二、高光谱遥感成像机理与成像光谱仪

遥感原理与方法期末考试复习

遥感原理与方法期末考试复习 第一章绪论 ★遥感的定义?遥感对地观测有什么特点? 广义遥感:泛指一切无接触的远距离探测,包括对电磁场、力场(磁力、重力)、机械波(声波、地震波)等的探测。实际工作中,重力、磁力、声波、地震波等的探测被划为物探(物理探测)的范畴,只有电磁波探测属于遥感的范畴。 狭义:是指对地观测,即从不同高度的工作平台上通过传感器,对地球表面目标的电磁波反射或辐射信息进行探测,并经信息记录、传输、处理和解译分析,对地球的资源与环境进行探测和监测的综合性技术。 定义:遥感是指不与目标物直接接触,应用探测仪器,接收目标物的电磁波信息,并对这些信息进行加工分析处理,从而识别目标物的性质及变化的综合性对地观测技术。 英文定义:Remote Sensing 简写为RS(3S之一) 空间特点—全局与局部观测并举,宏观与微观信息兼取 时相特点—快速连续的观测能力 光谱特点—技术手段多样,可获取海量信息 经济特点—应用领域广泛,经济效益高 ★遥感技术系统有哪几部分组成?每部分的作用。 信息获取是遥感技术系统的中心工作 信息记录与传输工作主要涉及地面控制系统 信息处理通过各种技术手段对遥感探测所获得的信息进行各种处理 信息应用是遥感的最终目的,包括专业应用和综合应用 ☆遥感有哪几种分类方法及哪些分类? 1)按遥感平台分:地面遥感、航空遥感和航天遥感 2)按工作方式分:主动式和被动式遥感.ps【主动式遥感是指传感器自身带有能发射电磁波的辐射源,工作时向探测区发射电磁波,然后接收目标物反射或散射的电磁波信息。被动式遥感是传感器本身不发射电磁波,而是直接接受地物反射的太阳光线或地物自身的热辐射。】 3)按工作波段分:紫外、可见光、红外、微波遥感、多光谱和高光谱遥感 4)按记录方式分:成像和非成像遥感 5)按应用领域分:外层空间、大气层、陆地、海洋遥感等,具体应用领域可分为城市遥感、环境、农业和林业遥感、地质、气象、军事遥感等。 遥感对地观测技术现状及发展展望? 现状(国内): 1)民用遥感卫星像系列化和业务化方向发展 2)传感器技术发展迅速 3)航空遥感系统日趋完善 4)国产化地球空间信息系统软件发展迅速 5)应用领域不断扩展 发展展望: 1)研制新一代传感器,以获得分辨率更高、质量更好的遥感数据 2)遥感图像信息处理技术发展迅速

成像光谱仪及其应用概述

成像光谱仪简介及其应用概述 成像光谱仪:将成像技术和光谱技术结合在一起,在探测物体空间特征的同时并对每个空间像元色散形成几十个到上百个波段带宽为10nm左右的连续光谱覆盖。它以高光谱分辨率获取景物或目标的高光谱图像。在陆地、大气、海洋等领域的研究观测中有广泛的应用。 成像光谱仪–概述 成像光谱仪是20世纪80年代开始在多光谱遥感成像技术的基础上发展起来的,它以高光谱分辨率获取景物或目标的高光谱图像,在航空、航天器上进行陆地、大气、海洋等观测中有广泛的应用,高成像光谱仪可以应用在地物精确分类、地物识别、地物特征信息的提取。建立目标的高光谱遥感信息处理和定量化分析模型后,可提高高光谱数据处理的自动化和智能化水平.。由于成像光谱仪高光谱分辨率的巨大优势,在空间对地观测的同时获取众多连续波段的地物光谱图像,达到从空间直接识别地球表面物质的目的,成为遥感领域的一大热点,正在成为当代空间对地观测的主要技术手段。地面上采用成像光谱仪也取得了很大的成果,如科学研究、工农林业环境保护等方面。 成像光谱仪主要性能参数是:(1)噪声等效反射率差(NE?p),体现为信噪比(SNR);(2)瞬时视场角(IFOV),体现为地面分辨率;(3)光谱分辨率,直观地表现为波段多少和波段谱宽。 高光谱分辨率遥感信息分析处理,集中于光谱维上进行图象信息的展开和定量分析,其图象处理模式的关键技术有:⑴超多维光谱图象信息的显示,如图像立方体(见图一)的生成;⑵光谱重建,即成像光谱数据的定标、定量化和大气纠正模型与算法,依此实现成像光谱信息的图象-光谱转换;⑶光谱编码,尤其指光谱吸收位置、深度、对称性等光谱特征参数的算法;⑷基于光谱数据库的地物光谱匹配识别算法; ⑸混合光谱分解模型;⑹基于光谱模型的地表生物物理化学过程与参数的识别和反演算法。 高光谱分辨率成像光谱遥感起源于地质矿物识别填图研究,逐渐扩展为植被生态、海洋海岸水色、冰雪、土壤以及大气的研究中。 成像光谱仪的基本原理

光谱成像技术的分类

光谱成像技术的分类 光谱成像技术,有时又称成像光谱技术,融合了光谱技术和成像技术,交叉涵盖了光谱学、光学、计算机技术、电子技术和精密机械等多种学科,能够同时获得目标的两维空间信息和一维光谱信息。 光谱成像技术发展到今天,出现的光谱成像仪的种类和数量己经具有较大规模,因而可以从光谱分辨率、信息获取方式(扫描方式)、分光原理和重构理论等不同的视角对光谱成像技术进行分类。 1基于光谱分辨率分类 光谱成像技术针对光谱分辨能力的不同,可分为多光谱(Multi-spectral),高光谱(Hyper- spectral)以及超光谱(Ultra-spectral)。多光谱的谱段数一般只有几十个,高光谱的谱段数可达到几百个,而超光谱一般指谱段数上千个。它们的区别如表1所示。 表1多、高、超光谱的比较 分类分辨 率 通道数光谱典型例子 多光谱(Multi-spectral)10-1λ 量级 5—30ETM+ ASTER 高光谱(Hyper-spectral)10-2λ 量级 100— 200 AVIRIS 超光谱(Ultra-spectral)10-3λ 量级 1000— 10000 GIFTS

2 基于信息获取方式分类 光谱成像仪需要对三维“数据立方”进行探测,而现今的探测器最多能进行二维探测。要想获得完整的三维数据,理论上至少需增加一维的空间扫描或光谱扫描。光谱成像技术获取图谱信息的主要方式有:挥扫式(Whiskbroom )、推扫式(Pushbroom)、凝视式(Staring)以及快照式(Snapshot)。 挥扫式成像光谱仪的光谱成像系统只对空间中某点进行光谱探测,通过沿轨和穿轨两个方向扫描获取完整的二维空间信息,其信息获取方式如图1a所示。AVIRIS就是通过挥扫成像[1]。 推扫式光谱成像系统探测空间中一维线视场(图1b中的X方向)的光谱,通过沿轨方向(Y方向)扫描实现二维空间信息的获取,芬兰国立技术研究中心实验室研制的AISA就是典型的推扫式成像光谱仪[2]。 凝视式光谱成像系统可对固定窗口目标成像,采用滤光的方式分离并获取不同波段的图像信息,再将不同波段的图像堆叠成“数据立方”。如图1c中所示,该类成像光谱仪实际上是采用光谱维扫描的方式实现图谱“数据立方”的获取。 图1 典型的光谱成像过程:a挥扫式;b推扫式;c凝视式;d快照式 快照式是一种新兴的图谱信息获取方式,它不需扫描便可获取三维图谱信息。快照式光谱成像技术实现方式主要有三种:一种是视场分割三维成像的方式,利用玻璃堆进视场分割,再利用分光器件将三维信息展开到二维平面进行面探测

遥感原理与应用知识点

第一章 1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息 2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。 3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。 4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。 5、遥感的特点:1)手段多,获取的信息量大。波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。 2)宏观性,综合性。覆盖范围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。 3)时间周期短。重复探测,有利于进行动态分析 6、遥感数据处理过程 7、遥感系统:1)被探测目标携带信息 2)电磁波辐射信息的获取 3)信息的传输和记录 4)信息的处理和应用 第三章 1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。 2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播 2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动 紫外线、X射线、γ射线——粒子性 可见光、红外线——波动性、粒子性 微波、无线电波——波动性 3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。 4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。没有固定相位关系的两列电磁波叠加时,没有一定的规律可循,这种现象叫电磁波的非相干性

【遥感原理与应用】复习期末考试整理

第一章 绪论 ? 什么是遥感? 广义上:泛指一切无接触的远距离探测,实际工作中,只有电磁波探测属于遥感范畴。 狭义上:遥感探测地物基本原理:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。现代遥感:特指在航天平台上,利用多波段传感器,对地球进行探测、信息处理和应用的技术。 ? 电磁波的传输过程 PxYBRXQ 。SOt0ure 。MDGVcH2。 ? 遥感技术系统 遥感技术系统是实现遥感目的的方法论、设备和技术的总称。MR4gQja 。im8FEKh 。l0lznrK 。 遥感技术系统主要有:①遥感平台系统②遥感仪器系统③数据传输和接收系统④用于地面波谱测试和获取定位观测数据的各种地面台站网;⑤数据处理系统。⑥分析应用系统。? 遥感应用过程 1.问题声明(分析问题、假设建模、指定信息需求) 2.数据收集(遥感、实地观测) 3.数据分析(目视解译、数字图像处理、可视化分析、测试假设) 4.信息表达(数据库、误差报告、统计分析、各类图件) ? 遥感的发展趋势 高分辨率、定量化、智能化、商业化 第二章 电磁波及遥感物理基础 ? 电磁波、电磁波谱(可见光谱) 遥感之所以能够根据收集到的电磁波来判断地物目标和自然现象,是因为一切物体,由于其种类、特征和环境条件的不同,而具有完全不同的电磁波反射或发射辐射特征。电磁波是一种横波。 电磁波的几个性质: 一般的光探测器或感光材料只对光强度有响应,因而只能感受到光波场的振幅信息,对相位信息则无响应。 干涉(interfere ) 频率相同、振动方向相同、相位差恒定的两列光/波相遇时,使某些地方振动始终加强(显得明亮),或者始终减弱(显得暗淡)的现象,叫光/波的干涉现象。应用:雷达、InSAR 太阳辐射(solar radiation ) 发射(Emission ) 吸收(Absorption ) 散射 (Scattering ) 反射(Reflection )

遥感原理与应用实习

学号xxxx 天津城建大学 实习报告 遥感原理与应用实习 起止日期:2013 年12 月23日至2014年1月3 日 学生姓名Xx 班级XX 成绩 指导教师(签字) XX学院 2014年1 月3日

一、实习目的 “遥感原理与图像处理”课程是测绘工程专业的一门重要专业课,遥感信息是测绘、资源调查、环境监测、灾害评价诸方面应用的主要数据源。已在科学研究、工农业生产、军事、公安、医疗卫生、教育等许多领域得到广泛应用,产生了巨大的经济效益和社会效益,对推动社会发展,改善人们生活水平都起到了重要作用。未来要建立的数字地球是对真实地球及其相关现象数字化描述的一个虚拟地球。遥感技术将为数字地球提供动态的高分辨率、高光谱影像,用遥感影像生成的三维数字地面模型(DEM),以及地物和环境的各种属性数据等一些数字地球中最基础的数据。 “遥感实习”目的是培养学生进行遥感技术应用和图像数字处理的实际操作能力。要求了解一些基本的地物波谱反射率的野外测定方法,理解遥感图像目视解译,了解航天(或航空)像片识读与野外调绘。 二、实验项目基本要求 1.熟悉一种遥感图像处理软件 2.遥感影像的认知,进行图像剪切,波段组合与图像显示 3.图像的几何校正 4.遥感影像增强处理 5.遥感影像解译 三、实习步骤(包括原理,方法,操作过程) 1.图象剪切, 波段组合与图像显示 原图像比较大,数据量大处理不方便,对齐剪切便于计算机处理,也能达到实习目的 剪切DatePrep>SubsetImage命令如下图所示

波段组合Raster>Band Combinations 打开波段设置对话框 1)真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图 像,图像的色彩与原地区或景物的实际色彩一致.如下图 2)标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红 色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。

遥感原理与应用期末题库

一、选择与判断 1、遥感技术系统的组成。 包括遥感信息的获取、遥感信息传输和遥感信息提取应用三大部分 2、遥感按电磁波的波谱范围的分类 3、可见光的波长范围 可见光通常指波长范围为:390nm - 780nm 的电磁波。人眼可见范围为:312nm - 1050nm。 4、微波遥感的特点 波长1mm—1m。是一个很宽的波段。可分为毫米波(1—10毫米)、厘米波(1—10cm)和分米波(1—10分米)。 微波的特点是: (1)能穿透云雾和一定厚度的植被、冰层和土壤,可获得其它波段无法获得的信息;(2)具有全天候的工作能力; (3)可以主动和被动方式成像。 因此在遥感技术上是很有潜力的一个波段。 5、叶绿素的主要吸收波段 主要吸收红光及蓝紫光(在640-660nm的红光部分和430-450nm的蓝紫光强的吸收峰)。 6、异物同谱现象是什么 “同物异谱”说的是相同的地物由于周围环境、病虫害或者放射性物质等影响,造成的相同的物种但是其光谱曲线不同,“异物同谱”顾名思义也就是不同的地物由于生长环境的影响光谱曲线相同。这就给遥感分类造成了困难,遥感影像在分类时主要依靠的就是地物的光谱特征,尤其是非监督分类,它的前提就是不存在“同物异谱”和异物同谱“现象。 7、黑体的反射率与吸收率

黑体的反射率=0,吸收率=1(如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体就叫做黑体。) 8、黑体辐射通量密度与波长、温度的关系 辐射出射度随波长连续变化,每条曲线只有一个最大值。 ?温度越高,辐射出射度越大,不同温度的曲线不相交。 ?随着温度的升高,辐射最大值所对应的波长向短波方向移动。 即黑体总辐射出射度随温度的增加而迅速增加,它与温度的四次方成正比。温度的微小变化,就会引起辐射通量密度很大的变化。是红外装置测定温度的理论基础。 9、普朗克定律在全波段积分得到的定律 由普朗克公式可知,在给定的温度下,黑体的光谱辐射是随波长而变化;同时温度越高,辐射通量密度也越大,不同温度的曲线是不相交的。 10、维恩位移定律的主要结论 维恩位移定律:黑体辐射光谱中最强辐射的波长(λmax)与黑体绝对温度(T)成反比。随着温度的升高,辐射最大值所对应的波长移向短波方向。 11、地物反射的三种类型 黑体或绝对黑体:发射率为1,常数。 灰体:发射率小于1,常数 选择性辐射体:反射率小于1,且随波长而变化。 12、朗伯面反射的特点 对于漫反射面,当入射照度一定时,从任何角度观察反射面,其反射亮度是一个常数,这种反射面称朗伯面。把反射比为1的朗伯面叫做理想朗伯面。 特点:其反射亮度是一个常数 13、决定大气散射的主要因素 散射的方式随电磁波长与大气分子直径、气溶胶微粒大小之间的相对关系而变化 大气粒子的成分;大气粒子的大小;大气粒子的含量;波长 14、瑞利散射的特点 (1)当大气中粒子的直径比波长小得多时发生,由分子与原子引起(分子散射) (2)散射强度与波长的四次方成反比,即波长越长,散射越弱 (3)主要发生在可见光和近红外波段,波长>1um可忽略 15、列举典型的光机扫描仪 机载红外扫描仪;气象卫星上携带的AVHRR传感器;MSS多光谱扫描仪;TM/ETM专题制图仪 16、列举典型的推帚(固体)扫描仪 1)SPOT卫星上的HRV传感器 2)美国Ikonos、Quikbird卫星传感器 17、遥感平台按距地高度的分类

遥感原理与应用考试复习题

2014——2015年度《遥感原理与应用》考试复习题 (命题:2011级土管系) 第一章绪论 主要内容: ①遥感信息科学的研究对象、研究内容、应用领域 ②电磁波及遥感的物理基础 ③遥感平台和传感器 第二章遥感图像处理的基础知识 主要内容: 1.图像的表示形式 2.遥感数字图像的存储 3.数字图像处理的数据 4.数字图像处理的系统 考题: 第一二章(A卷) 1.电磁波谱中(A)能够监测油污扩散情况,(D)可以穿透云层、冰层。(2分) A.紫外电磁波(0.01-0.4μm) B.可见光(0.4-0.76μm) C.红外电磁波(0.76-100 0μm) D.微波电磁波(1mm-1m) 2.遥感按遥感平台可分为地面遥感、航空遥感、航天遥感。(2分) 3.遥感数字图像的存储格式包括BS、BIL、GeoTIFF。(1分) 4.遥感传感器由收集器、探测器、处理器、输出器几部分组成。(2分) 5.地图数据有哪些类型?(3分) 答:DEM 数字高程模型 DOM 数字正射影像图

DLG 数字线划图 DRG 数字栅格图 6.何谓遥感?遥感具有哪些特点?(5分) 答:遥感,即遥远的感知,是在不直接接触的情况下,使用传感器,接收记录物体或现象反射或发射的电磁波信息,并对信息进行传输加工处理及分析与解译,对物体现象的性质及其变化进行探测和识别的理论与技术。特点:①感测范围大,具有综合、宏观的特点②信息量大,具有手段多,技术先进的特点③获取信息快,更新周期短,具有动态监测的特点④其他特点:用途广,效益高,资料性、全天候、全方位等. B卷 1.绿色植物在光谱反应曲线可见光部分中的反射峰值波长是( B )。(1分) A 0.50μm B 0.55μm C 0.63μm D 0.72μm 2.遥感数字图像处理的数据源包括多光谱数据源、高光谱数据源、全色波段数据 源和SAR数据源。(3分) 3.数字化影像的最小单元是像元,它具有位置和灰度两个属性。(2分) 4.函数I=f(x,y,z,λ,t)表示的是一幅三维彩色动态图。(1分) 5.遥感在实际中的应用有哪些方面?(4分) 答:资源调查应用 环境监测评价 区域分析及建设规划 全球性宏观研究。

遥感期末试卷1

一、填空题(每空1分,共20分) 1、TM影像为专题制图仪获取的图像。其在①、②、③方面都比MSS图像有较大改进。 2、绝对黑体不仅具有最大的___① ____,也具有最大的_②______,却丝毫不存在__ ③_____。 3、、当电磁波能量入射到地物表面上,将会出现三种过程,一部分能量被地物① _ ,一部分能量被地物 ②,成为地物本身内能,一部分能量被地物③。 4、陆地卫星的轨道是①轨道,其图像覆盖范围约为②平方公里。SPOT卫星较之陆地卫星,其最大优势是最高空间分辨率达到③。 5、、按高度划分,遥感平台大致可以分为__① ______、_ ② ____、__③ _三种。 6、_①年,我国第一颗地球资源遥感卫星(中巴地球资源卫星)在太原卫星发射中心发射成功。 7、、引起辐射畸变的原因有两个,即① _ 和②。 8、遥感图象的数字化需要经过__① ____和___ ② __两个阶段。 二、选择题。(每小题2分,共20分。) 1、绝对黑体是指() (A)某种绝对黑色自然物体 (B)吸收率为1,反射率为0的理想物体 (C)吸收率为0,反射率为1的理想物体 (D)黑色的烟煤 2、为什么晴朗的天空呈现蓝色?() A、瑞利散射 B、米氏散射 C、择性散射 D、折射 3、大气对电磁辐射的吸收作用的强弱主要与下面哪一个有关。() A.电磁辐射的波长 B.大气物质成分的颗粒大小 C.大气物质成分的密度 D.电磁辐射的强弱 4、当前遥感发展的主要特点中以下不正确的是:() (A)高分辨率小型商业卫星发展迅速 (B)遥感从定性走向定量 (C)遥感应用不断深化 (D)技术含量高,可以精确的反映地表状况,完全可以代替地面的调查。 5、下面遥感传感器属于主动方式的是:( ) A、TV摄象机 B、红外照相机

《遥感原理与应用》习题答案

遥感原理与应用习题 第一章遥感物理基础 一、名词解释 1遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。 2遥感技术:遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。 3电磁波:电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、4电磁波谱:把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱 5绝对黑体:能够完全吸收任何波长入射能量的物体 6灰体:在各种波长处的发射率相等的实际物体。 7绝对温度:热力学温度,又叫热力学温标,符号T,单位K(开尔文,简称开) 8色温:在实际测定物体的光谱辐射通量密度曲线时,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照这时的黑体辐射温度就叫色温。 9大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称。 10发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。 11光谱反射率:物体的反射辐射通量与入射辐射通量之比。 12波粒二象性:电磁波具有波动性和粒子性。

13光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。 问答题 1黑体辐射遵循哪些规律? (1 由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度W随温度T的增加而迅速增加。 (2 绝对黑体表面上,单位面积发射的总辐射能与绝对温度的四次方成正比。 (3 黑体的绝对温度升高时,它的辐射峰值向短波方向移动。 (4 好的辐射体一定是好的吸收体。 (5 在微波段黑体的微波辐射亮度与温度的一次方成正比。 2电磁波谱由哪些不同特性的电磁波段组成?遥感中所用的电磁波段主要有哪些? a. 包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等 b. 微波、红外波、可见光 3物体的辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少? (1 与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。 (2.b为常数2897.8 4叙述沙土、植物、和水的光谱反射率随波长变化的一般规律。 1)沙土:自然状态下,土壤表面反射曲线呈比较平滑的特征,没有明显的峰值和谷值。干燥条件下,土壤的波谱特征主要与成土矿物和土壤有机质有关。土壤含水量增加,土壤的反射率就会下降 2)植物:在可见光波段绿光附近有一个波峰,两侧蓝、红光部分各有一个吸收带,近红外波段(0.8-1.0um)有一个有一个反射陡坡,至1.1um附近有一峰值。近红外波段(1.3-2.5um)吸收率大增反射率下降。

遥感原理复习资料

遥感原理试题(1) 代码:428 一、名词解释(40分,每题4分) 1、维恩位移定律 2、光谱分辨率 3、发射率 4、合成孔径雷达 5、反射波谱特性曲线 6、成像光谱仪 7、主动遥感 8、航空遥感 9、数字图像 10、航片数字化 二、选择题(20分,每空2分) 1、下列遥感卫星中,图像空间分辨率最高的是() A 、IKONOS B、LANDSAT7 C、QUICKBIRD D、SPOT5 2、下列遥感传感器中,图像光谱分辨率最高的是() A、MODIS B、MSS C、TM D、HRV 3、下列遥感卫星中,由印度发射的是() A、NOAA B、EOS C、CBERS D、IRS 4、太阳辐射的峰值波长位于()波段 A、可见光 B、近红外 C、远红外 D、微波 5、常温地物发射辐射的峰值波长位于()波段 A、可见光 B、近红外 C、远红外 D、微波 6、干涉雷达的英文简称是() A、SAR B、INSAR C、DINSAR D、LIDAR 7、彩色遥感图像的三原色是() A、红黄绿 B、红黄蓝 C、红黄青 D、红绿蓝 8资源卫星一般选择太阳同步轨道,是为了() A、保持大致相同的比例尺 B、保持大致相同的光照条件 C、形成较大的区域覆盖 D、方便轨道控制 9、SPOT HRV图像的成像方式是() A、摄影 B、线阵列CCD C、面阵列CCD D、光机扫描 10、下列软件中()不是遥感图像处理软件 A、PCI B、ENVI C、MAPINFO D、ERDAS 三、简答题(60分,每题10分) 1、大气对太阳辐射主要有哪些影响?设计遥感器时如何考虑这些影响? 2、光机扫描仪成像与线阵列CCD成像的比较。 3、微波遥感的特点? 4、简述遥感数字影像增强处理的目的,例举一种增强处理方法,说明其原理。 5、什么情况下需要对遥感图像进行灰度重采样?例举一种重采样方法,说明其原理。 6、航片和高分辨率卫星图像目视判读需要用到哪些判读标志?

遥感原理与应用复习重点整理 .doc

学习好资料欢迎下载 绪论 1、遥感的概念:在不直接接触的情况下,在地面,高空和外层空间的各种平台上,运用各 种传感器获取各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状、 位置、性质、变化及其与环境的关系的一门现代应用技术学科。 遥感概念:在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。 2、遥感的分类:按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。 按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感、多光谱遥感等。 按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等。 按照资料的记录方式:成像方式、非成像方式。 按照传感器工作方式分类:主动遥感、被动遥感。 3、遥感起源于航空摄影、摄影测量等。 第一章 1、电磁波:通过变化电场周围产生变化的磁场,而变化的磁场又产生变化的电场之间的相 互联系传播的过程。电磁波的特性:具有二象性,即波动性(干涉、衍射、偏振现象)和粒 子性。 2、波长最长的是无线电波,最短的是γ 射线。 3、电磁波谱图:按电磁波在真空中传播的波长或频率递增或递减顺序排列制成的图案。 4、地物的反射率概念:地物对某一波段的反射能量与入射能量之比。反射率随入射波长变 化而变化。反射类型:漫反射、镜面反射、方向反射。 5、影响地物反射率的 3 个因素:入射电磁波的波长,入射角的大小,地表颜色与粗糙程度。 附:影响地物光谱反射率变化的因素: a 太阳的高度角和方位角。 B 传感器的观测角和方位角 c 不同的地理位置 d 地物本身的变异 e时间、季节的变化 6、地物反射光谱曲线:根据地物反射率与波长之间的关系而绘成的曲线。 1.不同地物在不 同波段反射率存在差异 2. 同类地物的反射光谱具有相似性,但也有差异性。不同植物;植 物病虫害 3. 地物的光谱特性具有时间特性和空间特性。(同物异谱,同谱异物)。 7、地物发射电磁波的能力以发射率作为衡量标准;地物的发射率是以黑体辐射作为参照 标准。 8、绝对黑体:对任何波长的电磁波辐射都全部吸收的物体。(灰体发射率小于1)。 9、黑体辐射的三个特性: a.辐射通量密度随波长连续变化,每条曲线只有一个最大值。 b. 温度越高,辐射通量密度越大,不同温度的曲线不同。(绝对黑体表面,单位面积发出的总 辐射能与绝对温度的四次方成正比) c.随着温度的升高,辐射最大值所对应的波长向短波方向 移动。(维恩位移定律) 10、大气的垂直分层:对流层(航空遥感活动区)、平流层、电离层和外大气层。在可见光波段, 引起电磁波衰减的主要原因是分子散射。在紫外、红外与微波区,引起衰减的主要原因是大气吸 收。引起大气吸收的主要成分是:氧气、水( 0.7~1.95)、臭氧( 0.3 以下)、二氧化碳 ( 2.6~2.8)。 11、散射作用:太阳辐射在长波过程中遇到小微粒而使传播方向改变,并向各个方向散开。 改变了电磁波的传播方向;干扰传感器的接收;降低了遥感数据的质量、影像模糊,影响判 读。 12、三种散射方式:米氏散射:当微粒的直径与辐射波长差不多时的大气散射。 均匀散射:当微粒的直径比辐射波长大得多时发生的散射。 瑞利散射:当微粒的直径比辐射波长小得多时发生的散射。 13、大气窗口的概念:通过大气而较少被反射、吸收或散射,衰减程度较小,透过率较高的

光谱仪

光谱仪 光谱仪,又称分光仪,广泛为认知的为直读光谱仪。以光电倍增管等光探测器测量谱线不同波长位置强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。 根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪.经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器.调制光谱仪是非空间分光的,它采用圆孔进光. 根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪.光学多道分析仪OMA(OpticalMulti-channelAnalyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理, 存储诸功能于一体.由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率;使用OMA分析光谱,测量准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出。它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,

特别适应于对微弱信号,瞬变信号的检测. 一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分: 1.入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。 2.准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。 3.色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。 4.聚焦元件: 聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。 5.探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是CCD阵列或其它种类的光探测器阵列。 光谱仪应用很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、印刷、造纸、喇曼光谱、半导体工业、成分检测、颜色混合及匹配、生物医学应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监控、薄膜厚度测量、LED测量、发射光谱测量、紫外/可见吸收光谱测量、颜色测量等领域应用广泛。

高光谱遥感期末考复习材料

1、地面光谱测量的作用: ①地面光谱辐射计在成像光谱仪过顶时,常用于地面野外或实验室同步观测,获取下 行太阳辐射,以用于遥感器定标。 ②在一些反射率转换模型中,需要引入地面光谱辐射计测取得地面点光谱来完成 DN 值图像到反射率图像的转换。 ③地面光谱辐射计可以为图像识别获取目标光谱和建立特征项。但是,这时地面光谱 测量要在空间尺度上与图像像元尺度相对应,且要具有代表性;另外,地面光谱测 量要与高光谱图像获取条件相一致。 ④通过地面光谱辐射计测量数据和地面模拟,可以帮助人们了解某一地物被高光谱遥 感探测的可能性,理解其辐射特性,确定需要采用的探测波长、光谱分辨率、探测 空间分辨率、信噪比、最佳遥感探测时间等重要参数。 ⑤地面光谱辐射计还可以勇于地面地质填图。它可以用于矿物的光谱吸收特征,识别 地面矿物或矿物的集合,从而直接完成野外矿物填图。 ⑥可以用来建立地物的表面方向性光谱反射特性。 ⑦建立目标地面光谱数据与目标特性间的定量关系。 2、高光谱成像特点: ①高光谱分辨率。高光谱成像光谱仪能获得整个可见光、近红外、短波红外、热红外 波段的多而窄的连续光谱,波段多至几十甚至数百个,其分辨率可以达到纳米级, 由于分辨率高,数十、数百个光谱图像可以获得影像中每个像元的精细光谱。 ②图谱合一。高光谱遥感获取的地表图像包含了地物丰富的空间、辐射和光谱三重信 息,这些信息表现了地物空间分布的影像特征,同时也可能以其中某一像元或像元 组为目标获得他们的辐射强度以及光谱特征。 ③光谱波段多,在某一光谱段范围内连续成像。成像光谱仪连续测量相邻地物的光谱 信号,可以转化城光谱反射曲线,真实地记录了入射光被物体所反射回来的能量百 分比随波长的变化规律。不同物质间这种千差万别的光谱特征和形态也正是利用高 光谱遥感技术实现地物精细探测的应用基础。 3、高光谱遥感图像数据表达: ①图像立方体——成像光谱信息集。 ②二维光谱信息表达——光谱曲线。 ③三维光谱信息表达——光谱曲线图。(书本44页) 4、成像光谱仪的空间成像方式: (1)摆扫型成像光谱仪。摆扫型成像光谱仪由光机左右摆扫和飞行平台向前运动完成二维空间成像,其线列探测器完成每个瞬时视场像元的光谱维获取。扫描镜对地左右平行扫描成像,即扫描的运动方向与遥感平台运动方向垂直。其优点:可以得到很大的总视场,像元配准好,不同波段任何时候都凝视同一像元;在每个光谱波段只有一个探测元件需要定标,增强了数据的稳定性;由于是进入物镜后再分光,一台仪器的光谱波段范围可以做的很宽,比如可见光一直到热红外波段。其不足之处是:由于采用光机扫描,每个像元的凝视时间相对就很短,要进一步提高光谱和空间分辨率以及信噪比比较困难。 (2)推扫型成像光谱仪。是采用一个垂直于运动方向的面阵探测器,在飞行平台向前运动中完成二维空间扫描,它的空间扫描方向是遥感平台运动方向。其优点是:像元的凝视

《遥感原理与应用》期末复习重点.doc

绪论 1.1遥感的概念 丄狭义的遥感:应用探测仪器,不与探测目相接触,从远处把目标的电磁波特性纪录下來,通过分析,揭示出物 体的特 征性质及其变化的综合性探测技术。 丄 广义的遥感:泛指一切无接触的远距离探测,包括对电磁波、机械波(声波、地震波)、重力场、地磁场等的 探测。 遥感探测的基本过程 去 辐射源:目标的电磁辐射能量(自身发射,散射、反射) 丄 记录设备(传感器,或有效载荷):扫描仪(多光谱扫描 仪),相机(CCD 相机、全景相机、高分辨率相机等)、 雷达、辐射计、 散射计等。 丄存储设备:胶片、磁带、磁盘 丄传送系统:人造卫星的信号是地血发送到卫星的,在卫星中经过放大、变频转发到地血,山地血接收站接收。 亠 分析解译(人工解译、计算机解译) 1)国外航天遥感的发展 第一代1G 1957年10B4U ,苏联第一颗人造地球卫星发射成功 1960年4月1H,美国发射第一颗气象卫星Tiros 1,为真正航天器对地球观测开始。 1960年Evelyn L. Pruitt 提出“遥感,,一词。1962年在美国密歇根大学召开的笫一次环境遥感国际讨论会上,美国海军研究 局的Eretyn Pruitt (伊?普鲁伊特)首次提出“Remote Sensing 词,会后被普遍采用至今。 1972年7月23 日第一颗陆地卫星ERTS-1 (Earth Resources Technology Satellite 1 )发射(示改名为Landsat-1),装有MSS 传感器,分辨率为79米。1975年1月22R, Landsat-2发射,1978年3月5日,Landsat-3发射。 1978年6月,美国发射了第一颗载有SAR (Synthetic Aperture Radar,合成孔径雷达)卫星的Seasat,以后不同国家陆续 发射 载有SAR 的卫星。 1982年7月16U, Landsat-4反射,装载MSS, TM 传感器,分辨率提高到30米。1985年3月1日,Landsat-5发射,1993年 1()月,Landsat-6发射失败,1999年4月15日,Landsat-7发射,装载ETM+,分辨率提高到15米。 1986年2月,法国发射SFOT-1,装有PAN 和XS 遥感器,分辨率捉高到10米多光谱波段,SPOT-5全色波段分辨率达至l 」5m, 2.5m 。 2000年初美国发射MODIS 是Teira (EOS ?AMl )卫星的主要探测仪器,地面分辨率较低(星下点离间分辨率为250米,500 米,1000米等o 2000年7月15H,笫一颗重力卫星CHAMP 发射成功,它是由德国GFZ 独口研制的,也是世界上首先采用SST 技术的卫星。 2002年,重力卫星GRACE 发射,它是美国(NASA )和德国(GFZ 洪同开发研制的。 2) 中国航天遥感的发展 1970年4月24日发射笫一颗人造卫星“东方红1号”——通信卫星。 1988年9月7日中国发射第一颗气象卫星“风云1号二 1999年1()月14日发射第一颗地球资源卫星“屮国?巴西地球资源遥感卫星” (CBERS-1) (China Brazil Earth Resources Satellite ),最高空间分辨率:19.5米。 3) 小卫星 重量在1000公斤以下的卫星称为小卫星。小卫星质量小于500kg,占卫星总量的70%o 1.3遥感的类型 1)按遥感平台据地面的高低划分 丄 地面遥感:100m 以下平台与地面接触,平台冇:汽车、船舰、三角架、塔等。为航空和航天遥感作校准和辅 助工作。 丄航空遥感:100m-100km 以下的平台,平台有:飞机和气球。可以进行各种遥感实验和校正工作。特点:灵活 大、图像 《遥感》重点章节1.3.5.8 1.2遥感发展简史 * 无记录的地面遥感阶段(1608-1838年) * 有记录的地而遥感阶段(1839-1857年) 4 空中摄影遥感阶段(1858-1956年) 4 航天遥感阶段(1957-)

成像光谱技术简介

成像光谱技术 1.成像光谱技术发展简述 光谱技术是指利用光与物质的相互作用研究分子结构及动态特性的学科,即通过获取光的发射、吸收与散射信息可获得与样品相关的化学信息,成像技术则是获取目标的影像信息,研究目标的空间特性信息。这两个独立的学科在各自的领域里已有数百年的发展历史,但是知道上个世纪六十年代,遥感技术兴起,空间探测和地表探测一时成为科学界研究的热点,人们希望得到的不单纯是目标的影响信息或者目标的光谱信息,而是同时得到影像信息和光谱信息,这一需求极大的导致了成像技术和光谱技术的结合,催生出了成像光谱技术。 所谓光谱成像技术,其本质是充分利用了物质对不同电磁波谱的吸收或辐射特性,在普通的二维空间成像的基础上,增加了一维的光谱信息。由于地物物质组成的不同,其对应的光谱之间存在差异(即指纹效应),从而可以利用地物目标的光谱进行识别和分类。光谱成像技术可以在电磁波段的紫外、可见光、近红外和中红外区域,获取许多窄并且光谱连续的图像数据,为每个像元提供一条完整并且连续的光谱曲线。 图1 成像光谱技术示意图 图1.1就是成像光谱技术的示意图,成像光谱仪得到一个三维的数据立方体,从每个空间象元都可以提取一条连续的光谱曲线,通过谱线的特征分析,继而用于后续的测探等目的。 2.成像光谱仪的分类 成像光谱仪是成像光谱技术发展的必然产物,是可以同时获取影像信息与像元的光谱信息的光学传感器,是成像光谱技术得以实现的实物载体,根据不同的分类标准可以进行多种分类,主要有以下几种: (1)根据成像光谱仪的光谱分辨率不同,可以分为多光谱成像仪

(Multispectral Imager, MSI),高光谱成像仪(Hyperspectral Imager, HSI),超光谱成像仪(Hyperspectral Imager, USI)。 多光谱成像仪:获得的目标物的波段在3~12之间,光谱分辨率一般在 100nm左右,主要用于地带分类等方面。 高光谱成像仪:获得的目标物的波段在100~200之间,光谱分辨率在10nm 左右,被广泛用于遥感中。 超光谱成像仪:获得的目标物的波段在1000~10000之间,光谱分辨率在 1nm以下,通常用于大气微粒探测等精细探测领域。 (2)按照分光原理的不同可以分为棱镜色散型、光栅衍射型、滤光片型、干涉 型以及计算层析型。 棱镜色散型和光栅衍射型分别是利用棱镜的色散和光栅的衍射来获取目标物的光谱,这两类光谱仪都是直接型光谱仪,即可以直接得到目标物的光谱曲线,具有原理简单和性能稳定等优点。 滤光片型光谱仪是采用相机加滤光片的方案,分光元件为滤光片,有多种形式,有线性滤光片、旋转滤光片等。这种光谱仪也是一种间接成像光谱仪,需要调制才能获得整个数据立方体 干涉型光谱仪是采用干涉仪实现两束相干光的干涉,从而获得目标物的干涉图。该类型的光谱仪其采集到干涉图和最终需要反演得到光谱图之间存在傅里叶变换关系,故其也称傅里叶变换光谱仪。 (3)按照扫描方式不同,成像光谱技术可分为挥扫式(Whiskbroom)、推扫式(Pushbroom)和凝视(Staring)成像光谱仪。 挥扫视:主要利用扫描镜,将空间信息按照一定的顺序输入,再由光谱仪对各点进行光谱分光,这类光谱仪的探测器一般为线阵。 推扫式:采用一个垂直于运动方向的面阵探测器,先将扫描成像于光谱仪的狭缝上,在通过运动获得另一维的光谱数据。 凝视型:无需探测器的运动,在任意时刻即可获取目标的二维空间信息以及一维光谱信息。 此外,还有多种分类方法,比如按照数据称重理论和调制方式以及搭载平台的不同等等。 3.成像光谱技术的应用 成像光谱技术应用方向可以分为两大类:军用和民用。在军用方面,由于成像光谱仪特别是高光谱成像仪具有在光谱上区分地物类型的能力,因此它在地物的精细分类、目标检测和变化检测上体现出较强的优势,成为一种重要的战场侦察手段。早在20世纪末,美国军方就有实验表明高光谱图像可以分辨出

(完整word版)遥感原理与应用的复习资料

第一张绪论 1、环境空间数据获取的方法: 基于地面的采集方法:现场观测、实际测量、实际调查 基于遥感的采集方法 2、遥感的概念: 即遥远的感知,是一种不直接接触物体而取得其信息的探测技术。 从远处探测、感知物体或事物的技术。即不直接接触物体本身,从远处通过各种传感器探 测和接收来自目标物体的信息,经过信息的传输及处理分析,来识别物体的属性及其分布等特 征的综合技术。 是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,接触处物体的特征性质及其变化的综合性探测技术。 3、遥感系统包括: 被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理、信息的应用。其中 信息的处理包括:辐射校正、姿态校正、几何校正、增强处理、聚合分类。 4、遥感的分类:(P4) a.按遥感平台:地面、航空、航天、航宇 b.按探测波段:紫外、可见光、红外、微波、多波段 c.按工作方式:主动、被动 d.按应用领域: e.按传感器:地磁波、高光谱、声波、重力、磁力、地震波 f.按照资料的记录方式:成像方式、非成像方式 5、遥感的特点: 宏观性、时效性、综合性(概括性)、经济性、局限性 6、遥感技术发展的四个阶段: a.瞬时信息的定性分析阶段(是什么) b.空间信息的定位分析阶段(在哪里) c.时间信息的趋势分析阶段(如何变化) d.环境信息的综合分析阶段(多源信息的复合) 第二章电磁辐射与地物光谱特征 1、电磁波谱:按电磁波在真空中传播的波长与频率,递增或递减排列,构成了电磁波谱。 (波长由小到大):γ射线、X射线、紫外线、可见光、红外线、无线电波(微波、超短 波、短波、中波、长波)。 2、目前遥感应用的各电磁波波段及特征: 紫外线0.01-0.4μm 源于太阳辐射应用于荧石矿、石油勘探 可见光0.4-0.7μm 源于太阳辐射遥感的主要波段 红外线0.7-3μm 3-6μm 6μm-1mm 近红外主要源于太阳辐射 中红外源于太阳辐射和地物热辐射 远红外源于地物热辐射 城市热岛、热污染、热惯 量 微波1mm-1m 主动遥感 3、电磁辐射量度: a.辐射能量Q/W:以电磁波形式传播的能量 b.辐射通量Φ:在单位时间内传送的辐射能量 c.辐射强度I:在单位立体角、单位时间内,微小辐射源向某一方向辐射的能量 d.辐射照度E:在单位时间内、单位面积上接收的辐射能量 e.辐射出射度Me:在单位时间内、单位面积上辐射出的辐射能量 f.辐射亮度Le:在单位立体角、单位时间,从外表的单位面积上辐射出的辐射能量

相关文档
最新文档