坐标系中的面积存在性问题; ②能将几何问题代数化,并能运用数形结合思想解题. 探究案 【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△ABC 的面积; (2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由. y x P O C B A 【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD ,连AC 、BD . 图1 y x D O C B A 图2 y x D O C B A 图3 y x O B A 图4 y x O B A (1)如图1,直接写出图中相等的线段,平行的线段; (2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标; (3)若点C 在y 轴的正半轴上,点D 在第一象限内,且S △ACD =5,求C 、D 的坐标; (4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P 、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q 的坐标,若不存在,说明理由; 【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积; (2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得 到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使 2ACP ABC S S =V V ; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQ ABC S S =V V . 【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足 2(2)20a b ++-=,过C 作CB ⊥x 轴于B . (1)求三角形ABC 的面积; (2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB , 如图2,求∠AED 的度数; (3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由. 训练案 1、如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7) (1)在坐标系中,画出此四边形; (2)求此四边形的面积;

几何证明压轴题选.doc

儿何体精选 1、如图,在梯形ABCD 中,AB〃CD, ZBCD=90°,且AB=1, BC=2, tanZADC=2. (1)求证:DC=BC; (2)E是梯形内一点,F是梯形外一点,旦NEDC=NFBC, DE=BF,试判断Z\ECF的形 状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2, ZBEC=135° 时,求sinZBFE 的值. [解析](1)过A作DC的垂线AM交DC于M, 则AM=BC=2. 2 又tanZADC=2,所以DM =- = 1.即DC=BC. 2 (2)等腰三角形. 证明:因为DE = DF,』EDC = ZFBC, DC = BC . 所以,ADEC竺ZXBFC 所以,CE = CF,ZECD = ZBCF. 所以,ZECF =』BCF + ZBCE = ZECD + ZBCE = ZBCD = 90°即AECF是等腰直角三角形. (3)设BE = k,则CE = CF = 2k,所以EF = 2&. 因为为BEC = 135。, XZCEF= 45°,所以ZBEF = 90°. 所以BF =+(2gkV = 3k k 1 所以sinZBFE = —=-. 3k 3 2、已知:如图,在OABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG〃DB 交CB的延长线于G. (1)求证:AADE^ACBF; (2)若四边形BEDF是菱形,则四边形AGBD是什 么特殊四边形?并证明你的结论. [解析](1)..?四边形ABCD是平行四边形, .\Z1 = ZC, AD=CB, AB=CD . ?.?点E、F分别是AB、CD的中点, 1 1 ?.?AE=-AB , CF=-CD . 2 2 ???AE=CF

几何综合压轴题

几何综合压轴题 1、如图,□ABCD的对角线相交于点O,将线段OD绕点O 旋转,使点D的对应点落在BC延长线上的点E处,OE交CD于 H,连接DE. (1)求证:DE⊥BC; (2)若OE⊥CD,求证:2CE·OE=CD·DE; (3)若OE⊥CD,BC=3,CE=1,求线段AC的长. 2、如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一 个菱形AEFG且菱形AEFG∽菱形ABCD,连接EC,G D. (1)求证:EB=GD; (2)若∠DAB=60°,AB=2,AG=,求GD的长.

3、如图,△ABC中,∠ACB=90°,tanA=2,点D是边AC上一点,连接BD,并将 △BCD沿BD折叠,使点C恰好落在边AB上的点E处,过点D作DF⊥BD,交AB 于点F. (1)求证:∠ADF=∠EDF; (2)探究线段AD,AF,AB之间的数量关系,并说明理由; (3)若EF=1,求BC的长. 4、如图,?ABCD中,AB=8,AD=10,sinA=,E、F分别是边AB、BC上动点(点E不与 A、B重合),且∠EDF=∠DAB,DF延长线交射线AB于G. (1)若DE⊥AB时,求DE的长度; (2)设AE=x,BG=y,求y关于x的函数解析式,并写出x的取值范围; (3)当△BGF为等腰三角形时,求AE的长度.

5、如图,已知正方形ABCD ,将一块等腰直角三角板的锐角顶点与A 重合,并将三角板绕A 点旋转,如图1,使它的斜边与BD 交于点H ,一条直角边与CD 交于点G . (1)请适当添加辅助线,通过三角形相似,求出AG AH 的值; (2)连接GH ,判断GH 与AF 的位置关系,并证明; (3)如图2,将三角板旋转至点F 恰好在 DC 的延长线上时,若AD =23,AF =25.求DG 的长.

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

初中数学压轴题---几何动点问题专题训练(含详细答案)

初中数学压轴题---几何动点问题专题训练 1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵厘米, ∴835PC =-=厘米8PC BC BP BC =-=,, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4 33 BP t ==秒, ∴515 443 Q CQ v t = ==厘米/秒. · ································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得 15 32104 x x =+?,

2020各地中考几何综合压轴题汇总

2020各地中考几何综合压轴题汇总 一.解答题(共50小题) 1.(2020?天水)性质探究 如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为. 理解运用 (1)若顶角为120°的等腰三角形的周长为4+2 ,则它的面积为; (2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长. 类比拓展 顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示) 2.(2020?青海)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G. 特例感知: (1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明. 猜想论证: (2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC 于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想. 联系拓展: (3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

3.(2020?河北)如图1和图2,在△ABC中,AB=AC,BC=8,tan C .点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B. (1)当点P在BC上时,求点P与点A的最短距离; (2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长; (3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示); (4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK ,请直接写出点K被扫描到的总时长. 4.(2020?襄阳)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE. (1)特例发现:如图1,当AD=AF时, ①求证:BD=CF; ②推断:∠ACE=°; (2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当 时,过点D作AE的垂线,交AE于点P,交AC 于点K,若CK ,求DF的长. 5.(2020?牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:

中考圆有关的动点几何压轴题

北辰教育学科老师辅导讲义

(3)联结P B ,当点P 是AB 的中点时,求△ABP 的面积与△ABD 的面积比 ABD ABP S S ??的值. 定圆结合直角三角形,考察三 角形相似,线段与三角形周长 的函数关系 2(2010上海)如图, 在Rt △ABC 中,∠ACB=90°.半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连接DE 并延长,与线段BC 的延长线交于点P . (1)当∠B=30°时,连接AP ,若△AEP 与△BDP 相似,求CE 的长; (2)若CE=2,BD=BC ,求∠BPD 的正切值; (3)若tan ∠BPD=,设CE=x ,△ABC 的周长为y ,求y 关于x 的函数关系式. 定圆结合直角三角形,考察两线段函数关系,圆心距,存在性问题 3.如图,在半径为5的⊙O 中,点A 、B 在⊙O 上,∠AOB=90°,点C 是弧AB 上的一个动点,AC 与OB 的延长线相交于点D ,设AC=x ,BD=y . (1)求y 关于x 的函数解析式,并写出它的定义域; (2)如果⊙O 1与⊙O 相交于点A 、C ,且⊙O 1与⊙O 的圆心距为2,当BD=OB 时,求⊙O 1的半径; (3)是否存在点C ,使得△DCB ∽△DOC ?如果存在,请证明;如果不存在,请简要说明理由. 定圆中结合平行线,弧中点,考察两线段函数关系,圆相切 4(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长. 动圆结合直角梯形,考察圆相切和相似 5(14分)(2014金山区二模)如图,已知在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB=4,AD=3,sin ∠DCB=,P 是边CD 上一点(点P 与点C 、D 不重合),以PC 为半径的⊙P 与边BC 相交于点C 和点Q . (1)如果BP ⊥CD ,求CP 的长; (2)如果PA=PB ,试判断以AB 为直径的⊙O 与⊙P 的位置关系; O P D C B A 第25题图 备用图 O C B A A B E F C D O (第25题图1) A B E F C D O

相关文档
最新文档