流变学复习仅供参考

流变学复习仅供参考
流变学复习仅供参考

聚合物加工流变学复习:

流变学:研究材料流动及变形规律的科学。

熔融指数:在一定的温度和负荷下,聚合物熔体每10min通过规定的标准口模的质量,单位g/10min。

假塑性流体:指无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体。

可回复形变:先对流变仪中的液体施以一定的外力,使其形变,然后在一定时间内维持该形变保持恒定,而后撤去外力,使形变自然恢复。

韦森堡效应&爬杆现象&包轴现象:当圆棒插入容器中的高分子液体中旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。

巴拉斯效应&挤出胀大&弹性记忆效应:指高分子被强迫挤出口模时,挤出物尺寸要大于口模尺寸,截面形状也发生变化的现象。

冷冻皮层:熔体进入冷模后,贴近模壁的熔体很快凝固,速度锐减,形成冷冻皮层

法向应力效应:聚合物材料在口模流动中,由于自身的黏弹特性,大分子链的剪切或拉伸取向导致其力学性能的各向异性,产生法向应力效应。

松弛时间:是指物体受力变形,外力解除后材料恢复正常状态所需的时间。

Deborah数:松弛时间与实验观察时间之比。

残余应力:构件在制造过程中,将受到来自各种工艺等因素的作用与影响;当这些因素消失之后,若构件所受到的上述作用于影响不能随之而完全消失,仍有部分作用与影响残留在构件内,则这种残留的作用与影响称为残余应力。

表观粘度:非牛顿型流体流动时剪切应力和剪切速率的比值。

表观剪切黏度:表观粘度定义流动曲线上某一点τ与γ的比值。

入口校正:对于粘弹性流体,当从料筒进入毛细管时,由于存在一个很大的入口压力损失,因此需要通过测压力差来计算压力梯度时所进行的校正。

驻点:两辊筒间物料的速度分布中,在x’*处,物料流速分布中,中心处的速度=0,称驻点。

本构方程:描述应力分量与形变分量或形变速率分量之间关系的方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程. 反映流变过程中材料本身的结构特性。

幂律方程:用于描述非牛顿型流动行为的方程。

粘流活化能:E定义为每摩尔运动单元所需要的能量,它表征粘度对温度的依赖性,E越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多。

第二光滑挤出区:当剪切速率继续增大时,熔体在模壁附近会出现“全滑动”,这时会得到表面光滑的挤出物,这一区域称为第二光滑挤出区。

Weissenberg数:第一法向应力差与剪切应力之比。

非牛顿指数:在入口收敛流动的边界流线微分方程中,用来表征熔体非牛顿特性的参数。

第一法向应力差:沿流动(受力)向的应力与垂直于流向(法向)的应力之差。

触变性流体:在恒温和恒定的切变速率下,粘度随时间递减的流体。

震凝性流体:在恒温和恒定的切变速率下,粘度随时间递增的流体。

平衡转矩:胶料混炼时,转矩随物料的不断均化最终达到的平衡值。

拉伸粘度拉:伸应力与拉伸应变速率之比,表示流体对拉伸流动的阻力。

宾汉流体:与牛顿型流体的流动曲线均为直线,但它不通过原点,只有当剪切应力超过一定屈服应力值之后才开始塑性流动。牙膏、油漆是典型的宾汉流体。

胀塑性流体::剪切速率很低时,流动行为与牛顿型流体基本相同,剪切速率超过某一临界后,随剪切速率增大,流动曲线弯向切应力坐标轴,剪切黏度增大,呈现“剪切变稠”的流体。

拉伸流动:指物料运动的速度方向在速度梯度方向平行。

冻结分子取向:因分子取向被冻结而产生的应力称冻结分子取向

熔体破裂(破碎)现象:高分子熔体从口模挤出时,当挤出速度过高,超过某一临界剪切速率时,容易出现弹性湍流,导致流动不稳定,挤出物表面粗糙,随挤出速度的增大,可能分别出现波浪形,鲨鱼皮形,竹节形,螺旋形畸变,最后导致完全无规则的挤出物断裂,称为熔体破裂现象。

拖曳流:指对流体不加压力而靠边界运动产生力场,由粘性作用使流体随边界流动,称Couette库爱特流动。

压力流:指物料在管中流动,是由于管道两端存在压力差,而边界固定不动,称Poiseuille泊肃叶流动。

出口压力降:指粘弹性流体在毛细管入口区的弹性形变在经过毛细管后尚未全部松弛,至出口处仍残存部分内压力,则将表现为出口压力降。

临界切应力&临界切变速率:一般随剪切速率增大,至一临界值就产生破裂,而且越来越严重,这个开始产生破裂的速率或应力。

残余应力或内应力大:若物料冷却速率高,冷却时间短而松弛时间较长,则冷却后有较多应力被冻结在制品内,称残余应力或内应力大。

用于表征高聚物熔体弹性的物理量有:可回复剪切形变、挤出物胀大、法向应力效应,熔体破裂等。

弹性模量的影响因素:链结构(分子量、分子量分布、支化);加工条件(温度、剪切速率);配方(填料)

开炼加工过程:

λ的意义:量纲为一的体积流量,与流量\辊距\辊速相关。随λ的升高,压力分布曲线变宽变高,吃料与出料处间的流道加长。

冻结分子取向产生机理:进入模腔的物料一般处于高温低剪切状态,但当物料接触到冷模壁后,物料冷凝,致使粘度升高,并在模壁上产生一层不流动的冷冻皮层。该皮层有绝热作用,使贴近皮层的物料不立即凝固,在剪切应力作用下继续向前流动。若高分子链一端被冻结在皮层内,而另一端仍向前流动,必然造成分子链沿流动方向取向,且保压时间越长,分子链取向程度越高。在后来的冷却阶段,这种取向被冻结下来。可见,分子取向冻结大多不发生在制品中心处,而发生在表皮层以下的那层材料中。

消除(减轻)熔体破裂现象的措施:(1)适当降低分子量,加宽分子量分布;(2)适当升高挤出温度,但应防止交联、降解。某些情况下如顺丁橡胶可利用低温光滑区挤出;(3)适当降低挤出速度,某些情况下,可利用高速的第二光滑区;(4)用喇叭型的口型,可提高rcrit,可消除死角;(5)加入填充补强剂和增塑剂。

影响熔体挤出破裂行为因素:一是口模的形状和尺寸;二是挤出成型过程的工艺条件;三是挤出物料的性质。

流动曲线:在剪切流动中,表征剪切应力与剪切速率之间的关系的曲线。

流体的流动主要是压力和粘弹力。流动形式可区分为:压力流和拖曳流.

流动和变形之间的关系:

流动-液体-粘性-耗散能量-产生永久形变-无记忆效应-牛顿定律-时间过程

变形-固体-弹性-贮存能量-形变可以恢复-有记忆效应-虎克定律-瞬时效应

体破裂现象的机理分析

对于LDPE型熔体,其应力主要集中在口模入口区,且入口区的流线呈典型的喇叭形收缩,在口模死角处存在涡流或环流。当r较低时,流动是稳定的,死角处的涡流也是稳定的,对挤出物不产生影响,但是,当r>rcrit,入口区出现强烈的拉伸流,造成的拉伸形变超过熔体所能承受的弹性形变极限,强烈的应力集中效应使流道内的流线断裂,使死角区的环流乘机进入主流道而混入口模。主流线断裂后,应力局部下降,又会恢复稳定流动,然后再一次集中弹性形变能,再一次流线断裂。这样交替轮换,主流道和环流区的流体轮番进入口模。两种形变历史和携带能量完全不同的流体,挤出时的弹性松弛行为也完全不同,引起口模出口处挤出物的无规畸变。

对于HDPE型熔体,流动时的应力集中效应主要不在口模入口区,而是发生在口模内壁附近,口模入口区不存在死角循环。低r时,熔体流过口模壁,在壁上无滑移,挤出过程正常。当r增高到一定程度,由于模壁附近的应力集中效应突出,此处的流线会发生断裂,又因为应力集中,使熔体贮能大大增加,当能量累积超过熔体与模壁之间的摩擦力的P能承受的极限时,将造成熔体沿模壁滑移,熔体突然增速,同时释放出能量,释能后的熔体再次与模壁粘着,从而再集中能量,再发生滑移,这种过程周而复始,造成聚合物熔体在模壁附近时滑时粘,表现在挤出物上呈现出竹节状或套锥形的有规畸变。

影响聚合物剪切粘度的因素:1.链结构(○1结构单元的化学本性——极性:极性高分子链之间的相互作用大于非极性高分子,因此流动性较差○2分子量:随分子量增高,材料粘度迅速增大。又因为分子量大的材料,内部缠结点多,容易在较小的剪切速率下开始解缠结和再缠结的动态过程。○3分子量分布:当分布加宽时,物料的粘流温度Tf下降,流动性加工行为均有改善,这是因为低分子量组分的流动性好,在试样中起内增塑作用,故使物料开始发生流动的温度跌落。○4支化结构的影响:带中长链的聚合物有降低粘度的显著作用○5交联(凝胶)影响橡胶粘度随凝胶量增大而升高,流动性变差,但挺性好,抗冷流性好。)2. 实验和生产工艺条件(○1切变速度和切应力○2温度○3压力的影响)3.填加剂影响4.剪切诱导结晶和压力突增现象

在低剪切速率下,分子量分布宽粘度反而大的原因:当剪切速率较小时,分布宽者,一些特长的分子相对较多,可形成缠结结构比较多,故粘度比较大,当剪切速率增大时,分子量分布宽的试样中,由于缠结结构较高,且易被较高的剪切速率破坏,开始出现“切力变稀”的γc值较低,而且越长的分子随剪切速率增加对粘度下降的贡献越大。而分子量相同且分子量分布较窄的试样,必然特长的分子数目较少,体系缠结作用不如分子量分布宽的大,故受剪切作用而解缠结的变化不那么明显,出现切力变稀的剪切速率较高,而且随剪切速率增大粘度的降低较少。

入口校正的原理:实际切应力的减小与毛细管有效长度的延长是等价的

常用的聚合物流变仪有:毛细管型流变仪、转子型流变仪、组合式转矩流变仪、振荡型流变仪、落球式黏度计、其他类型流变仪(拉伸流变仪、缝模流变仪和弯管流变仪等)

流变测量的目的:(1)物料的流变学表征。(2)工程的流变学研究和设计。(3)检验和指导流变本构方程理论的发展。毛细管流变仪原理:根据测量原理的不同,毛细管流变仪分为恒速型和恒压型两类,恒速型仪器预置柱塞下压速度为恒定,待测定的量为毛细管两端压差,恒压型仪器预置柱塞前进压力为恒定,待测量为物料的挤出速度即流量。

毛细管流变仪主要优点:(1)操作简单,测量准确,测量范围广(2)毛细管中物料的流动与某些加工成型过程中物料流动形式相仿,因而具有实用价值;(3)不仅可测量物料的剪切粘度,还可通过对挤出行为的研究,讨论物料的弹性行为。

r

缺点:(1)τ、r随毛细管半径而变;(2)不能测定与时间相关的粘弹特性;(3)存在较多误差,精度不高。

毛细管流变仪应用:(1)聚合物剪切粘度的研究(2)聚合物熔体弹性的研究

转矩流变仪基本结构:流变仪主体、混合测量装置、电控仪表系统

原理:采用混合器测试时,高聚物以粒子或粉末的形式自加料口加入到密闭混炼室中,物料受到上顶栓的压力,并且通过转子表面与混合室壁之间的剪切、搅拌、挤压,转子之间的捏合、撕扯,转子轴向翻捣、捏炼等作用,实现物料的塑化、混炼,直至达到均匀状态。实验中通过记录物料在混合过程中对转子产生的反扭矩以及温度随时间的变化,来研究物料在加工过程中的分散性能、流动行为及结构变化。优点:可模拟多种高分子材料实际加工过程,如小型密闭式混合器,小型螺杆挤出器

用途:原材料的检验与研究\聚合物交联过程研究\高分子材料的熔融塑化行为\高分子材料的热稳定性\反应性加工过程的反应程度\流动与材料烧焦的关系\增塑剂的吸收特性\热固性塑料的挤出行为等.

高聚物的粘性流动的特点:1. 流动机理是链段相继跃迁2. 流动粘度大,流动困难,而且粘度不是一个常数3. 流动时有构象变化,产生“弹性记忆”效应

影响挤出胀大效应的因素:链结构、配方、切变速率与温度

流变指数n 表征非牛顿流体与牛顿流体之间的差异程度,当n=1 时,即为牛顿粘度定律,k=η0 ,当n<1时,为假塑性流体,n>1时,则为胀塑性体,可见,n与1之差,可作为流体

的非牛顿性的量度指标,n值越小,偏离牛顿型越远,粘度随γ增大而降低越多,流变性越强。

挤出过程的设备由两部分组成:一挤压部分、一部分是机头口型部分

对挤出成型过程做如下假设:A.设被加工物料为不可压缩的牛顿流体,物料在螺槽的流动是连续的等温的稳定层流;B.设物料在挤出机内承受的压力梯度沿螺杆轴向为定值,同时假定该梯度沿z和x方向的分量也为定值;C.物料沿机筒和螺槽表面无滑移,并忽略重力和惯性力的影响.

稳定挤出的措施:(1) 加料口供料速度必须均匀.(2)减少螺槽深度h和减少机筒与螺杆突棱的间隙δ.(3)调节机头流通系数(4)适当降低挤出温度(5)适当增加螺杆长度

注塑过程:

主要设备:柱塞或螺杆式往复注射机

过程:合模引料阶段;充模阶段;保压阶段;倒流阶段;凝封阶段;冷却阶段;开模阶段

注射机及模具的功能区段可分为3个区段:

塑化段:同挤出机,物料在其中熔融\塑化\压缩并向前输送

注射段:由喷嘴\主流道\分流道\浇口组成,物料在其中的流动如同毛细管流变仪

充模段:熔体进入模腔后,发生复杂的三维流动以及不稳定传热\相变\固化等过程.

注射过程充模压力降越小越好原因:A可减少模塑制品内的冻结应力,提高制品的尺寸稳定性

B可降低锁模压力,提高安全系数。对于冷模更重要。

要使压力降尽可能小,可采取的措施有:提高熔体温度和提高模具温度,两者均可使C降低,尤其当熔体温度升高后,粘度降低,更有利于注射。此外,选择凝固温度低的物料和热扩散系数小的物料,均有利于加工。

残余应力种类:(1)伴随骤冷淬火产生的骤冷应力(2)由于制品的几何形状所造成的各部分收缩不均匀而产生的构型体积应变,与(1)可通过热处理消除。(3)因分子取向被冻结而产生的应力,称冻结分子

取向。

第一阶段:合模引料阶

段:物料在料筒内加热

塑化,模板闭合,物料

开始向入模方向移动,

但仍未入模腔,模腔内

的压力非常低

.第二阶段:充模阶段:熔

体开始进入模腔内,模内

压力逐渐上升.

第三阶段:保压阶段:因

为喷嘴压力高于模腔压

力,所以熔体仍可缓慢进

入模腔内,以补充熔体在

模内冷却收缩后所用的

物料,使制品进一步密实.

第四阶段:倒流阶段:由

于柱塞后退,柱塞压力立

即消失,喷嘴内的压力也

迅速下降为0,但此时模腔

内的压力要高于流道中

的压力,所以浇口内尚未凝固的熔体有可能倒流,直到浇口内熔体凝固为止.

第五阶段:凝封阶段:没有明显的时间间隔,当上述倒流阶段结束后,也就到了凝封时间,这时由于浇口冻结,模内压力不能继续下降.

第六阶段:冷却阶段:这一阶段持续到物料的温度下降到非晶性高聚物的玻璃化转变温度或结晶性高聚物的熔融温度,使链段运动冻结起来.

第七阶段:开模阶段:残余应力

问:给出PVC典型的转矩随时间变化曲线,曲线中各峰代表的含义?

图中A为加料峰,此时物料较冷,自由旋

转的转子受到来自固体粒子或粉末的阻

力,转矩急剧上升,当此阻力被克服后,

转矩开始下降并在较短的时间内达到稳

态,当粒子表面开始熔融并发生聚集时,

转矩再次升高,达到塑化峰P,与P对应

的时间为塑化时间tp,Mp为最大塑化转

矩。在热的作用下,粒子内核慢慢熔融,

转矩随之下降,当粒子完全熔融后,物料

成为易于流动的宏观连续的流体,转矩再

次达到稳态,扭矩趋于平衡Mb。经过一段

时间后,在热和力的作用下,随着交联或降解的发生,转矩会有大幅度的升高或降低。td为分解时间.可见,一条曲线清晰地描述了PVC加工塑化全过程.在实际加工过程中,第一次转矩最大值对应的时间非常短,很少能观察到。转矩第二次达到稳态所需的时间通常为3-15min。

口模入口角对LDPE型熔体的挤出破裂行为影响大。

相关主题
相关文档
最新文档