数值分析第一次作业(2)

数值分析第一次作业(2)

数值分析第一次作业(2)

8、给定43()1f x x x =+-,试利用最小零偏差定理,即切比雪夫多项式的最小零偏差性质,在[0,1]上求()f x 的三次最佳一致逼近多项式。

2342234(()21,()43,()881)T x x T x x x T x x x =-=-=-+

9、设{}{}100101121,,,span x span x x ??==,分别在12??、上求一函数,使其为

2[0,1]x C ∈的最佳平方逼近,并比较其结果。

10、用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并计算均方误差。

11、用格拉姆-施密特方法构造正交多项式求()sin f x x π=在[0,1]上的二次最佳平方逼近多项式。(参考讲义与参考书)

12、求()x f x e =在[-1,1]上的三次最佳平方逼近多项式。(参考讲义与参考书,利用Legendre 正交多项式)

13、A 、B 、C 三点连成一条直线,AB 长为1x ,BC 长为2x ,某人测量的结果为115.5x =米,2 6.1x =米,为控制丈量的准确性,又测量1220.9AC x x =+=米,试合理地决定1x 和2x 的长度。(小数点后取四位有效数字)

14、求函数()x f x e =在区间[-1,1]上的近似3次最佳一致逼近多项式有哪几种方法?选一种方法解本题,并估计误差。(参考讲义与参考书)

15、编出用正交多项式(格拉姆-施密特)作最小二乘拟合的程序或框图。 (参考讲义与参考书)

数值分析大作业-三、四、五、六、七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用 程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0; end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +??=-= ?-???解:Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while nerrorlim n=n+1; else break ; end x0=x; end disp(['迭代次数: n=',num2str(n)]) disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x) y=log((513+0.6651*x)/(513-0.6651*x))-x/(1400*0.0918); end

数值分析大作业三 四 五 六 七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:');

flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag==1 sigma=k*eps; x0=sigma; k=k+1; m=0; flag1=1; while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0;

end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =-= ?-???解: Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1;

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

数值分析大作业

数值分析报大作业 班级:铁道2班 专业:道路与铁道工程 姓名:蔡敦锦 学号:13011260

一、序言 该数值分析大作业是通过C语言程序编程在Microsoft Visual C++ 6.0编程软件上运行实现的。本来是打算用Matlab软间来计算非线性方程的根的。学习Matlab也差不多有一个多月了,感觉自己编程做题应该没什么问题了;但是当自己真心的去编程、运行时才发现有很多错误,花了一天时间修改、调试程序都没能得到自己满意的结果。所以,我选择了自己比较熟悉的C程序语言来编程解决非线性的求值问题,由于本作业是为了比较几种方法求值问题的收敛速度和精度的差异,选择了一个相对常见的非线性函数来反映其差异,程序运行所得结果我个人比较满意。编写C语言,感觉比较上手,程序出现问题也能比较熟练的解决。最终就决定上交一份C程序语言编程的求值程序了!

二、选题 本作业的目的是为了加深对非线性方程求根方法的二分法、简单迭代法、、牛顿迭代法弦截法等的构造过程的理解;能将各种方法的算法描述正确并且能够改编为程序并在计算机上实现程序的正确合理的运行,能得到自己满意的结果,并且能调试修改程序中可能出现的问题和程序功能的增减修改。本次程序是为了比较各种方法在求解同一非线性方程根时,在收敛情况上的差异。 为了达到上面的条件我选择自己比较熟悉的语言—C语言来编程,所选题目为计算方程f(x)=x3-2x-5=0在区间[2,3]内其最后两近似值的差的绝对值小于等于5 ?的根的几种方法的比较。 110- 本文将二分法、牛顿法、简单迭代法、弦截法及加速收敛法这五种方法在同一个程序中以函数调用的方式来实现,比较简洁明了,所得结果能很好的比较,便于分析;发现问题和得出结论。

数值分析第一次作业及参考答案

数值计算方法第一次作业及参考答案 1. 已测得函数()y f x =的三对数据:(0,1),(-1,5),(2,-1), (1)用Lagrange 插值求二次插值多项式。(2)构造差商表。(3)用Newton 插值求二次插值多项式。 解:(1)Lagrange 插值基函数为 0(1)(2)1 ()(1)(2)(01)(02)2 x x l x x x +-= =-+-+- 同理 1211 ()(2),()(1)36 l x x x l x x x = -=+ 故 2 20 2151 ()()(1)(2)(2)(1) 23631 i i i p x y l x x x x x x x x x =-==-+-+-++=-+∑ (2)令0120,1,2x x x ==-=,则一阶差商、二阶差商为 011215 5(1) [,]4, [,]20(1) 12 f x x f x x ---= =-= =----- 0124(2) [,,]102 f x x x ---= =- 实际演算中可列一张差商表: (3)用对角线上的数据写出插值多项式 2 2()1(4)(0)1*(0)(1)31P x x x x x x =+--+-+=-+ 2. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使 截断误差不超过6 10-,问使用函数表的步长h 应取多少 解: ()40000(), (),[4,4],,,, 1.x k x f x e f x e e x x h x x h x x th t ==≤∈--+=+≤考察点及

(3) 2000 4 43 4 3 () ()[(()]()[()] 3! (1)(1) (1)(1) 3!3! .(4,4). 6 f R x x x h x x x x h t t t e t h th t h e h e ξ ξ =----+ -+ ≤+??-= ≤∈- 则 4 36 ((1)(1) 100.006. t t t h - -+± << Q在点 得 3.求2 () f x x =在[a,b]上的分段线性插值函数() h I x,并估计误差。 解: 22 22 11 1 111 22 11 11 1 () () k k k k h k k k k k k k k k k k k k k k k k k x x x x x x I x x x x x x x x x x x x x x x x x x x x x ++ + +++ ++ ++ + --- =+= --- ?-? -=+- - [] 2 11 22 11 ()()()[()] 11 ()() 44 h h k k k k k k k k R x f x I x x x x x x x x x x x x x h ++ ++ =-=-+- =--≤-= 4.已知单调连续函数() y f x =的如下数据 用插值法计算x约为多少时() 1. f x=(小数点后至少保留4位) 解:作辅助函数()()1, g x f x =-则问题转化为x为多少时,()0. g x=此时可作新 的关于() i g x的函数表。由() f x单调连续知() g x也单调连续,因此可对() g x的数值进行反插。的牛顿型插值多项式为 1()0.110.097345( 2.23)0.451565( 2.23)( 1.10) 0.255894( 2.23)( 1.10)(0.17) x g y y y y y y y - ==-+++++ -++-

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

数值分析作业答案part

6.4.设??? ? ? ??=5010010a b b a A ,0det ≠A ,用a ,b 表示解线性方程组f Ax =的雅可比迭代与 高斯—塞德尔迭代收敛的充分必要条件。 解 雅可比迭代法的迭代矩阵 ? ??? ??? ? ??----=???? ? ??----????? ??=-050100100100000001010101 a b b a a b b a B J , ?? ? ?? -=-1003||2ab B I J λλλ,10||3)(ab B J = ρ。 雅可比迭代法收敛的充分必要条件是3 100 ||

数值分析第二次大作业

《数值分析》计算实习报告 第二题 院系:机械工程及自动化学院 学号: 姓名: 2017年11月

一、题目要求 试求矩阵A =[a ij ]10×10的全部特征值,并对其中的每一个实特征值求相应的特征向量,已知 a ij ={ sin (0.5i +0.2j ) i ≠j 1.52cos (i +1.2j ) i =j (i,j =1,2, (10) 说明: 1.用带双步位移的QR 方法求矩阵特征值,要求迭代的精度水平为ε=10?12。 2.打印以下内容: (1)全部源程序; (2)矩阵A 经过拟上三角化后所得的矩阵A (n?1); (3)对矩阵A (n?1)实行QR 方法迭代结束后所得的矩阵; (4)矩阵A 的全部特征值λi =(R i ,I i ) (i =1,2,?,10),其中R i =Re(λi ),I i = Im(λi ) 。若λi 是实数,则令I i =0; (5)A 的相应于实特征值的特征向量。 3.采用e 型数输出实型数,并且至少显示12位有效数字。 二、算法设计思路和方案 1. 将矩阵A 拟上三角化得到矩阵A (n?1) 为了减少计算量,一般先利用Householder 矩阵对矩阵A 作相似变换,把A 化为拟上三角矩阵A (n?1),然后用QR 方法计算A (n?1)的全部特征值,而A (n?1)的特征值就是A 的特征值。具体算法如下: 记(1)A A =,()r A 的第r 列至第n 列的元素为(r)(1,2, ,;,1,,)ij a i n j r r n ==+。 对于1,2,,2r n =-执行 (1)若() (2,3,,)r ir a i r r n =++全为零,则令(1)()r r A A +=,转(5);否则转(2)。

上海大学_王培康_数值分析大作业

数值分析大作业(2013年5月) 金洋洋(12721512),机自系 1.下列各数都是经过四舍五入得到的近似值,试分别指出它 们的绝对误差限, 相对误差限和有效数字的位数。 X1 =5.420, x 2 =0.5420, x 3=0.00542, x 4 =6000, x 5=50.610? 解:根据定义:如果*x 的绝对误差限 不超过x 的某个数位的半个单位,则从*x 的首位非零数字到该位都是有效数字。 显然根据四舍五入原则得到的近视值,全部都是有效数字。 因而在这里有:n1=4, n2=4, n3=3, n4=4, n5=1 (n 表示x 有效数字的位数) 对x1:有a1=5, m1=1 (其中a1表示x 的首位非零数字,m1表示x1的整数位数) 所以有绝对误差限 143 11 (1)101022 x ε--≤ ?=? 相对误差限 31() 0.510(1)0.00923%5.4201 r x x x εε-?= == 对x2:有a2=5, m2=0 所以有绝对误差限 044 11 (2)101022 x ε--≤ ?=? 相对误差限 42() 0.510(2)0.00923%0.54202 r x x x εε-?= == 对x3:有a3=5, m3=-2 所以有绝对误差限 235 11 (3)101022 x ε---≤ ?=? 相对误差限 53() 0.510(3)0.0923%0.005423 r x x x εε-?= == 对x4:有a4=0, m4=4 所以有绝对误差限 4411(4)1022 x ε-≤?= 相对误差限 4() 0.5 (4)0.0083%6000 4 r x x x εε= = = 对x5:有a5=6, m5=5 所以有绝对误差限 514 11(5)101022 x ε-≤ ?=? 相对误差限 45() 0.510(5)8.3%600005 r x x x εε?= ==

北航数值分析大作业第二题

数值分析第二次大作业 史立峰 SY1505327

一、 方案 (1)利用循环结构将sin(0.50.2)() 1.5cos( 1.2)() {i j i j ij i j i j a +≠+==(i,j=1,2,……,10)进行赋值,得到需要变换的 矩阵A ; (2)然后,对矩阵A 利用Householder 矩阵进行相似变换,把A 化为上三角矩阵A (n-1)。 对A 拟上三角化,得到拟上三角矩阵A (n-1),具体算法如下: 记A(1)=A ,并记A(r)的第r 列至第n 列的元素为()n r r j n i a r ij ,,1,;,,2,1) ( +==。 对于2,,2,1-=n r 执行 1. 若 ()n r r i a r ir ,,3,2) ( ++=全为零,则令A(r+1) =A(r),转5;否则转2。 2. 计算 () ∑+== n r i r ir r a d 1 2 )( ()( )r r r r r r r r r r d c a d a c ==-=++则取,0sgn ) (,1)(,1若 )(,12r r r r r r a c c h +-= 3. 令 () n T r nr r r r r r r r r R a a c a u ∈-=++) ()(,2)(,1,,,,0,,0 。 4. 计算 r r T r r h u A p /)(= r r r r h u A q /)(= r r T r r h u p t /= r r r r u t q -=ω T r r T r r r r p u u A A --=+ω)()1( 5. 继续。 (3)使用带双步位移的QR 方法计算矩阵A (n-1)的全部特征值,也是A 的全部特征值,具体算法如下: 1. 给定精度水平0>ε和迭代最大次数L 。 2. 记n n ij n a A A ?-==][) 1()1()1(,令n m k ==,1。

北航数值分析第二次大作业--QR分解

《数值分析A》

一、算法设计方案 整个程序主要分为四个函数,主函数,拟上三角化函数,QR分解函数以及使用双步位移求解矩阵特征值、特征向量的函数。因为在最后一个函数中也存在QR分解,所以我没有采用参考书上把矩阵M进行的QR分解与矩阵Ak的迭代合并的方法,而是在该函数中调用了QR分解函数,这样增强了代码的复用性,减少了程序长度;但由于时间关系,对阵中方法的运算速度没有进行深入研究。 1.为了减少QR分解法应用时的迭代次数,首先对给定矩阵进行拟上三角化处理。 2.对经过拟上三角化处理的矩阵进行QR分解。 3.注意到计算特征值与特征向量的过程首先要应用前面两个函数,于是在拟上三角化矩阵的基础上对QR分解函数进行了调用。计算过程中,没有采用goto语句,而是根据流程图采用其他循环方式完成了设计,通过对迭代过程的合并,简化了程序的循环次数,最后在计算特征向量的时候采用了列主元高斯消去法。

二、源程序代码 #include #include #include int i,j,k,l,m; //定义外部变量double d,h,b,c,t,s; double A[10][10],AA[10][10],R[10][10],Q[10][10],RQ[10][10]; double X[10][10],Y[10][10],Qt[10][10],M[10][10]; double U[10],P[10],T[10],W[10],Re[10]={0},Im[10]={0}; double epsilon=1e-12; void main() { void Quasiuppertriangular(double A[][10]); void QRdecomposition(double A[][10]); void DoublestepsQR(double A[][10]); int i,j; for(i=0;i<10;i++) { for(j=0;j<10;j++) { A[i][j]=sin(0.5*(i+1)+0.2*(j+1)); Q[i][j]=0; AA[i][j]=A[i][j]; } A[i][i]=1.5*cos(2.2*(i+1)); AA[i][i]=A[i][i];

数值分析大作业QR分解

题目:设计求取n n ?实数矩阵A 的所有特征值及其特征向量的数值算法,并以矩阵 20010-1-24A=0-2131 43 1?? ? ? ? ??? 为例进行具体的求解计算。 一、 算法分析: 一般而言,求取实数矩阵所有特征值的方法有雅克比法和QR 分解法,两者都是变换法。其中雅克比法只能求解对称矩阵的全部特征值和特征向量,而QR 则可用于更一般的矩阵特征值的求解,结合反幂法可进而求出各个特征向量。 二、 算法设计: 1、 原始实矩阵A R n n ?∈拟上三角化 为了减少求特征值和特征向量过程中的计算量,对生成的矩阵A 进行拟上三角化,得到拟上三角化矩阵A ’ 记A (1)=A ,并记A (r)的第r 列到第n 列的元素(1,2,...,;,1,...,)r ij a i n j r r n ==+。 对于r=1,2,…,n -2执行 (1) 若() (2,3,...,)r ir a i r r n =++全为零,则令A (r+1)= A (r),转(5);否则转(2)。 (2) 计算 令 ()2 ()() 1,1,1,sgn(0,sgn()=1) r r r r r r r r r r r c a a a ρ+++=-=,(若则取 (3) 令-0=r n r u u ?? ? ?? ,()()()-1,2,1(,,...,)r r r T n r r r r r r nr u a c a a ρ++=- (4) 计算 (r)(r)(r)T n-r r+1,r r r+2,r nr r T n-r T n-r n-r n-r n-r r+1r 1u = (a -c ,a ,...,a )ρ I H =I -2uu =H H =I -2u u A =HA H ?? ? ?? (5) 继续 算法执行完后,就得到与原矩阵A 相似的拟上三角矩阵A (n-1)。 2、 拟上三角矩阵QR 分解的求原矩阵的全部特征值 记A k 是对拟上三角矩阵进行QR 算法,产生的矩阵序列,A 0是起始拟上三角矩阵,

数值分析作业答案(第5章)

5.1.设A 是对称矩阵且011≠a ,经过一步高斯消去法后,A 约化为 ?? ????21 110 A a a T 证明2A 是对称矩阵。 证明 由消元公式及A 的对称性,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 对称。 5.2.设n ij a A )(=是对称正定矩阵,经过高斯消去法一步后,A 约化为 ?? ????21 110 A a a T 其中1)2(2)(-=n ij a A 。证明: (1).A 的对角元素;,,2,1,0n i a ii => (2).2A 是对称正定矩阵。 证明 (1).因为A 对称正定,所以 n i e Ae a i i ii ,,2,1,0),( =>=, 其中T i e )0,,0,1,0,,0( =为第i 个单位向量。 (2).由A 的对称性及消元公式,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 也对称。 又由A L A a a T 121110=????? ?,其中

??? ?????- =? ????? ? ?????????--=-111 1 11111 21101 1011n n I a a a a a a L , 可见1L 非奇异,因而对任意0≠x ,由A 的正定性,有 ,0),(),(,011111>=≠x AL x L x AL L x x L T T T T 故T AL L 11正定。 由,000110211 111121111 1?? ? ?? ?=????????-??????=-A a I a a A a a AL L n T T T 而011>a ,故知2A 正定

北航数值分析报告大作业第八题

北京航空航天大学 数值分析大作业八 学院名称自动化 专业方向控制工程 学号 学生姓名许阳 教师孙玉泉 日期2014 年11月26 日

一.题目 关于x , y , t , u , v , w 的方程组(A.3) ???? ?? ?=-+++=-+++=-+++=-+++79 .0sin 5.074.3cos 5.007.1cos sin 5.067.2cos 5.0y w v u t x w v u t y w v u t x w v u t (A.3) 以及关于z , t , u 的二维数表(见表A-1)确定了一个二元函数z =f (x , y )。 表A-1 二维数表 t z u 0 0.4 0.8 1.2 1.6 2 0 -0.5 -0.34 0.14 0.94 2.06 3.5 0.2 -0.42 -0.5 -0.26 0.3 1.18 2.38 0.4 -0.18 -0.5 -0.5 -0.18 0.46 1.42 0.6 0.22 -0.34 -0.58 -0.5 -0.1 0.62 0.8 0.78 -0.02 -0.5 -0.66 -0.5 -0.02 1.0 1.5 0.46 -0.26 -0.66 -0.74 -0.5 1. 试用数值方法求出f (x , y ) 在区域}5.15.0,8.00|), {≤≤≤≤=y x y x D (上的近似表达式 ∑∑===k i k j s r rs y x c y x p 00 ),( 要求p (x , y )以最小的k 值达到以下的精度 ∑∑==-≤-=10020 7210)],(),([i j i i i i y x p y x f σ 其中j y i x i i 05.05.0,08.0+==。 2. 计算),(),,(* ***j i j i y x p y x f (i =1,2,…,8 ; j =1,2,…,5) 的值,以观察p (x , y ) 逼 近f (x , y )的效果,其中j y i x j i 2.05.0,1.0**+==。

数值分析大作业 三、四、五、六、七

大作业 三 1. 给定初值0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用 程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0; end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =- = ?-???解:Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while nerrorlim n=n+1; else break ; end x0=x; end disp(['迭代次数: n=',num2str(n)]) disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x) y=log((513+0.6651*x)/(513-0.6651*x))-x/(1400*0.0918); end

数值分析作业答案.doc

第2章 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange 插值基底。 (3)用Newton 基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为:2 210)(x a x a a x P ++=, 所以:64 211111 1111122 2 211 200 -=-==x x x x x x A 3 76144 211111114241 13110111)() ()(22 221120 022 2 22 11 120 00-=-= ---==x x x x x x x x x f x x x f x x x f a 2 3694211111114411 31101111)(1)(1 )(122 221120 02 2 22112 001=--= --==x x x x x x x x f x x f x x f a 6 5654 2 1 1111114 2 1 3 11011111) (1)(1)(122 2 21120 022 11 00 2=--= ---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:26 52337)(x x x P ++-= (2)用Lagrange 插值基底 )21)(11() 2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l )21)(11() 2)(1())(())(()(2101201------=----=x x x x x x x x x x x l ) 12)(12() 1)(1())(())(()(1202102+-+-=----= x x x x x x x x x x x l

数值分析作业答案

第2章 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange 插值基底。 (3)用Newton 基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为:2 210)(x a x a a x P ++=, 所以:64 211111 1111122 2 211 200 -=-==x x x x x x A 所以f(x)的二次插值多项式为: 2 6 52337)(x x x P ++-= (2)用Lagrange 插值基底 Lagrange 插值多项式为: 所以f(x)的二次插值多项式为:226 52337)(x x x L ++-= (3) 用Newton 基底: 均差表如下: Newton 所以f(x)的二次插值多项式为:2 2 6 52337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。 6、在44≤≤-x 上给出x e x f =)(的等距节点函数表,若用二次插值求e x 的近似 值,要使截断误差不超过10-6,问使用函数表的步长h 应取多少? 解:以x i-1,x i ,x i+1为插值节点多项式的截断误差,则有 式中.,11h x x h x x i i +=-=+- 令 634103 9-≤h e 得00658.0≤h 插值点个数

是奇数,故实际可采用的函数值表步长 8、13)(47+++=x x x x f ,求]2,,2,2[710Λf 及]2,,2,2[810Λf 。 解:由均差的性质可知,均差与导数有如下关系: 所以有:1! 7! 7!7)(]2,,2,2[)7(7 1 === ξf f Λ 15、证明两点三次Hermite 插值余项是 并由此求出分段三次Hermite 插值的误差限。 证明:利用[x k ,x k+1]上两点三次Hermite 插值条件 知)()()(33x H x f x R -=有二重零点x k 和k+1。设 确定函数k(x): 当k x x =或x k+1时k(x)取任何有限值均可; 当1,+≠k k x x x 时,),(1+∈k k x x x ,构造关于变量t 的函数 显然有 在[x k ,x][x,x k+1]上对g(x)使用Rolle 定理,存在),(1x x k ∈η及),(12+∈k x x η使得 在),(1ηk x ,),(21ηη,),(12+k x η上对)(x g '使用Rolle 定理,存在),(11ηηk k x ∈, ),(212ηηη∈k 和),(123+∈k k x ηη使得 再依次对)(t g ''和)(t g '''使用Rolle 定理,知至少存在),(1+∈k k x x ξ使得 而!4)()()()4()4()4(t k t f t g -=,将ξ代入,得到 推导过程表明ξ依赖于1,+k k x x 及x 综合以上过程有:!4/)())(()(212)4(3+--=k k x x x x f x R ξ 确定误差限: 记)(x I h 为f(x)在[a,b]上基于等距节点的分段三次Hermite 插值函数。 n a b h n k kh a x k -==+=),,1,0(,Λ 在区间[x k ,x k+1]上有 而最值)(,16 1)1(max )()(max 4 4221 02121 sh x x h h s s x x x x k s k k x x x l k +== -=--≤≤+≤≤+ 进而得误差估计:)(max 3841)()()4(4 x f h x I x f b x a h ≤≤≤ - 16、求一个次数不高于4次的多项式)(x p ,使它满足0)0()0(='=p p ,

数值计算大作业

数值计算大作业 题目一、非线性方程求根 1.题目 假设人口随时间和当时人口数目成比例连续增长,在此假设下人口在短期内的增长建立数学模型。 (1)如果令()N t 表示在t 时刻的人口数目,β 表示固定的人口出生率,则人口数目满足微分方程() ()dN t N t dt β=,此方程的解为0()=t N t N e β; (2)如果允许移民移入且速率为恒定的v ,则微分方程变成() ()dN t N t v dt β=+, 此方程的解为 0()=+ (1) t t v N t N e e βββ -; 假设某地区初始有1000000人,在第一年有435000人移入,又假设在第一年年底该地区人口数量1564000人,试通过下面的方程确定人口出生率β,精确到 410-;且通过这个数值来预测第二年年末的人口数,假设移民速度v 保持不变。 435000 1564000=1000000(1) e e βββ + - 2.数学原理 采用牛顿迭代法,牛顿迭代法的数学原理是,对于方程0)(=x f ,如果) (x f 是线性函数,则它的求根是很容易的,牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程0)(=x f 逐步归结为某种线性方程来求解。 设已知方程0)(=x f 有近似根k x (假定0)(≠'x f ),将函数)(x f 在点k x 进行泰勒展开,有 . ))(()()(???+-'+≈k k k x x x f x f x f 于是方程0)(=x f 可近似地表示为 ))(()(=-'+k k x x x f x f 这是个线性方程,记其根为1k x +,则1k x +的计算公式为

北航数值分析大作业第二次

《数值分析》计算实习作业 (第二题)

算法设计方案: 1、对矩阵A 赋值,取计算精度ε=1×10-12; 2、对矩阵A 进行拟上三角化,得到A (n-1),并输出A (n-1); 对矩阵A 的拟上三角化,通过直接调用子函数inftrianglize(A)来实现;拟上三角化得到的矩阵A (n-1)输出至文件solution.txt 中。 3、对A (n-1)进行QR 分解并输出Q 、R 及RQ 矩阵; QR 分解通过直接调用子函数QRdescom(A,Q,R, n)实现。 4、运用QR 方法求所有的特征值,并输出; (1)初始时令m=n ,在m>2的条件下执行; (2)判断如果|A mm-1|<ε,则得到一个特征值,m=m-1,转(4);否则转(3); (3)判断如果|A m-1m-2|<ε,则得到两个特征值,m=m-2,转(4); (4)判断如果m ≤2,转(6);否则转(5); (5)执行相似迭代,转(2); k k T k k k k k k k k k k Q A Q A R Q M I D A D tr A M ==+-=+1)2)det(( (6)求出最后的一个或两个特征值; (7)输出全部的特征值至文件solution.txt 中。 5、输出QR 分解法迭代结束之后的A (n-1)至文件solution.txt 中; 6、通过反幂法求出所有实特征值的特征向量并输出。 首先令B=(A-λi I),其中λi 是实特征值;反幂法通过调用子函数Bpowmethod(B,x1)实现,最终λi 对应的特征向量就是x1;最后将所有的实特征值的特征向量输出。

相关文档
最新文档