A320机型 第22章自动飞行系统

A320机型 第22章自动飞行系统
A320机型 第22章自动飞行系统

22章重点

1、FMGC、ELAC、惯导,哪个是AFS(自动飞行系统)的计算机?FMGC

2、FCU(飞行控制组件)在遮光板上。

3、FMA(飞行方式指引)在PFD 顶部

4、A320飞行系统核心计算机?FMGC

5、自动飞行系统的FMGC(飞行管理指引计算机)装在电子舱

MCDU(多功能控制显示组件)装在驾驶舱

FCU装在驾驶舱遮光板上

6、FMGC有2个

FAC有2个

FCU有1个,分为3部分FCU有两个通道

7、自动飞行系统有2套

自动推力有1套A/THR也有两个通道

8、AP(自动驾驶)衔接电门在FCU

A/THR(自动推力)衔接电门在FCU

9、FE叫飞行包络保护,FEC叫飞行包络计算机,FE有2套

10、FE的功能:风切变探测、alpha-floor包络保护

11、包络保护功能在FAC

12、自动飞行系统操纵时,飞机侧杆不动,油门杆也不动,但是脚蹬可能会动,因为脚蹬是钢索传动

13、自动飞行系统的功能:自动操纵飞机各个舵面,自动完成推力的计算和改变,使飞机沿着预先设定的飞行计划飞行

14、AFS(自动飞行系统)的故障探测隔离功能在:FIDS(故障隔离和探测系统)

15、FMGC输出指令到AP,再由AP输出到ELAC,SEC和FAC,操纵各个舵面

16、飞控计算机有ELAC(升降舵和副翼计算机)、FAC(飞机增稳计算机)、SEC(扰流板升降

舵计算机)、FMGC(飞机管理指引计算机)

17、AP推力载荷:在AP接通时,侧杆上会有推力载荷,即防止误操作,若施加一定的力,克服了负载会断开自动驾驶(同A/THR)

18、自动推力输出推力给FADEC(全权限数字电子控制)

19、自动推力切断方法:油门杆放入慢车位或者使用油门杆侧面的自动推力切断电门

20、FMGC功能:(全选)

21、FMGC功能分为FM和FG部分,FM主管飞行计划,FG主管飞行制导,FG的功能分为AP,FD,A/THR

22、飞行计划的监控由FM(飞行管理)完成

23、AP、FD、A/THR功能在FMGC实现

24、着陆测试由FMGC完成,检查自动着陆的能力

FMA上显示着陆能力的等级CAT 3 2 1

25、在进近过程中可以同时衔接2个AP,AP1为主,AP2热备份(同DIR)

26、自动推力可以人工或自动脱开。人工脱开:按压油门杆侧面的脱开电门,或者设置推力在慢车位,或者再次按压FCU上的A/THR衔接电门(不推荐此种方式,因为会在EWD上出现一个自动推力断开的黄色警告信息)。

27、自动推力由FMGC计算

28、AP在离地5s后可以接通

29、2个AP在进近时可以同时接通

30、自动驾驶衔接:起飞5s以后

31、FM是在FMGC实现的,FM的数据由FG执行

32、飞行计划可在MCDU手动输入

33、1个FCU:

2套FAC:增加飞机稳定性,计算带颜色的速度,即特征速度

2套FE功能:包络保护

34、风切变探测的有效范围:起飞后30秒内,且250英尺(由RA测得的真实高度)以下;

或是进近到1300-50英尺范围。

35、后重心探测有效范围:2万英尺以上且飞机处于净构型

36、Alpha-floor探测范围:起飞到着陆期间都有,而在100英尺以下被抑制

37、风切变探测范围、后重心探测范围、alpha-floor(用于特性速度计算)探测范围:

均由FAC执行

38、哪个部件计算飞机重量和重心:FCMC(燃油控制和监控计算机)

39、FE(飞行包络保护)包括风切变保护,后重心探测,Alpha-floor,低能量保护(speed,speed,speed)

40、包络保护功能在FAC实现

41、自动驾驶以速度、A/THR控制推力的时候,侧杆、推杆均不动

42、自动飞行的基本目的:控制发动机和舵面

43、FIDS具有故障隔离功能,且只在FAC1实现。

44、自动推力输出推力到FADEC

45、FMGC的飞行指引功能由FG实现

46、属于FG功能的是:AP、FD、A/THR

47、着陆测试的目的:检查自动着陆能力

48、由FM提供目标参数的方式:管理方式(虚线),人工方式(调整完数值,然后拉旋钮)

49、飞行引导的管理方式:FM计算目标值

50、AP在APP(进近)时,同时衔接2个AP,AP1为主,AP2为热备份

51、进近的时候可以同时衔接两个AP

52、A/THR指令由FMGC计算,在油门杆放入慢车位时自动脱开

53、AP在飞机离地5秒后可以被接通

54、自动推力衔接并有效:应处于FM控制发动机并且FCU上A/THR灯亮的状态

55、FMGC1和2主从关系确定(如下图),主计算机计算指令,从计算机从主复制一份。

56、导航数据库由FMGC控制

57、飞行管理计算在FMGC,输出指令由FG执行

58、在MCDU中输入飞行计划

59、FMGC何时工作在独立方式:两个FM独立工作

60、FM在有一套FM坏掉的情况下处于单独工作模式

61、FM功能:飞行计划,自动调谐计划中相应导航台的频率,接收各导航台(包括ADF,VOR,DME)发送的信息,且接收惯导计算的位置信息,综合计算出飞机位置

62、在MCDU能实现交输装载

63、飞机位置计算功能由FM实现

64、新的导航数据库人工装载,至少装在其中一套FMGC中,装完后可以利用交输功能,将已经装载在该FMGC中的导航数据库装载到另一个FMGC,交输功能速度较快。

65、飞行员的长期接口是MCDU,短期是FCU

飞行控制系统简介

自动飞行控制系统 飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。 深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件 飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。 60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。 飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。最简单的人工飞行控制系统就是机械操纵系统。不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。自动驾驶仪是最基本的自动飞行控制系统。飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。信息传输链用于系统各部件之间传输信息。常用的传输链有电缆、光缆和数据总线。接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。 自动飞行控制系统由自动驾驶仪、自动油门杆系统、自动导航系统、自动进场系统和自动着陆系统、自动地形跟随/回避系统构成。 RIBOLD瑞伯达科技有限公司,致力于成为全球飞行影像系统独家先驱,其产品线涵盖无人机飞行控制系统及地面站控制系统、影视航拍飞行平台、商用云台系统、高清远距离数字图像传输系统、无线遥控和成像终端及模型飞行器产品,多旋翼飞行器和高精控制模块。 RBD瑞伯达坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。我们的目标是做世界一流的无人机企业,为我们的客户提供一流的产品和服务!

ATA 22 自动飞行系统

ATA22 AFS自动飞行系统 自动飞行系统是现代化数字系统,它能在飞机的整个飞行过程中,从起飞到自动进近着陆和滑跑,为飞机提供制导。它是目前最先进的自动飞行系统。 一、AFS简介: 1、基本工作原理: 图22——1 自动飞行系统(AFS)用飞机传感器提供的所需信息进行飞机位置计算。另外,在它的存储器中有几个飞行计划,这些飞行计划由航空公司预制。每个飞行计划包括一个从离港到到达目的地的完整的飞行过程,包括垂直信息和中途的航路点。 知道了飞机位置和设置的飞行计划(由飞行员选择的),该系统能计算出指令信号送到飞行控制系统和发动机控制系统,以使飞机按飞行计划飞行。 2.基本组成: 图22——2

自动飞行系统(AFS)可分为四个主要部分: ——飞行管理(FM) ——飞行制导(FG) ——飞行增稳(FA) ——故障隔离和探测系统(FIDS) 前两部分功能由飞行管理与制导计算机系统(FMGCS)实现。 后两个功能由飞行增稳计算机系统(FACS)实现。 3.飞行管理与制导计算机系统(FMGCS) 图22——3 飞行管理(FM)部分主要提供飞行计划的计算。飞行计划包括纵向和横向制导功能。 飞行制导(FG)部分主要有以下三个功能: ——自动驾驶(AP) ——飞行指引(FD) ——自动油门(A/THR) FMGCs飞行管理与制导功能是由两个多功能控制显示组件(MCDU)和一个飞行控制组件(FCU)控制。 一般由MCDU提供机组与FMGCs之间的长期信息接口(如:飞行计划的选择和修改);而FCU提供短期的信息交换接口(如:AP自驾,FD飞行指引和A/THR自动油门功能的衔接)。 除MCDU和FCU外,FM和FG的信息主要显示在EFIS电子飞行仪表系统的显示器上,即主飞行显示器(PFD)和导航显示器(ND)。 (1)自动驾驶(AP)/飞行指引(FD)

A320飞机V2500放行题库(ME)

A320系列飞机概述题库(总共201题) A320系列飞机综述(11) 1.(i)东航的A320系列有几个燃油加油车加油点? A A.1个 B.2个 C.3个 D.4个 2.(ii)以下哪种描述不准确,在东航的A320上,飞机顶升时,查看飞机的水平可从 C A.可从加油面板处,查看水平仪 B.可从MCDU 进入CFDS查看 C.可从MCDU 进入AIDS查看 D.可从起落架舱处,查看水平仪 3.(ii)牵引飞机时,必须保证前起落架的高度不得大于 A A.300mm B.310mm C.400mm D.407mm 4.(i)关于发动机舱站位的描述可以从AMM哪个章节查找? B A.ATA05 B.ATA06 C.ATA12 D.ATA20 5.(ii)A320系列飞机机身分成几个主要区域? A A.5个主要区域 B.7个主要区域 C.8个主要区域 D.9个区域 6.(i)下机身的区域编号为 A A.100 B.200 C.400 D.700 7.(ii)196 BB的第二个B代表 B A.门或面板的顺序 B.门或面板的位置 C.门或面板的区域 D.主要区域 8.(ii)飞机的区域检查可从AMM内的那个章节查找? A A.ATA05 B.ATA06 C.ATA12 D.ATA20 9. (i)电路识别的显示可在哪里查询 D A.AMM、ASM B.AMM、AWM C.IPC、AMM D.ASM、AWM 10. (i)飞机X轴的0站位位于: B A.机头处B.机头前 C.机头后 D.机身纵轴 11. (i) 静电敏感器件是如何标识的: C A.用红色的环形标签 B.用绿色的三角标签 C.用黄底的黑色标签 D.用蓝色的三角标签 ATA21空调和增压一般介绍(10)

飞行器自动控制导论_第六章

第六章 典型飞行自动控制系统的工作原理 概述 6.1.1典型飞行自动控制系统的组成 描述飞机运动的参数有三个姿态角(θ、ψ、φ)、两个气流角(α、β)、两个线位移(H 、Y )及一个线速度(V )。飞行控制的作用,就是应用负反馈控制原理对上述参数的部分或全部进行控制。有时也根据需要也可控制与速度V 和迎角α有关的马赫数M 及法向过载。实际上飞行自动控制就是按一定飞行控制律,输出三个舵偏角(e δ、r δ及a δ)及油门T δ对飞行器实现闭环控制。 典型飞行自动控制系统一般包括三个反馈回路:舵回路、稳定回路和控制(制导)回路。 舵回路通常是一个随动系统(或称为伺服系统),一般包括舵机、反馈部件和放大器,如图所示。舵回路中的舵机作为执行机构带动舵面偏转。 图 舵回路方框图 舵回路中有两个反馈回路:位置反馈回路,使控制信号与舵机输出信号成比例关系,速度反馈回路,增加舵回路阻尼,改善舵回路的动态性能。 如果敏感部件是测量飞机的姿态,测量敏感部件、放大计算装置与舵回路构成自动驾驶仪,自动驾驶仪和飞机构成了飞行器的稳定回路,主要起稳定和控制飞机的姿态的作用。典型的稳定回路如图所示。

图稳定回路 由稳定回路和飞机重心位置测量部件以及描述飞机空间几何关系的运动环节,组成更大的回路,称为控制(或称制导回路),如图6-3所示。主要起稳定和控制飞机的运动轨迹的作用。 图控制(或制导)回路 6.1.2 纵向控制 飞行器纵向扰动运动,一般由短周期模态运动和长周期模态运动组成。随着飞行器的速度越来越快,飞行高度越来越高,飞行包线范围扩大,欲使飞行器在整个包线范围内满足飞行品质要求,普遍采用反馈控制技术。例如高空飞行时,飞行器的阻尼特性常常变差,短周期模态特性趋于恶化,造成操纵反应过程中超调量过大,振荡加剧,严重影响飞行任务的完成,此时,可以在纵向通道引入适当的反馈可以改善飞行品质。又如当飞行器要完成保持姿态角或等速V飞行时,即使飞行器具有良好的短周期模态时,但由于长周期模态振荡频率较低,衰减较慢,甚至是慢发散的。要实现上述任务时,要求驾驶员经常操纵舵面加以控制,并且过程很长。为了减轻驾驶员负担,精确地完成上述任务,需要抑制沉浮运动,同样可以引入适当反馈信号达到目的。如要完成定高飞行,除了使飞行具有良好短周期模态和长周期模态外,还可以引入高度反馈,完全脱离驾驶员操纵实现保

飞行器自动控制导论_第一章飞行控制系统概述

第一章飞行控制系统概述 1.1飞行器自动控制 1.1.1飞行控制系统的功能 随着飞行任务的不断复杂化,对飞机性能的要求越来越高,不仅要求飞行距离远(例如运输机),高度高(高空侦察机),而且还要求飞机有良好的机动性(例如战斗机)。为了减轻驾驶员在长途飞行中的疲劳,或使驾驶员集中精力战斗,希望用自动控制系统代替驾驶员控制飞行,并能改善飞机的飞行性能。这种系统就是现代飞机上安装的飞行自动控制系统。 飞行控制系统的功能归结起来有两点:1)实现飞机的自动飞行;2)改善飞机的飞行性能。 飞机的自动飞行控制系统在无人参与的情况下,自动操纵飞机按规定的姿态和航迹飞行,通常可实现对飞机的三轴姿态角和飞机三个方向的空间位置的自动控制与稳定。例如,无人驾驶飞行器(如无人机或导弹等),实现完全的飞行自动控制;对于有人驾驶的飞机(如民用客机或军用飞机),虽然有人参与驾驶,但某些飞行阶段(如巡航段),驾驶员可以不直接参与操纵,而由飞行控制系统实现对飞机飞行的自动控制,但驾驶员应完成对自动飞行指令的设置和监督自动飞行的情况,并可以随时切断自动控制而实现人工驾驶。采用自动飞行具有以下优点: 1)长距离飞行时解除驾驶员的疲劳,减轻驾驶员的工作负担; 2)在一些恶劣天气或复杂的环境下,驾驶员难于精确控制飞机的姿态和航迹,自动飞行控制系统可以精确对飞机姿态和航迹的精确控制; 3)有一些飞行操纵任务,驾驶员难于精确完成,如进场着陆,采用自动飞行控制则可以较好地完成任务。 一般来说,飞机的性能和飞行品质是由飞机本身气动特性和发动机特性决定的,但随着飞机飞行高度及飞行速度的增加,飞机的自身特性将会变坏。如飞机在高空飞行时,由于空气稀薄,飞机的阻尼特性变坏,致使飞机角运动产生严重的摆动,靠驾驶员人工操纵将会很困难。此外,设计飞机时,为了减小质量和阻力,提高有用升力,将飞机设计成静不稳定的。对于这种静不稳定的飞机,驾驶员是难于操纵的。在飞机上采用增稳系统或阻尼系统可以很好地解决这些问题。

自动飞行控制系统的设计技术

自动飞行控制系统的设计技术 摘要以某具体型号自动飞行控制系统为例,在对自动飞行控制系统的基本原理技能型论述的基础上,对系统设计过程中存在的典型故障以及解决故障的相关技术进行了论述和分析,给自动飞行控制系统设计工作提供参考。 关键词自动飞行;飞控系统;设计 1 自动飞行控制系统的构成与原理 1.1 系统的基本构成 1.2 系统原理 1)自动驾驶实现的原理 飞行控制系统主要包括三个基本回路,其中:导航回路,用以实现对飞机飞行轨迹的控制,又被称作为外回路;驾驶仪回路,主要用于确保系统的稳定性,确保对系统控制时具有稳定性特征,一般还被称作为内回路;伺服网路,该回路是控制命令的执行机构,确保控制系统的控制命令得以可靠执行,又被称作舵回路;驾驶仪回路,该回路是具有独立功能的分系统,不但能够保持飞机员设定的飞行姿态稳定飞行,同时还可以实现透明驾驶、比普配平等功能。 在启动自动驾驶设备之后,自动驾驶计算机中的存储设备将对飞机的即时飞行状态进行记忆,并将之作为基准值。而飞机上各个部位设置的传感设备将探测得到飞机此时的姿态信息,并将这些信息实时的传递到自动驾驶设备的计算机当中。在和计算机设备中存储的基准值对比之后,对与基准值不符的相关数据通过发出飞行指令进行调整,从而达到控制飞行的目的。驾驶设备在工作过程中总需要保持控制系统处于完全平衡的状态,利用对飞机飞行姿态的控制达到是飞行误差为零的目的,或者是尽量使得飞行姿态稳定在一个相对稳定的基准值附近。 在飞行系统实现自动控制的过程中,传递函数f=B/(E—S)通常被称作是自动驾驶设备的控制律,系统的所有的控制指令都是基于这个控制规则发出的。根据PID控制理论,这个控制规则主要包括与偏差变化率相关的导数项、比例项和偏差积分项等几个部分构成。其中,比例项是控制规则的主要控制项,当飞机在飞行过程中若由于其他原因导致其偏离基准值过远时,飞行驾驶控制系统的计算机将发出与误差成对应比例的飞行姿态调整指令。但是,考虑到信号传递延迟以及飞机飞行过程中的惯性作用,飞机执行机构在响应指令时刻的飞行姿态已经发生了对应的变化,这将导致飞行姿态控制命令存在对应误差。所以,为了控制这种变化,系统控制规则中的导数项,则是通过增加系统的阻尼的方式,对飞机的飞行姿态进行调节,控制飞行姿态调节过程中的调节质量。所以,在实际的飞行控制系统设计过程中,为了避免出现飞行姿态变化过大、控制常值扰动等问题,通常在系统设计过程中引入一个对应的积分电路,通过其驱动与之并联的舵

A320机型 第22章自动飞行系统

22章重点 1、FMGC、ELAC、惯导,哪个是AFS(自动飞行系统)的计算机?FMGC 2、FCU(飞行控制组件)在遮光板上。 3、FMA(飞行方式指引)在PFD 顶部 4、A320飞行系统核心计算机?FMGC 5、自动飞行系统的FMGC(飞行管理指引计算机)装在电子舱 MCDU(多功能控制显示组件)装在驾驶舱 FCU装在驾驶舱遮光板上 6、FMGC有2个 FAC有2个 FCU有1个,分为3部分FCU有两个通道 7、自动飞行系统有2套 自动推力有1套A/THR也有两个通道 8、AP(自动驾驶)衔接电门在FCU A/THR(自动推力)衔接电门在FCU 9、FE叫飞行包络保护,FEC叫飞行包络计算机,FE有2套 10、FE的功能:风切变探测、alpha-floor包络保护 11、包络保护功能在FAC 12、自动飞行系统操纵时,飞机侧杆不动,油门杆也不动,但是脚蹬可能会动,因为脚蹬是钢索传动 13、自动飞行系统的功能:自动操纵飞机各个舵面,自动完成推力的计算和改变,使飞机沿着预先设定的飞行计划飞行 14、AFS(自动飞行系统)的故障探测隔离功能在:FIDS(故障隔离和探测系统) 15、FMGC输出指令到AP,再由AP输出到ELAC,SEC和FAC,操纵各个舵面 16、飞控计算机有ELAC(升降舵和副翼计算机)、FAC(飞机增稳计算机)、SEC(扰流板升降 舵计算机)、FMGC(飞机管理指引计算机) 17、AP推力载荷:在AP接通时,侧杆上会有推力载荷,即防止误操作,若施加一定的力,克服了负载会断开自动驾驶(同A/THR) 18、自动推力输出推力给FADEC(全权限数字电子控制) 19、自动推力切断方法:油门杆放入慢车位或者使用油门杆侧面的自动推力切断电门 20、FMGC功能:(全选) 21、FMGC功能分为FM和FG部分,FM主管飞行计划,FG主管飞行制导,FG的功能分为AP,FD,A/THR 22、飞行计划的监控由FM(飞行管理)完成 23、AP、FD、A/THR功能在FMGC实现 24、着陆测试由FMGC完成,检查自动着陆的能力 FMA上显示着陆能力的等级CAT 3 2 1 25、在进近过程中可以同时衔接2个AP,AP1为主,AP2热备份(同DIR) 26、自动推力可以人工或自动脱开。人工脱开:按压油门杆侧面的脱开电门,或者设置推力在慢车位,或者再次按压FCU上的A/THR衔接电门(不推荐此种方式,因为会在EWD上出现一个自动推力断开的黄色警告信息)。 27、自动推力由FMGC计算 28、AP在离地5s后可以接通

(整理)自动飞行控制系统电子讲稿第一部分

学习情景1 课程导论 1.飞行控制系统发展概述 自动飞行控制系统已有100多年的研制历史,早在有人驾驶飞机出现之前,自动飞行装置即已出现。 1.1方向稳定器 1873年,法国雷纳德(C.C.Renard)无人多翼滑翔机的方向稳定器。 1.2 电动陀螺稳定装置-姿态稳定 1914年,美国的爱莫尔·斯派雷(Eimer Sperry)研制成功第一台可以保持飞机稳定平飞的电动陀螺稳定装置,该装置利用陀螺的稳定性和进动性,建立一个测量基准,用来测量飞机的姿态,它和飞机的控制装置连在一起,一旦飞机偏离指定的状态,这个机构就通过飞机的控制装置操纵飞机的舵面偏转使飞机恢复到原来的状态。 1.3 自动驾驶仪 20世纪30年代出现了可以控制和保持飞机高度、速度和航迹的自动驾驶仪。 第二次世界大战促使自动驾驶仪等设备得到进一步发展,由过去气动-液压到全电动,由三个陀螺分别控制三个通道改用一个 或两个陀螺来操纵飞机,并可作机动、爬高及自动保持高度等。 二次大战期间,美国和原苏联相继研制出功能较完善的电气式自动驾驶仪C-1和其仿制品A∏-5; 德国在二战后期研制成功飞航式导弹V-1和弹道式导弹V-2,

更进一步促进了飞行自动控制装置的研制和发展。 20世纪50年代后,和导航系统、仪表着陆系统相联,自动驾驶装置实现了长距离自动飞行和自动着陆。 1.4 自动飞行控制系统 1947年成功突破音障后,飞机的飞行包线(飞行速度和高度的变化范围)扩大,越来越复杂的飞行任务对飞机性能的要求也越来越高,仅靠气动布局和发动机设计所获得的飞机性能已经很难满足复杂飞行任务的要求。因此,借助于自动控制技术来改善飞机稳定性的飞行自动控制装置(如增稳系统)相继问世,在此基础上,自动驾驶仪的功能得到进一步的扩展,发展成为自动飞行控制系统(AFCS)。 20世纪60年代,产生了随控布局飞行器(congtrol configured vehicle--CCV)的设计思想。 20世纪60年代前的以模拟电路或模拟计算机为主要计算装置的飞行控制系统,逐渐发展成为现在已普遍应用的数字式飞行控制系统,这也为新技术应用和更复杂更完善系统的综合提供了实现的可能性。例如: 主动控制技术(active control technology—ACT); 余度技术 容错控制技术 20世纪80年代得到迅速发展的火/推/飞综合控制系统等。 20世纪70年代中期,由于计算机的应用使自动驾驶仪和飞机的指引系统组成一个综合系统,使飞机的各种传感器数据、指

A320系统知识普及帖之5-自动飞行系统之FMGC篇上

A320飞机的自动飞行系统相对比较简单,主要由4部计算机组成.2部FMGC,2 部FAC. 控制面板为MCDU和FCU 我们通常把MCDU叫做长期控制界面,因为在飞行计划和性能参数输入后,不会有大的改动。而把FCU称作短期控制界面。在空中可以随时修正速度,航向,高度等信息。 在本文中我将对FMGC的功能进行简单介绍。 A320系列飞机的FMGC由HONEYWELL或THALES/SMITHS公司提供 比如以THALES/SMITHS公司为例 C13043AA04(CFM ENGINE)和C13043BA02(IAEENGING)两种型号,计算机价格昂贵,单价在20万刀以上。 两部FMGC的工作方式为主从模式,由飞行引导部分的接通状态来决定那部为主要,那部为从属计算机。例如AP1接通,则FMGC1 为主要。如果AP2接通则FMGC2为主。完全按照AP,AP2,FD1,FD2,A/THR1,ATHR2的次序决定。 主要计算机来计算各种飞行参数,从属计算机也会计算相同的参数,如果计算结果一致则 完全服从主计算机的指令。由一部FMGC控制EFCS和FADEC。 两部计算机的工作方式有三种 1. 正常模式(Normal mode) 顾名思义就是说两部计算机都工作的状态。由其中一部控制EFCS和FADEC 2. 单一模式(Single Mode) 指有一部FMGC故障的情况。 3. 独立模式(independent Mode) 主FMGC计算各种数据控制系统,从FMGC接收同样的数据并计算但并不控制系统。从FMGC的数据要和主FMGC数据比较。如果出现较大的偏差就会出现独立工作模式 比如速度超过2节,重量超过2吨等。。。出现偏差后,从属FMGC会试图和主FMGC同步,如果同步不成功进入独立模式。 比较常见的情况是在更新完一部FMGC的数据库后,造成两部FMGC的数据库不同,会进入独立模式。 FMGC 内部有两个通道, COMMAND CHANNEL 和 MONITORING CHANNEL 分别有自己独立的供电组件,使用不同的编程软件控制. FMGC内部分成两部分,飞行管理部分FM和飞行引导部分FG 在FM内部加载了6个数据库

飞行控制系统功能介绍

飞行控制系统功能介绍

目录 一、综述 (1) 二、飞控的相关系统说明 (1) 1.飞控的基本子系统 (2) 1.1航向控制系统 (2) 1.2速度控制系统 (3) 1.3高度控制系统 (4) 1.4自动着陆系统 (5) 2.测试机飞控所需的子系统 (6) 2.1GPS系统 (7) 2.2传感器、温湿度传感器系统 (8) 2.3飞行器自动稳定控制系统 (11) 2.4航向偏离控制系统 (11) 2.5显示系统 (12) 2.6信号反馈控制系统 (12) 2.7自动飞行控制系统 (13) 2.8自动导航系统 (14) 3.测试机飞控所需扩充系统功能 (15) 3.1自动避障系统 (15) 3.2语音播报系统 (17) 3.3物联网系统 (17) 3.4摄录系统 (18) 4.测试机飞控的其他功能 (18) 4.1自动寻路控制系统 (18) 4.2自动跟踪系统 (19) 4.3一键返航系统 (19) 4.4双飞控系统 (19) 4.5降落伞系统 (19) 5.飞行控制系统的常用外设接口 (20)

一、综述 本设计调研依据飞行控制系统(以下简称“飞控”)功能进行的系统调研。本飞行控制系统删减了翻滚、特技系统功能;以此对飞控系统的相关系统功能进行功能收集,由于本人的资料有一大部分是网络收集,会造成信息描述不准,还请大家见谅!。 飞控系统的相关子系统描述如下图1: 图1 二、飞控的相关系统说明 飞控系统的子系统功能分类方式有很多种,可以按飞控系统的子系统功能分类,按飞控系统涉及的子系统关联关系分类,按飞控系统设计的子系统基本功能和选配功能分类等等,本文现阶段以调研飞控系统功能为主,故选择按飞控系统的系统功能分类为主。

飞行管理系统

第16章飞行管理系统 16.1飞行管理系统概述 随着飞机性能的不断提高,要求飞行控制系统实现的功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用的技术条件、任务和用户要求,飞机可用空间和动力,飞机的气动力特性及规范要求等诸因素的限制下,把许多分系统综合起来,实施有效的统一控制和管理。于是便出现了新一代数字化、智能化、综合化的电子系统-飞行管理系统(FMS-Flight Management System)。在1981年12月,飞行管理系统首次安装在B767型飞机上。此后生产的大中型飞机广泛采用飞行管理系统。 16.2飞行管理系统的组成和功能 16.2.1飞行管理系统的组成 飞行管理系统由几个独立的系统组成。典型的飞行管理系统一般由四个分系统组成,如图16-1,包括: (1)处理分系统-飞行管理计算机系统(FMCS),是整个系统的核心; (2)执行分系统-自动飞行指引系统和自动油门,见自动飞行控制系统; (3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统; (4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)和无线电导航设备。 驾驶舱主要控制组件是自动飞行指引系统的方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。主要显示装置是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)和推力方式显示。各部分都是一个独立的系统,既可以单独使用,又可以有多种组合形式。飞行管理系统一词的概念是将这些独立的部分组成一个综合系统,它可提供连续的自动导航、指引和性能管理。

图16-1飞行管理系统 16.2.2飞行管理系统的功能 FMS的主要功能包括导航/制导、自动飞行控制、性能管理和咨询/报警功能。FMS实现了全自动导航,大大减轻了驾驶员的工作负担。另外,飞机可以在FMS的控制下,以最佳的飞行路径、最佳的飞行剖面和最省油的飞行方式完成从起飞直到进近着陆的整个飞行过程。 FMS在各飞行阶段的性能管理功能: (1)起飞前 通过FMS的控制显示组件人工向FMC输入飞行计划、飞机全重和外界温度。如果飞行计划已经存入FMC的导航数据库,则可直接调入。飞行计划包括起飞机场、沿途航路点和目的机场的经纬度、高度等。 (2)起飞 根据驾驶员输入的飞机全重和外界温度,FMC计算最佳起飞目标推力。 (3)爬升 根据驾驶员的选择,FMC计算最佳爬升剖面。FMC还根据情况向驾驶员提供阶梯爬升和爬升地点的建议,供驾驶员选择,以进一步节约燃油。 (4)巡航 FMC根据航线长短、航路情况等因素,选择最佳巡航高度和速度。结合导航设施,确定起飞机场至目的机场的大圆航线,以缩短飞行距离。 (5)下降 FMC根据驾驶员输入或存储的导航数据确定飞机下降的顶点。在下降阶段,FMC确定下降速度,最大限度利用飞机的势能,节约燃油。 (6)进近 FMS以优化速度引导飞机到达跑道入口和着陆点。 16.2.3飞行管理计算机系统 由飞行管理计算机(FMC)和控制显示组件(CDU)组成。

完整word版,A320题库-自动飞行FMGS

1. 飞行管理和引导系统(FMGS)包括以下哪些主要部件?( C ) A. 两部飞行管理和引导计算机(FMGC)和两部多功能控制和显示组件(MCDU) B. 一部飞行控制组件(FCU)和两部飞行增稳计算机(FAC) C. 以上都对 2.有两种飞行引导方式:管理引导和选择引导,哪种方式优先? ( A ) A. 选择引导 B. 管理引导 C. 同等优先权 3. FMGC的功能是:( C ) A. 飞行引导和飞行包线保护 B. 飞行管理和飞行包线保护 C. 飞行管理和飞行引导 4. FMGC的正常操作是:( C ) A. 一次只有一台FMGC工作 B. FMGC1优先,FMGC2备份 C. FMGC按主动/随动原则工作 5. 飞行中,FMGS的位置是如何自动更新的: ( C ) A. 用所选择的NDB,VOR或DME台数据 B. 当飞行员选择DME台后 C. 通过自动调谐功能使用DME 6. FMGC单一方式工作时: ( A ) A. 剩下的那部FMGC独立地与两部MCDU交流 B. 剩下的那部FMGC仅与相关的的MCDU交流 C. 剩下的那部FMGC通过失效的FMGC与对方的MCDU交流 7. 在管理飞行中,速度/马赫转换: ( A ) A. 是自动的 B. 必须由机组建立,并只在爬升阶段 C. 必须由机组建立,爬升和下降阶段均可 8. MCDU页面里的绿色是什么意思? ( B ) A. 表示飞行员可修改的数据 B. 表示由FMGC产生的数据,机组不可修改 C. 总是表示临时飞行计划 9. MCDU页面的琥珀色方格表示什么意思? ( C ) A. 不让输入数据,或由FMGC计算的数据将会显示 B. FMGC数据库正在检查重要数据

飞行管理系统介绍

飞行管理系统介绍 一、飞行管理系统(FMC)组成与基本功用 (一)、飞行管理系统(FLIGHT MANAGEMENT SYS)由五个分系统组成: 1、飞行控制系统(DFCS) 包括自动驾驶(A/P)与飞行指引(F/D),其核心为两台飞行控制计算机,该系统用于自动飞行控制(FCC)与飞行指引。 2、自动油门系统(A/T) 其核心就是一台自动油门计算机与两台发动机油门操纵得伺服机构,A/T提供从起飞到着陆全飞行过程得油门控制。 3、飞行管理计算机系统(FMCS) 其核心就是一台飞行管理计算机FMC与两台控制显示组件CDU,它用于从起飞到进近得几乎全部飞行过程得横向(LATERAL)剖面与纵向(VERTICAL)剖面得飞行管理。 我部得34N型飞机装有两部FMCS,这使飞行管理系统得可靠性更高。 4、惯性基准系统(IRUS) 其核心为两台惯导基准组件IRU,其主要功用为提供飞机得姿态基准与定位参数,也可用于飞机自备、远距导航。 5、电子飞行仪表系统(EFIS) 33A与34N型飞机装备得就是电子飞行仪表系统,3T0型飞机装备得还就是旧式得机械式仪表。由于飞行仪表得电子化,逐渐淘汰老式得机械式仪表,而电子飞行仪表必须有相应得字符,符号等图形信号发生器,以提供阴极射线管CRT或液晶LCD显示。EFIS就就是起这个作用得电子式飞行仪表显示系统,它主要包括两台符号发生器(EFIS SG)与两套姿态指引仪(EADI)、两套水平状态指示器(EHSI)。

(二)、飞行管理系统得基本作用: 这套系统技术先进,设备量大,承担得任务多,其中最根本得功用就是: 1、实现飞行得自动化,大大减轻了飞行员得工作负担,减少人为操作所不可避免得差错与失误。 2、实现飞行全程得优化: (1)起飞阶段(TO)—根据飞机得全重与环境温度提供最佳目标推力。 (2)爬升降段(CLB)—提供最佳爬升剖面:包括爬升点,阶段爬升得设置,目标推力与目标空速得设定。 (3)巡航(CRZ)—提供最佳高度与巡航速度,以及大圆航线与导航系统得选择与自动调谐。 (4)下降阶段(DSE)—提供下降顶点,目标下降速度与分段,以充分利用飞机高度下降所得到得动能,并以最佳得高度,速度与距离转入进近阶段。 (5)进近(APP)—确定飞机在五边进近基准点时得高度、空速与距离。 飞行得优化不仅得到最合理得飞行路径,节省燃油与飞行时间,而且飞机机体得损耗率最少。 3、实现自动着陆 由于有两套自动驾驶通道,具有余度通道,借助仪表着陆系统可实现Ⅱ类气象标准得自动着陆(决断高度50英尺,跑道能见距离700英尺)与自动复飞。 二、FMC控制飞行过程工作概述 飞行过程可归纳为正常程序与辅助正常程序 1、正常程序 所谓正常程序就就是自动飞行得标准程序,可分为如下七个飞行阶段: (1)起飞TAKE OFF 在完成起飞前准备后,只要按压TO/GA开关,即开始起飞程序,此时推力杆自动前进到起飞目标N1值,当飞机滑跑达到60节时,F/D指令杆提供俯仰指令,起飞后400英尺RA高度以上,A/P衔接,同时选择L NA V(水平导航)与V

自动驾驶仪,自动油门,飞行指挥仪

自动驾驶仪,自动油门,飞行指挥仪 *** Intended For Flight Simulation Use ONLY * 仅供飞行模拟使用* 本文中所有术语的翻译,均以英文原文为准。*** 什么是自动驾驶系统? 自动驾驶系统(自动驾驶仪),是一种通过飞行员按一些按钮和旋转一些旋钮,或者由导航设备接收地面导航信号,来自动控制飞行器完成三轴动作的装置。不同型号的飞机所装备的自动驾驶仪可能会有一些小的差别,但是大体相似。 自动驾驶系统能做些什么? 在FS2004里,Cessna 和Beechcraft Baron 58 装备的自动驾驶仪具有以下功能: ?保持机翼水平,不发生滚转。 ?保持飞机当前的仰俯角。 ?保持选定的飞行方向。 ?保持选定的飞行高度。 ?保持选定的上升率或下降率。 ?跟踪一个VOR电波射线(Radial)。 ?跟踪一个定位信标(Localizer)或反向航路定位信标(Localizer Back Course)。 ?跟踪仪器降落系统(Instrument Landing System)的定位信标和下滑道指示信标(Glide Slope)。 ?跟踪一个GPS航路。 在FS2004中,Beechcarft King Air 350, Bombardier Learjet 45, 和所有的Boeing 喷气机,都装备有自动飞行控制系统,包括自动驾驶仪,自动油门(自动节流阀门)和飞行指挥仪。这套系增加了以下功能: ?保持一个选定的飞行速度(空速或地速)。 ?消除有害的偏航。 ?帮助飞行员正确的手动控制飞机。 在FS2004中,有些机型或面板上,提供更多的自动驾驶仪操作功能: ?飞行管理计算机(Flight Management Computers) ?垂直方向导航(Vertical Navigation) ?横向导航(Lateral Navigation) ?飞行水平改变(Flight Level Change) ?机轮控制(Control Wheel Steering) ?自动降落(Autoland)

飞行管理系统

第16章飞行管理系统 16、1飞行管理系统概述 随着飞机性能得不断提高,要求飞行控制系统实现得功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用得技术条件、任务与用户要求,飞机可用空间与动力,飞机得气动力特性及规范要求等诸因素得限制下,把许多分系统综合起来,实施有效得统一控制与管理。于就是便出现了新一代数字化、智能化、综合化得电子系统-飞行管理系统(FMSFlight Management System)。在1981年12月,飞行管理系统首次安装在B767型飞机上。此后生产得大中型飞机广泛采用飞行管理系统。 16、2飞行管理系统得组成与功能 16、2、1飞行管理系统得组成 飞行管理系统由几个独立得系统组成。典型得飞行管理系统一般由四个分系统组成,如图161,包括: (1)处理分系统-飞行管理计算机系统(FMCS),就是整个系统得核心; (2)执行分系统-自动飞行指引系统与自动油门,见自动飞行控制系统; (3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统; (4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)与无线电导航设备。 驾驶舱主要控制组件就是自动飞行指引系统得方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。主要显示装置就是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)与推力方式显示。各部分都就是一个独立得系统,既可以单独使用,又可以有多种组合形式。飞行管理系统一词得概念就是将这些独立得部分组成一个综合系统,它可提供连续得自动导航、指引与性能管理。

自动飞行控制系统 AFCS

涡轮发动机飞机 第六章自动飞行控制系统AFCS 自动飞行控制系统的组成和基本功能 自动驾驶仪(AP)飞行指引(FD)偏航阻尼系统(YDS)俯仰配平系统(Auto Trim)自动油门系统(ATS) 6.1自动飞行控制系统AFCS的组成和基本功能 系统的功用——自动飞行控制系统可在除起飞的飞机的整个飞行阶段中使用:离场、爬升、巡航、下降和进近着陆。 6.1.1 自动飞行控制系统AFCS由下列分系统组成: 自动驾驶仪(A/P)—既可用于控制飞行轨迹,也可用于控制飞行速度减轻飞行员 的工作负担,还可实现飞机的自动着陆。 飞行指引仪(F/D) 在PFD或EADI上显示计算机提供的自动飞行的指令使飞行 员按照飞行指引杆的指引驾驶飞机,或监控飞机的姿态。自动配平系统自动调节飞机的水平安定门,改善飞机的俯仰稳定性 偏航阻尼系统(Y/D)改善飞机整个飞行阶段的动态稳定性 自动油门系统(ATS)自动调节发动机输出功率,实现最佳飞行,并减轻飞行 员的负担。 偏航阻尼系统与自动配平系统合称为增稳系统。 飞行管理系统FMS 在现代飞机上,利用飞行管理系统FMS,可完成对飞机的全自动导航; 提供从起飞到进近着陆的最优侧向飞行轨迹和垂直飞行剖面的计算, 实现最佳飞行。FMS的输出信号加到AFCS,控制自动飞行控制系统 的工作,实现对飞机的制导和推力管理;同时监测AFCS的工作,防止 飞机在不正常条件下的自动飞行。 6.1.3 AFCS的基本结构 AFCS的基本组成: 飞行控制计算机——计算控制指令。 控制板——(方式控制板MCP)是人机接口,用于向计算机输入飞行员的控制 指令,如飞行方式、速度、高度等。 输出设备——将计算机产生的控制信号加到飞行控制系统(通过舵机控制飞行操 纵面等),将显示信息输往显示器。 数字式AFCS的结构 80年代AP/FD计算机集成为FCC。 电子飞行控制系统EFCS的结构

飞行模拟机自动飞行控制系统设计

飞行模拟机自动飞行控制系统设计 自动飞行控制系统可以实现自动驾驶仪取代人工操作,是飞机飞行系统不可获取的组成部分,稳定飞机的各种姿态,降低了飞行员的工作量。介绍了自动飞行控制系统的组成、功能。通过俯仰、横滚通道的控制原理分析,设计相应的飞行控制律。利用软件实时仿真了某飞机的自动飞行控制系统;通过调试优化参数,能很好的模拟飞机的自动飞行过程。 标签:飞行模拟机;自动飞行控制系统;飞行控制律;PID控制器 1 自动飞行控制系统的组成及回路构成 自动驾驶仪、飞行指引系统、方向选择板、以及偏航阻尼器组成构成了飞机飞行系统的重要部件:自动飞行控制系统。 自动飞行控制系统的重要组成部分之一:自动驾驶仪由操纵装置、综合装置、测试设备、回输设备以及舵机构成,如图1所示。借助这些装置,自动飞行控制系统不仅能够实现自动配平、改平以及增稳的功能,而且能够在飞机飞行的时候稳定飞机的飞行速度、高度以及控制飞机的航向角、倾斜角以及俯仰角,此外在飞机自动着陆时,自动驾驶仪与仪表着陆系统相互配合,完成飞机的自动着陆。 飞机(被控对象)与自动驾驶仪构成一个稳定回路,该稳定回路主要是为了控制和稳定飞机的姿态,从而使飞机能持续稳定地飞行。自动飞行控制系统的具体组成如图2所示,描述飞机空间位置的参数、中心位置测量装置以及稳定回路构成一个稳定回路,在飞机的姿势发生改变时,各种测量装置测量飞机的姿态数据,这些数据将输出到自动驾驶仪,与此相对,如果要改变飞机的飞行姿态,自动驾驶仪将发出信号,控制飞机姿态的各种装置将接受这些信号,进而操纵飞机改变姿态,控制与反馈,不断调整,最终达到平衡。 方式选择板提供飞行员操作的按钮,选择飞行模式。主要模式为:高度保持、空速保持、下降模式、爬升模式、航向保持、导航模式、进近模式、半坡度模式。这些工作模式都是为飞机纵向运动和横向运动姿态控制提供引导量值。这些量值同时也显示在飞行指引仪表上,作为飞行员的引导量。这样,飞行员既可以选择”手动”操纵,也可以选择自动驾驶仪工作。方式选择板的功能是通过逻辑实现的。飞行控制逻辑是整个软件系统的指挥中枢,它保障整个控制系统的稳定可靠的运行。 2 自动飞行控制系统功能 飞机要是实现自动飞行、无人操纵的目的就必须借助自动飞行控制系统,在自动飞机控制系统中,飞控计算机根据自动驾驶仪传输过来的控制信号,判断出目前所选的有效飞行模式、横滚通道,进而计算出飞机需要飞行的俯仰角度、副翼偏转角度,输出滚动角指令信号,从而实现自动驾驶仪设置的飞行模式。

A320系列飞机FAC相关的经验探讨 无锡基地 陆亦彬解析

A320系列飞机FAC相关的经验探讨 FAC(飞行增稳计算机):是自动飞行系统的重要部件,2个FAC、2个FMGC、2个MCDU、1个FCU共同构成了自动飞行系统。 一、F AC功用: 1、偏航阻尼功能:由yaw damper实现 A.人工控制时实现由ELAC发出的偏航指令,在ELAC故障时也可以提供抑制荷兰滚的功能(这时ADIRU提供数据给FAC用来计算); 偏航阻尼.jpg B.自动控制时实现由FMGC发出的自动飞行指令:包括完成偏航指令和滚弯动作。 C.在自动飞行状态下还可也起到协调转弯、抑制荷兰滚和在一台发动机失效状况下对飞机姿态的恢复。 2.方向舵配平功能 A.人工控制时实现飞行员通过配平手轮发出的配平指令(control and reset)。 执行由ELAC发出偏转指令(当发动机失效时)。 B.自动控制时完成自动飞行的配平指令,并在一台发动机失效时产生恢复飞机姿态的功能。 3.方向舵行程限制功能 A.按照预先设定好的规则来限制方向舵行程,即在不同的速度下,对方向舵舵面行程有不同程度的限制。

TLU Control Law.jpg B.万一双FAC行程限制功能失效,只要缝翼伸出就会回到低速的限制状态,即保证在近进和落地滑跑过程中最大幅度运动舵面的需要。 方向舵行程限制是不能显示的,只能在ECAM上显示方向舵可以最大运动到的位 置。 4.飞行包络保护功能 FAC接受ADIRU、LGCIU、FMGC、SFCC的数据计算特征速度,并显示在PFD 的速度刻度上。 飞行包络保护1.jpg, 每个FAC由独立的按钮电门控制,并实现不同的功能 A.控制PFD上特征速度的显示(包括最大空速,目标速度,速度增大或减小的趋势, ECAM速度范围,最小可选速度,迎角保护速度,最大迎角速度,最大马赫数, 最大起落架放下速度,最大襟缝翼放下速度,最小襟缝翼放下速度) 正常情况下,FAC1数据显示在CAPT PFD上,FAC2数据显示在F/O PFD上,如 果参数或计算机错误,相关的PFD数据显示由另一个FAC取代。如果FAC获得 的大气数据和DMC显示数据不一致,则会在ECAM上显示“ADR DISAGREE” 的信息。FAC可以计算飞机的重心:飞行中,通过ADIRU, FMGC, SFCC的参数 以及重力参数计算特征速度和重心;在地面重力数据由FMGC提供;

(完整版)无人机飞行控制系统仿真研究本科生毕业论文

1 绪论 本章先主要介绍了无人机进无人机的特点,国内外研究现状和发展趋势及这篇文章的主要内容安排。 1.1无人机概述 无人机即无人驾驶飞机,也称为遥控驾驶飞行器,是机上没有驾驶员,靠自身程序控制装置操纵,自动飞行或者由人在地面或母机上进行遥控的无人驾驶飞行器,在它上面装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统实现远距离控制飞行。无人机大体上由无人机载体、地面站设备(无线电控制、任务控制、发射回收等起降装置)以及有效负荷三部分组成。 无人机在航空业已有一百年的历史了。第一驾遥控航模飞机于1909年在美国试飞成功。1915年10月德国西门子公司研制成功采用伺服控制装置和指令制导的滑翔炸弹,它被公认为有控的无人机的先驱。世界上第一架无人机是英国人于1917年研制的。这是一架无线电操纵的小型单翼机,由于当时的许多技术问题,所以试验失败。一直到1921年英国才研制成可付诸实用的第一驾靶机。1918年德国也研制成第一驾无人驾驶的遥控飞机。1920年简氏《世界各地飞机》首次提到无人机。20世纪30年代初无线电操纵的无人靶机研制成功。在20世纪40至50年代,无人机逐渐得到了广泛使用,但这时主要是作为靶机使用。世界各国空军于20世纪50年代大量装备了无人驾驶飞机作为空靶。进入20世纪60年代后,美国出于冷战需要,将无人机研究重点放在侦察用途方面,这标志着无人机技术开始进入了以应用需求为牵引的快速发展时代。 由于无人机具有低成本、零伤亡、可重复使用和高机动等优点,因此

深受世界各国军队的广泛欢迎,近年来得到了快速发展。对于无人机而言,其自动飞行控制系统的设计是至关重要的,它的优劣程度直接影响到无人机各项性能(包括起飞着陆性能、作业飞行性能、飞行安全可靠性能、系统的自动化性和可维护性等)。因此,研究无人机的自动飞行控制技术具有十分重要的现实意义,尤其是在军事上的重要性己经得到国内外的高度重视,而无人机飞行控制系统是无人机能够安全、有效地完成复杂战术、战略使命的基本前提,因此迫切需要加强该领域的研究工作。 无人机的研制早在 20 世纪初就开始了,几乎与有人机同步,自30年代国外首次采用无线电操纵的模型飞机作为靶机以后,无人机的发展十分迅速。40年代,低空低速的小型活塞式靶机投入使用。50年代出现了高亚音速和超音速高性能的靶机,世界各国空军开始大量装备无人机作为空靶。60年代以后,随着微电子技术、导航与控制技术的发展,一些国家研制了无人驾驶侦察机,美国率先研制成功无人驾驶侦察机,并开始用于越战。无人机受到越来越多国家的青睐,发展迅猛。在1982年的中东战争中,以色列在贝卡谷地交战中,用“侦察兵”和“猛犬”无人机诱骗叙军的地空导弹的制导雷达开机,侦查获取了雷达的工作参数并测定了其所在位置。无人机的飞速发展是在海湾战争后,以美国为首的多国部队的无人机在海湾战争中成功地完成了战场侦察、火炮校射、通信中继和电子对抗任务。无人机的研制成功和战场运用,揭开了以远距离攻击型智能化武器、信息化武器为主导的“非接触性战争”的新篇章,由此引发了无人机及其飞行控制研究的热潮。 美国、英国、法国、德国、以色列、澳大利亚等国都针对这个领域投入了相当的研究力量。究其原因,用无人机替代有人驾驶飞机可以降低生产成本,便于运输、维修和保养,而且不用考虑人的生理和心理承受极限。未来无人机在军事和民事上都有广泛的应用前景。在军事领域,采用无人

相关文档
最新文档