浅议船舶结构疲劳强度分析中的几个问题 李文孝

浅议船舶结构疲劳强度分析中的几个问题        李文孝
浅议船舶结构疲劳强度分析中的几个问题        李文孝

浅议船舶结构疲劳强度分析中的几个问题李文孝

发表时间:2019-08-14T11:11:24.590Z 来源:《防护工程》2019年10期作者:李文孝[导读] 随着我国造船工业的快速发展,对造船的技能也要求越来越严格,对船舶的质量也越来越严格。

武汉船舶设计研究院有限公司湖北武汉 430000 摘要:随着我国造船工业的快速发展,对造船的技能也要求越来越严格,对船舶的质量也越来越严格。而船舶结构疲劳问题是一直困扰船舶的质量和性能的一个很重大问题。它也是保障船体结构安全的关键性问题,受到了全国各个造船企业和国家的广泛关注。如果一旦船体结构疲劳,则会导致船体裂纹甚至会给船体造成不可预料的严重灾害,给船员和顾客带来生命危害和严重的财产损失,其后果带给人们

的都是毁灭性的,是人们所不能承受的。船体结构的疲劳程度是不那么好判断的,而且是具有隐蔽性和突发性的。所以在进行船体结构研究和设计时,一定要考虑船体结构的疲劳强度问题。深入了解船体结构疲劳的原因和预防方法,进行科学有效的处理。

关键词:船舶结构;疲劳强度;问题

引言

实船航行中的大量实践表明,如果船舶结构疲劳强度不足,将会导致船舶结构发生破坏的概率大大增加。因此,在船舶结构的失效模式中,疲劳破坏是其中主要的一种模式,尤其是典型节点部位的疲劳强度测试是重中之重。近些年来,船业制造广泛使用高强度钢,这就使得疲劳问题更为突出,越来越受到国内外研究人员的重视。

1.船舶结构疲劳介绍

1.1 产生原因

微裂缝的产生以及扩展的出现是结构疲劳产生的主要原因,微裂纹的存在是因为组成船体的构件都会存在一定的缺陷,这是不可避免的,比如构件有夹层、凹坑和气泡等问题,而这些构件又承受着载荷引起的各种交变应力,一旦交变应力达到一定程度,存在缺陷的构件将会产生微裂纹[1]。应力集中在微裂纹的尖端处,当应力反复作用在微裂纹处,将会加重裂纹的程度,一旦裂纹达到一定的限度,构件的脆性断裂就不可避免的会发生。

1.2 疲劳强度的评价

关于船舶结构疲劳强度的评估方法,目前世界上主要的船级社给出的有简化算法和直接计算法两种。在简化算法中,采用简化的公式计算疲劳载荷以及应力范围。另外应力还可以用有限元直接计算,在直接算法中,疲劳载荷是通过波浪载荷计算程序获得的,然后借助有限元分析得到疲劳应力范围和疲劳应力响应。两种方法相比,在反应结构的细节方面,简化算法更为详细,所以在对非常规船舶进行疲劳强度分析时比较适合,也普遍被各国船级社采用。对于直接计算法,一般有两种方法,谱分析法以及设计波法。谱分析法普遍借助线性理论,工作量比较大,极大的限制了基于谱分析的计算法的使用。在疲劳强度分析中,相对而言,设计波法的工作量比较少,而且能得到比较合理的结果,同时对于非线性疲劳载荷影响疲劳损伤的问题也能充分考虑到。但是,目前国内设计波法的理论发展还不完善,需要继续研究完善。

2.影响船体结构疲劳的因素

2.1结构几何因素

船体结构的几何形状会影响船体结构疲劳的强度,即会影响船体结构的使用年限。有的几何结构承受压力的能力较强,相同的压力,相同的挤压程度会由于几何结构不同,船体结构疲劳的强度因而会有极大的不同,所以造船师要把几何结构的承受力考虑进去,充分的利用几何的魅力,数学神奇的力量,把科学运用到生活中,这才是科学的伟大之处。

2.2焊接的形状

裂缝大多数发生在焊接处,所以焊接的形状十分的重要,焊接的程度也至关重要。焊接虽然看上去十分的简单,是一个苦力活,但其中却蕴含着很多的知识,焊接师要把焊接重视起来,要把焊接当成一种艺术,去做它,从而使焊接这门工作在造船业中发挥其应有的作用。而焊接中一个很重要的就是焊接的形状,这其中也体现着几何的魅力,知识的力量。把握好焊接的几何形状,这可以极大的有效的减缓船体结构疲劳的程度和年限,可以节约国家的资源,对国家的发展具有重大的作用。

2.3对称的加强形式

船体结构是要经常加固的,但不是进行加固就会产生效果的,或者是就算产生了效果但效果也千差万别,所以要加强就得加强到位。而影响加强效果的很重大的一个因素就是加强的形状,所以要把握好加强的形状,这也凸显这几何的重大作用,几何在制造业中起着巨大的作用。所以后辈们呀,一定要好好学习几何知识,只有这样,才可能更好的为国家的伟大复兴做出属于我们的贡献。

3.船体结构疲劳应力问题研究

因为船体结构出现疲劳的主要原因集中在应力范围方面,所以疲劳应力一般情况下均代指船体结构当中的波浪荷载。如果出现波浪荷载,会导致交变压力发生变化,影响交变压力范围。从近年来工作开展的情况来看,项目结构上增加的上节公式计算可以得出具体的波浪荷载数值,结合一些前些年常用的结构力学方法,可以计算出具体的应力范围数值,可以将这一应力范围数值作为基本设计的应力范围来看待。

3.1应力范围分量计算内容研究

如果使用前些年的传统结构力学方法来对相关环节进行计算,可以先设定具体的应力范围。应力范围设定可以按照应力范围的具体数值与船体局部的应力范围这两个环节进行计算。从整体上来看,应力的范围应当包含了垂向与水平波浪这两个方面的内容,分别定义为Sv 与Sh这两个部分,均通过波浪扭矩引发翘曲应力范围,将翘曲应力范围假定为Sw。从目前的工作开展情况来看,局部应力范围一般都会受到船舷外部海水动压力以及船舱内部货物压力这两个方面的影响,也会被舱壁等位置影响,导致板架的弯曲范围受限。梁体弯曲应当结合应力范围来确定,搭配结构力学公式来对相关的内容加以计算。

3.2S-N曲线中作用力幅值选择

船体结构与强度设计总结

1、结构的安全性是指结构能承受在正常施工和正常使用时可能出现的各种载荷和(或)载 荷效应,并且在偶然事件发生时及发生后,仍能保持必须的整体稳定性。此外,结构在正常使用时,还必须适合营运的要求,并在正常的维护保养条件下,具有足够的耐久性。 2、船体强度计算包括: (1)确定作用在船体或各个结构上的载荷的大小及性质,即外力问题;外载荷 (2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各种作用中的任何一种作用时的载荷,即结构的极限状态分析(亦或求载荷效应的极限值),即内力问题。响应 (3)确定合适的强度标准,并检验强度条件。衡准(结构的安全性衡准都普遍采用确定性的许用应力法) 3、通常将船体强度分为总强度和局部强度来研究。 4、结构的安全性是属于概率性的。 5、把船体当做一根漂浮的空心薄壁梁(成为船体梁),从整体上研究其变形规律和抵抗破坏 的能力,通常成为总强度。总强度就是研究船体梁纵弯曲问题。从局部上研究局部构件变形规律和抵抗破坏的能力,通常称为局部强度。 6、作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷、局部性载荷。 按载荷随时间变化的性质可分为:不变载荷、静变载荷、动变载荷和冲击载荷。 7、总体性载荷是指引起整个船体的变形或破坏的载荷和载荷效应。 局部性载荷是指引起局部结构、构件变形或破坏的载荷。 冲击载荷,是指在非常短的时间内突然作用的载荷,例如砰击。 8、结构设计的基本任务是:选择合适的结构材料和结构型式,决定全部构件的尺寸和连接 方式,在保证具有足够的强度和安全性等要求下,使结构具有最佳的技术经济性能。 9、船体结构设计,一般随全船设计过程分为三个阶段,即初步设计、详细设计和生产设计。 10、结构设计应考虑:安全性、营运适合性、船舶的整体配合性、耐久性、工艺性、经济性。 11、大多数结构的优化设计都以最小重量(或最小体积)作为设计的目标。但是,减小结构 尺寸、降低结构重量,往往会增加建造工作量,从而增加制造成本同时还会引起维护保养费用的增加。因此,应该研究怎样才能达到降低结构重量和降低初始成本这两个目标的最佳配合。 1、船体重量按分部情况来分可以分为:总体性重量、局部性重量。 按变动情况分可以分为:不变质量和变动质量。 2、对于船体总纵强度的计算状态,选取满载:出港、到港;压载:出港、到港;以及装载 手册中所规定的各种工况作为计算状态。 3、计算波浪弯矩的船体标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。 4、计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种, 直接法又称为麦卡尔法。 5、史密斯修正:计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对 浮力曲线所做作的修正,称为波浪浮力修正,或称史密斯修正。 6、船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简称船 体梁。 7、船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。船体抵抗总纵弯 曲的能力,成为总纵强度(简称纵强度)。 8、波浪附加剪力、波浪附加弯矩完全是由波浪产生的附加浮力(相对于静水状态的浮力增 量)引起的,简称波浪剪力和波浪弯矩。

船体强度与结构设计复习材料

船体强度与结构设计复习材料 绪论 1.船体强度:是研究船体结构安全性的科学。 2.结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能。 3.全船设计过程:分为初步设计、详细设计、生产设计三个阶段。 4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。 5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态。 引起船体梁总纵弯曲的外力计算 船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。 总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。 总纵强度:船体梁抵抗总纵弯曲的能力。 引起船体梁总纵弯曲的主要外力:重力与浮力。 船体梁所受到的剪力和弯矩的计算步骤: ①计算重量分布曲线平p(x); ②计算静水浮力曲线bs(x); ③计算静水载荷曲线qs(x)=p(x)-bs(x); ④计算静水剪力及弯矩:对③积分、二重积分; ⑤计算静波浪剪力及弯矩: ⑥计算总纵剪力及弯矩:④+⑤。 重量的分类: ①按变动情况来分:不变重量(空船重量)、变动重量(装载重量); ②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。静力等效原则: ①保持重量的大小不变;②保持重心的纵向坐标不变; ③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。 浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线。 载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。载荷、剪力和弯矩之间的关系: ①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应; ②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值; ③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。 计算状态:指在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态,一般包括满载、压载、空载等和按装载方案可能出现的最为不利以及其它正常营运时可能出现的更为不利的装载状态。 挠度及货物分布对静水弯矩的影响: ①挠度:船体挠度对静水弯矩的影响是有利的;

船舶与海洋结构物结构强度

机密★启用前 大连理工大学网络教育学院 2020年春《船舶与海洋结构物结构强度》 期末考试复习题 ☆注意事项:本复习题满分共:200分。 一、单项选择题(本大题共11小题,每小题2分,共22分) 1、船体结构设计最后一个阶段是()。 A.初步设计 B.详细设计 C.生产设计 D.分段设计 答案:C 2、船体总纵强度计算中,选取的计算波长与船长的关系是()。 A.计算波长小于船长 B.计算波长大于船长 C.计算波长等于船长 D.没有关系 答案:C 3、许用应力与结构发生危险状态时材料所对应的极限应力值相比,存在如下哪种关系?() A.许用应力等于极限应力值 B.许用应力大于极限应力值 C.许用应力小于极限应力值 D.许用应力与极限应力值没关系 答案:C 4、扭矩曲线和扭矩分布曲线的关系为()。 A.扭矩曲线为扭矩分布曲线的一次积分 B.扭矩分布曲线为扭矩曲线的一次积分 C.扭矩曲线为扭矩分布曲线的二次积分 D.扭矩分布曲线为扭矩曲线的二次积分 答案:A 5、自升式平台着底状态的总体强度计算一般是以哪种工况作为设计工况() A.拖航工况 B.放桩和提桩工况

C.满载风暴工况 D、桩腿预压工况 答案:C 6、对于半潜式平台,下列哪种工况每一构件上的载荷只有均布载荷和集中载荷()A.平台满载、静水、半潜吃水 B.平台满载、静水、半潜吃水,但平台有一定升沉运动 C.平台满载、静水、半潜吃水,但平台有一定升沉运动,且平台处于井架大钩有集中载荷时的钻井作业状态 D.平台满载、设计风暴、半潜吃水、横浪,且设计波长等于2倍平台宽度,波峰位于平台中心线上 答案:A 7、平台结构在空气中的重量属于下列哪种载荷() A.固定载荷 B.活载荷 C.环境载荷 D.施工载荷 答案:A 8、极限弯矩对应的极限状态是以什么量为衡准的() A.结构受力达到许用应力 B.结构受力达到屈服极限 C.结构受力达到许用应力的0.9倍 D.结构受力达到屈服极限的0.9倍 答案:B 9、已知扭矩为60Nm,在此扭矩作用下扭转角度为0.1弧度。则船体的扭转刚性为()A.300弧度/(牛米) B.400弧度/(牛米) C.500弧度/(牛米) D.600弧度/(牛米) 答案:D 10、导管架在海上利用驳船运输的过程中受到哪些力的作用()

船舶结构物强度

思考题 1.依据“建造规范”与依据“强度规范”设计船体结构的方法有什么不同?它们各有何优缺点 答:建造规范:根据规范确定最小尺寸,设计尺寸不应小于最小尺寸 优点:安全、简便。缺点:不易反应具体船舶的特点及新技术成果。 强度规范:又分直接设计和间接设计,前者是依据]/[max σM W =来确定构件尺寸,后者参考母型取定构件尺寸,再计算max σ与][σ相比较,修改尺寸。 优点:合理,反映具体的船舶特点。缺点:计算工作量大 2.为什么要将船体强度分为“总强度”和“局部强度”?其中“局部强度”与“局部弯曲”的含义有何不同? 答:总强度是把整个船体看做一个整体来研究其强度,局部强度是研究组成船体的某些部分结构、节点及其组成构件的强度问题,一般在总强度校核已进行的前提下,对局部强度进行分析,以确定结构布置原则和决定构件尺寸。局部弯曲是考虑将总纵弯曲应力计入的总应力,而局部强度还得将总应力与][σ相比较,进行强度校核。 3.如何获得实际船舶的重量分布曲线? 答:通常将船舶重量按20个理论站距分布(民船尾-首,军船首-尾编排),用每段理论站距间的重量作出阶梯形曲线,并以此来代替重量曲线。作梯形重量曲线时,应使每一项重量的重心在船长方向坐标不变,其重量分布范围与实际占据的范围应大致对应,而每一项理论站距内的重量则当做是均匀的。最终,重量曲线下所包含的面积应等于船体重量,该面积的形心纵向坐标应与船体重心的纵向坐标相同。 4.说明计算船舶静水剪力、弯矩的原理及主要步骤。 答:原理:认为船是在重力、浮力作用下平衡于波浪上一根梁 步骤:(1)确定平衡水线位置(2)根据梯形法、围长法等得出船舶重量分布曲线w(x),根据邦戎曲线得出某一吃水下的浮力曲线b (x ),计算载荷曲线q(x)=w(x)-b(x),根据∫=x dx x q x N 0)()(计算船舶静水剪力,∫∫=x x dxdx x q x M 00)()(计算静水弯矩 5.“静置法”对计算波浪的波型、波长、波高以及与船舶的相对位置作了怎样的规定? 答:对于“静置法”,标准波浪的波形取为坦谷波,计算波长等于船长,波高则随波长变化。波船相对位置:中拱(波峰在船舯)和中垂(波谷在船舯)两种典型状态。 6.按照“静置法”所确定的载荷来校核船体总纵强度,是否反映船体的真实强度,为什么?答:按照静置法所确定的载荷来校核船体总强度,不反映船体的真实强度,因为海浪是随机的,载荷是动态的,而且当L 较大时载荷被夸大,但具有相互比较的意义 7.依据q-N-M关系解释在中拱和中垂波浪状态下,通常船体波浪弯矩总是舯剖面附近最大,这一结论是否适用于静水弯矩? 答:适用于静水弯矩,将船近似为自由-自由梁,受垂向载荷作用,易知船体弯矩是舯剖面附近最大 8.在初步设计阶段,如何应用“弯矩系数法”来决定船体的最大波浪弯矩和剪力? 答:在初步设计阶段,通过参考母型船,估计一个主尺度D 、L ,在中拱、中垂两种情况下,由max )/(w M DL K =,得出K DL M w /)(max =其中中垂K ,中拱K 的值约15-35,而max )(w N 由max )(w N =L M w /)(5.3max 得出

《船体结构与强度设计》习题题目练习

《船体结构与强度设计》复习题 一、判断题 1、长期以来,总强度一直是船体结构强度校核的主要方面。(√) 2、强度标准设计又称为计算设计方法,是目前应用比较广泛的方法。(√) 3、船舶除具有一定的强度外,还必须具有一定的刚度。(√) 4、对那些抗扭刚度较低的船体来说,扭转强度的研究就显得十分必要。(√) 5、在单跨梁的弯曲理论中,我们规定弯矩在梁的左断面逆时针为正,在梁的右断面顺时针为正,反之为负。(√) 6、在材料力学中,多数是根据剪力方程与弯矩方程或根据载荷、剪力与弯矩三者之间的微积分关系来画剪力图与弯矩图,在结构力学中也是一样。(×) 7、通过在方程中引入初始点的弯曲要素值来求解梁挠度曲线方程的方法叫做“初参数法”。(√) 8、如果梁上受到几个载荷共同作用时,就可以用“叠加原理”来进行计算。(√) 9、求解静不定梁往往是利用弯曲要素表,并通过变形协调条件来进行,而不能利用“初参数法”。(×) 10、在船体结构中,除了少数的桁架结构外,大多数的结构都是以弯曲变形为主的静不定杆系,例如连续梁、刚架及板架等属于这类杆系。(√) 11、变形连续条件就是变形协调条件。(√) 12、交叉梁系中不受任何外载荷作用的杆系称为无载杆。(√) 13、从原则上讲,力法可以解一切静不定结构。(√) 14、在船体结构计算中,常将甲板纵骨与船底纵骨视作连续梁,而甲板横梁与船底肋板作为它们的弹性支座。(×) 15、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 16、位移法中关于弯曲要素正负号的规定与力法中的规定一样。(×) 17、节点平衡方程又叫位移法方法,且此方程为正则方程。(√) 18、在弯矩分配法基本结构下,连接于节点的各杆杆端的固端弯矩一般来说相互平衡,即作用于节点上的固端弯矩之和等于零。(×) 19、和位移法相比,弯矩分配法可以使问题简单化,因为绕过了求节点转角这一步而直接求出杆端弯矩。(×) 20、正则方程就是力的互等定理的反应。(√) 21、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 22、最小变形能定理,又称最小功原理,是莫尔定理的特殊情况。(×) 23、广义位移应理解为杆件在变形中广义力作用点处沿力作用方向的位移,广义力与广义位移永远成线性关系。(×) 24、运用能量法能够解决结构的位移问题,也能解决静不定问题。(√) 25、若杆件横断面对于两个主对称轴的惯性矩不同,则杆在失稳时总是在刚度最大的平面中弯曲。(×) 26、在造船界,通常把杆件在弹性范围外失稳的力叫做临界力,以区别弹性范围内失稳的欧拉力。(√) 27、对于高强度钢与普通钢,虽然具有相同的弹性模量,但具有不同的屈服极限,因此用这两种材料做成的杆件,尽管其断面形式相同、跨度相同、固定情况相同,他们的欧拉力是不同的。(×) 28、对于任意多跨连续梁,只要其每个跨度是等距、等断面的,并且两端是自由支持的,这时不论跨度有多少,其欧拉力都等于每跨单独时的欧拉力。(√)

船舶结构强度复习思考题

复习思考题 1.船体强度计算的主要内容是什么?船舶结构 的主要特点是什么?船舶结构主要的骨架型式有哪些?它们的主要优缺点?一般的应用原则是什么? 2.船舶结构主要的纵向强力构件、横向构件有 哪些?它们的主要作用是什么? 3.作用在船舶结构上的主要载荷类型有哪些? 每种类型载荷的典型例子是什么? 4.船舶结构的主要失效形式有哪些?每种失效 形式的主要影响因素有哪些? 5.船舶结构设计的一般过程或步骤是什么? 6.船体梁中剪力和弯矩产生的原因是什么?剪 力和弯矩沿船长分布的特点?典型载荷曲线、剪力曲线、弯矩曲线的绘制。 7.传统静波浪剪力和弯矩标准计算的要点是什 么?中拱、中垂的含义? 8.熟练掌握典型重力、浮力分布情况下,船体 梁中剪力、弯矩的计算方法。 9.总纵强度校核计算时通常选取哪些计算剖面 进行总纵强度校核?

10.船体总纵弯曲应力沿剖面高度分布的规律是 什么?剖面中最大总纵弯曲拉伸、压缩正应力发生的位置?剖面中最大剪应力发生的位置? 11.剖面折减、折减系数的概念?为什么要进行 总纵弯曲应力的多次迭代计算? 12.船体构件多重作用的定性分析,船底构件应 力合成计算剖面的选取分析。 13.船体极限弯矩的基本含义是什么? 14.熟练掌握简化船体剖面中总纵弯曲正应力、 剪应力的计算。 15.船舶开口剖面剪力中心的位置?船体在哪些 情况下受到扭矩作用?典型扭矩曲线的绘制。 16.翘曲的含义?为提高大开口船舶抗扭刚度采 取什么结构措施比较有效? 17.典型构件如甲板纵骨、船底纵骨强度、稳定 性计算模型是什么?船底板、甲板板强度、稳定性计算模型是什么?典型板架强度计算模型是什么? 18.船体骨架附连带板的概念,剪切滞后和带板 宽度?

船舶强度与结构设计的复习题

复习题 第一章(重点复习局部载荷分配、静水剪力弯矩的计算绘制) 1、局部载荷是如何分配的? (2理论站法、3理论站法以及首尾理论站外的局部重力分布计算) P P P =+21 a P L P P ?=?+)(2 121 由此可得: ?? ? ?? ?? ?-=?+=)5.0()5.0(21L a P P L a P P 分布在两个理论站距内的重力 2、浮力曲线是如何绘制的? 浮力曲线通常按邦戎曲线求得,下图表示某计算状态下水线为W-L 时,通常 根据邦戎曲线来绘制浮力曲线。为此,首先应进行静水平衡浮态计算,以确定船舶在静水中的艏、艉吃水。

帮戎曲线确定浮力曲线 3、M、N曲线有何特点? (1) M曲线:由于船体两端是完全自由的,因此艏、艉端点处的弯矩应为零,亦即弯矩曲线在端点处是封闭的。此外,由于两端的剪力为零,即弯矩曲线在两端的斜率为零,所以弯矩曲线在两端与纵坐标轴相切。 (2) N曲线:由于船体两端是完全自由的,因此艏、艉端点处的剪力应为零,亦即剪力曲线在端点处是封闭的。在大多数情况下,载荷在船舯前和舯后大致上是差不多的,所以剪力曲线大致是反对称的,零点在靠近船舯的某处,而在离艏、艉端约船长的1/4处具有最大正值或负值。 5、计算波的参数是如何确定的? 计算波为坦谷波,计算波长等于船长,波峰在船舯和波谷在船舯。 采用的军标GJB64.1A中波高h按下列公式确定: 当λ≥120m时, 当60m≤λ≤120m时,当λ≤60m时, 20 λ = h(m) 2 30 + = λ h(m) 1 20 + = λ h(m) 6、船由静水到波浪中,其状态是如何调整的? 船舶由静水进入波浪,其浮态会发生变化。若以静水线作为坦谷波的轴线,当船舯位于波谷时,由于坦谷波在波轴线以上的剖面积比在轴线以下的剖面积小,同时船体中部又较两端丰满,所以船在此位置时的浮力要比在静水中小, 因而不能处于平衡,船舶将下沉ξ值;而当船舯在波峰时,一般船舶要上浮一些。 另外,由于船体艏、艉线型不对称,船舶还将发生纵倾变化。 7、麦卡尔假设的含义。 麦卡尔方法是利用邦戎曲线来调整船舶在波浪上的平衡位置。因此,在计算 时,要求船舶在水线附近为直壁式,同时船舶无横倾发生。根据实践经验,麦 卡尔法适用于大型运输船舶。 第二章 (重点复习计算剖面的惯性矩、最小剖面模数是如何的计算、折减系数、极限弯矩的计算)1、危险剖面的确定。 危险剖面: 可能出现最大弯曲应力的剖面,由总纵弯曲力矩曲线可知,最大弯矩一般在 船中0.4倍船长范围的,所以计算剖面一般应是此范围内的最弱剖面—既有最大

船舶强度与设计名词解释

船舶强度与设计名词解释 引起船体梁总纵弯曲的外力计算 总纵弯曲:船体梁在外力的作用下沿其纵向铅垂面内所发生的弯曲 总纵强度:船体梁抵抗总纵弯曲的能力 波浪剪力:完全是由波浪产生的附加浮力引起的附加剪力 重量曲线:船舶在某一计算状态下,描述船体重量沿船长分布的曲线 不变重量:即空船重量,包括船体结构、舾装设备、机电设备等各项固定重量 变动重量:即装载重量,包括货物、燃油、淡水、旅客压载等各项可变重量 总体性重量:即沿船体梁全长分布的重量,包括主体结构、油漆、索具等 局部性重量:沿船长某一区段分布的重量,包括货物、燃油、机电设备等 浮力曲线:船舶在某一装载时,描述浮力沿船长分布状况的曲线 载荷曲线:引起船体梁总纵弯曲的载荷沿船长分布状况的曲线 静水剪力曲线:船体梁在静水中所受到的剪力沿船长分布状况的曲线 计算状态:在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态 波浪要素:包括波形、波长与波高 坦谷波:波峰陡峭、波谷平坦,波浪轴线上下的剖面积不相等的波 史密斯修正:考虑波浪动力压力影响对浮力曲线所做的修正 总纵弯矩:船舶在同一计算状态下,静水弯矩和静波浪弯矩的代数和 重量的分布原则:遵循静力等效原则。保持重量的大小不变;保持重量的重心的纵向坐标不变;近似分布曲线的范围与该项重量的实际分布范围相同或大体相同 重量曲线绘制的方法与原理? 梯形法:船舶往往中部丰满,两端尖瘦,可以将平行中体部分用均匀的重量分布,两端部分用两个梯形分布,根据重量分布原则确定梯形要素 围长法:假设船体结构单位长度的重量与该横剖面围长(包括甲板)成比例。该方法适用于船舶主体结构重量的分布 库尔求莫夫法:用特定的阶梯型分布曲线来表示船体重量的分布 装载曲线、剪力曲线、弯矩曲线的特征: 首尾端点处的剪力和弯矩为零,亦即剪力和弯矩曲线在端点处封闭 零载荷点与剪力的极值相对应,零剪力点与弯矩的极值相对应

船舶强度与结构设计大作业(二)

船舶总纵强度计算 班级:船海1301 姓名:禹宗昕 学号:U201312263 完成日期:2016.4.18 一.计算依据 1.横剖面图和尺寸 图1.1 横剖面图和尺寸 注:6,18分别为全部的甲板纵骨和船底纵骨;20,21分别为统一水平高度的加强筋。 2.计算载荷 中垂,计算弯矩M=9.0×107N·m 3.船体材料 计算剖面所有的构件均采用低碳钢,屈服极限σr=350N/mm2 4.总纵弯曲许用应力[σ]=0.5σr 二.总纵弯曲正应力

1.总纵弯曲正应力第一次近似计算 剖面简图如上图所示,和图中编号对应的各强力构件尺寸已表明。第一次近似总纵弯曲应力的计算在下表中完成,参考轴取在基线处。 表2.1 总纵弯曲正应力第一次近似计算 第一次近似中和轴参考轴(基线)距离: Δ=2275.61/1756.59=1.580 m 船体剖面对水平中和轴的惯性矩为 I=2*[9928.905+154.262-Δ2 *1756.59]=11394.7448 cm2m2 总纵弯曲应力为 σi=M/I*Z i*10 N/mm2 2.临界应力计算 因为处于中垂状态,下面只列出了中和轴以上部分受压板,纵骨,纵桁的临界应力。 (1)纵骨架式板格按下式计算: σcr=76*(100t/b)2 N/mm2 表2.2.1 纵骨架式板格临界应力计算 (2).纵骨剖面要素及临界应力计算入下表,其中欧拉临界应力计算式: σcr=π2Ei/a2(f+b e t)N/mm2 式中,a为实肋板间距,a=120cm,b e为带板宽度平均值 b=40cm < a/6 =20cm, 因而带板的计算依据a/6. 带板受到压缩应力大于临界应力时应做折减,带板宽度按下式确定: b e=a/6/2*(1+φ) 带入可得,

船舶结构强度有限元计算分析中的技巧

船舶结构强度有限元计算分析中的技巧 陈有芳、章伟星 中国船级社北京科研所

船舶结构强度有限元计算分析中的技巧 Skills of Ship Structural Strength Analysis By FEM 陈有芳、章伟星 (中国船级社北京科研所) 摘要:在对船舶结构进行有限元计算分析和评估中,一般采用的是舱段板梁模型,不可避免要面临应力的选取问题。对于弯曲板单元,有限元计算输出的应力包括上下表面的应力,我们在评估中一般采用中面应力作为工作应力,中面应力应该是上下表面应力的平均,如果在实际操作中采用上下表面应力的平均的方法来得到中面应力,将比较麻烦,也不直观。本文对在船舶结构有限元分析评估中采用中面应力作为工作应力的原理、方法以及如何在MSC.Patran中如何得到中面应力的技巧做一介绍,供船舶结构分析工程师参考使用。并做了一些测试和分析。 关键词:船舶结构有限元强度中面应力 MSC.Patran Abstract: In analyzing and evaluating of ship structures by FEM, a plate-beam FE model within holds is generally used and it is unavoidable to solve how to select the stress used. For bending plate, the output stresses include the stresses of up-surface and lower-surface, but in ship structure strength analysis, the mid-surface stress is used as applied stress in general. As we know, the mid-surface stress is the average value of up-surface stress and the lower-surface stress. It is discommodious to obtain the mid-surface stress by the up-surface stress and lower-surface stress in practice. The paper introduces the theory and method of using the mid-surface stress as the applying stress in ship structure strength analysis, and the skills about how to obtain the mid-surface stress in MSC/PATRAN. Some tests and analysis have also been carried in this paper. Keys:Ship Structure Finite Element Strength Mid-surface Stress MSC.patran 1 概述 一般来讲,对承受面外压力的板进行强度校核时,应对板的上下表面应力进行校核,相应的强度标准也是对应的上下表面应力,这些均应该建立在能对板的应力精确计算的基础上。在工程应用上,强度标准建立在相对假设的基础上的,即所谓的相对强度标准,所采用的强度标准也应该根据所采用的强度理论和采用的有限元模型简化程度来选取对应的应力。

船体强度与结构设计 复习精选.

绪论 一.填空 1. 作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷和局部性载荷。 2. 作用在船休结构上的载荷,按载荷随时间变化的性质,可分为;不变载荷、静变载荷、动变载荷和冲击载荷。 二.概念题: 1. 静变载荷等等 三.简答题: 1.船体强度研究的内容有哪些?2.作用在船体结构上的载荷如何进行分类?试说明。3.为什么要对作用在船体结构上的载荷进行分类? 4.结构设计的基本任务和内容是什么? 第一章: 一、填空题 1. 船体重量按分布情况来分可以分为:总体性重量、局部性重量。 2. 对于计算船体总纵强度的计算状态,我国《钢质海船入级和建造规范》中规定,选取满载:出港、到港;压载:出港、到港;以及装载手册中所规定的各种工况作为计算状态。 3. 计算波浪弯矩的传统标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。 4. 计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种,直接法又称为麦卡尔法。 5. 计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对浮力曲线所作的修正,称为波浪浮力修正,或称史密斯修正。 二、概念题: 1. 船体梁 2. 总纵弯曲 3. 总纵弯曲强度 4. 重量曲线 5. 浮力曲线 6. 荷载曲线 7. 静水浮力曲线8. 静水剪力、弯矩曲线9. 波浪附加浮力10. 波浪剪力11. 波浪弯矩 12. 静波浪剪力13. 静波浪弯矩14. 静置法15. 静力等效原则16. 史密斯修正 二、简答题: 1. 在船体总纵弯曲计算中,计算总纵剪力及弯矩的步骤和基本公式是什么? 2. 在船体总纵弯曲计算中重量的分类及分布原则是什么? 3. 试推导在两个及三个站距内如何分布局部重量。 4. 空船重量曲线有哪几种计算绘制方法?试推导梯形重量分布的计算公式。 5. 教材中,静水剪力、静水弯矩的计算采用的是什么方法?静波浪剪力、静波浪弯矩的计算采用的是什么方法?两种方法可以通用吗(计算方法唯一吗)? 6. 波浪浮力曲线需要史密斯修正吗?为什么? 第二章: 一、填空题 1. 纵向连续并能有效传递总纵弯曲应力的构件称为纵向强力构件。 2. 构成船体梁上冀板的最上层连续甲板通常称为强力甲板。 3. 在确定板的临界应力时,通常不考虑材料不服从虎克定律对稳定性的影响。 4. 在船体构件的稳定性检验和总纵弯曲应力的第二次近似计算中,需要对失稳的船体板进行剖面面积折减,折减时首先需要将纵向强力构件分为刚性构件和柔性构件两类。 5. 外板同时承受总纵弯曲、板架弯曲、纵骨弯曲及板的弯曲的纵向强力构件称为第四类构件。 6. 船体总纵弯曲时的挠度,可分为弯曲挠度和剪切挠度两部分来计算。 7. 为了按极限弯矩检验船体强度,须将所得的极限弯矩Mj与在波谷上和波峰上的相应计算弯矩M进行比较,即应满足Mj/M≥n,n称为强度储备系数。

船体结构强度

1.极限弯矩:是指在船体剖面内离中和轴最远点的刚性构件中引起的应力达到结构材料屈服极限(在受拉伸时)或构件的临界应力(在受压缩时)的总纵弯曲力矩。 2.总强度:从整体上研究船体梁变形规律和抵抗破坏的能力,通常称为总强度。 3.计算状态:在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态。 4.剖面模数:W=I/Z,表征船体结构抵抗弯曲变形能力。 5.纵向强力构件:纵向连续并能够有效地传递总纵弯曲应力的构件习惯上被称为纵向强力构件。 6.安全系数:是考虑强度计算中的许多不确定性,为保证设计结构必要的安全度而引入的强度储备。 7.许用应力:是指在结构设计预计的各种工况下,船体结构构件所容许承受的最大应力值。 8.强度储备系数:Mj与在波谷上和波峰上的相应计算弯矩M进行比较,即应满足Mj/M>n, n称为强度储备系数,Mj/M也表明船体结构所具有的承受过载的能力的大小。 9.局部强度:从局部上研究船体梁变形规律和抵抗破坏的能力,通常称为局部强度。 10.带板:为估算骨架的承载能力,把一定宽度的板计算在骨架剖面中,即作为它的组成部分来计算骨架梁的剖面积、惯性矩和剖面模数等几何要素,这部分板称为带板。 11.剖面利用系数:实际剖面模数与理想剖面模数的比值,表明了材料在剖面中分布的合理程度。 12.剖面模数比面积:产生单位剖面模数(W2/3)所需的剖面积。Cw=F/W2/3

13.计算剖面:可能出现最大弯曲应力的剖面。 14.甲板室:上层建筑中宽度与船宽相差较大的围蔽建筑物。 1.集装箱船为什么要进行扭转强度计算,产生扭矩的原因是什么? 集装箱船具有大开口的技术特征,舱口宽度一般达到甚至超过船宽的85%,舱口长度可以达到舱壁间距的约90%,使得扭转强度的重要性上升到与总纵强度同等的地位。船舶在斜浪中航行、船舶倾斜、船舶横摇 2.船体强度计算应包括下述内容: (1)确定作用在船体和各个结构上的载荷的大小及性质,即所谓外力问题。(2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各个作用中的任何一种作用时的载荷,即结构的极限状态分析(亦称求载荷效应的极限值),即所谓内力问题。 (3)确定合适的强度标准,并检验强度条件。 3.简述计算船体梁所受剪力弯矩的步骤。P10 (1)计算重量分布曲线; (2)计算静水浮力曲线; (3)计算静水载荷曲线; (4)计算静水剪力及弯矩; (5)计算静波浪剪力及弯矩; (6)将静水剪力及弯矩和静波浪剪力及弯矩叠加,即得总纵弯矩和剪力 4.简述坦谷波绘制步骤。P23 5.纵向强力构件分为四类: (1)只承受总纵弯曲的纵向强力构件,称为第一类构件,如不计甲板横荷重

船体强度与结构答案

船体强度与结构答案 【篇一:《船体结构与强度设计》复习题】 txt>一、判断题 1、长期以来,总强度一直是船体结构强度校核的主要方面。(√) 2、强度标准设计又称为计算设计方法,是目前应用比较广泛的方法。(√) 3、船舶除具有一定的强度外,还必须具有一定的刚度。(√) 4、对那些抗扭刚度较低的船体来说,扭转强度的研究就显得十分必要。(√) 5、在单跨梁的弯曲理论中,我们规定弯矩在梁的左断面逆时针为正,在梁的右断面顺时针为正,反之为负。(√) 7、通过在方程中引入初始点的弯曲要素值来求解梁挠度曲线方程的 方法叫做“初参数法”。(√) 8、如果梁上受到几个载荷共同作用时,就可以用“叠加原理”来进行 计算。(√) 10、在船体结构中,除了少数的桁架结构外,大多数的结构都是以 弯曲变形为主的静不定杆系,例如连续梁、刚架及板架等属于这类 杆系。(√) 11、变形连续条件就是变形协调条件。(√) 12、交叉梁系中不受任何外载荷作用的杆系称为无载杆。(√) 13、从原则上讲,力法可以解一切静不定结构。(√) 15、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 17、节点平衡方程又叫位移法方法,且此方程为正则方程。(√) 20、正则方程就是力的互等定理的反应。(√) 21、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 24、运用能量法能够解决结构的位移问题,也能解决静不定问题。(√) 26、在造船界,通常把杆件在弹性范围外失稳的力叫做临界力,以 区别弹性范围内失稳的欧拉力。(√) 28、对于任意多跨连续梁,只要其每个跨度是等距、等断面的,并 且两端是自由支持的,这时不论跨度有多少,其欧拉力都等于每跨 单独时的欧拉力。(√)

船体强度与结构设计复习教案资料

船体强度与结构设计 复习

绪论 1.总纵强度:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简 称船体梁。船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。船体梁抵抗总纵弯曲的能力,称为总纵强度。 2.船体总纵强度计算的传统方法:将船舶静置在波浪上,求船体梁横剖面上的剪力和弯 曲力矩以及相应的应力,并将它与许用应力相比较以判断船体强度。 3.评价结构设计的质量标准:安全性,营运合适性,船舶的整体配合性,耐久性,工艺 性,经济性。 4.按照静置法所确定的载荷来校核船体的总纵强度,是否反映船体的真实强度,为什 么?答:按照静置法所确定的载荷来校核船体总强度,不反映船体的真实强度,因为海浪是随机的,载荷是动态的,而且当L较大时载荷被夸大,但具有相互比较的意义。 第一章引起船体梁总纵弯曲的外力计算 5.总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。(中拱:船体梁中 部向上拱起,首、尾两端向下垂。中垂:船中部下垂,首、尾两端向上翘起。) 6.重量曲线:船舶在某一计算状态下,描述全船重量沿船长分布状况的曲线。绘制重量 曲线的方法:静力等效原则。 7.浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线 8.载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲 线。 9.静水剪力:船体梁在静水中所受到的剪力沿船长分布状况的曲线。 10.弯矩曲线:船体梁在静水中所受到的弯矩沿船长分布状况的曲线。 (重量的分类:按变动情况来分:①不变重量,即空船重量,包括:船体结构、舾装设备、机电设备等各项固定重量。②变动重量,即装载重量,包括货物、燃油、淡水、粮食、旅客、压载等各项可变重量。按分布情况来分:①总体性重量,即沿船体梁全长分布的重量,通常包括:主体结构、油漆、锁具等各项重量。②局部性重量,即沿船长某一区段分布的重量。) 11.局部重量的分配原则(P12):重量的分布原则:静力等效原则。①保持重量的大小 不变,这就是说要使近似分布曲线所围成的面积等于该项实际重量。②保持重量重心的纵向坐标不变,即要使近似分布曲线所围的面积的形心纵坐标与该项重量的重心坐标相等。③近似分布曲线的范围(分配到理论站的范围)与该项重量的实际分布范围相同或大体相同。 12.如何获得实际船舶重量分布曲线:答:通常将船舶重量按20个理论站距分布(民船 尾-首,军船首-尾编排),用每段理论站距间的重量作出阶梯形曲线,并以此来代替重量曲线。作梯形重量曲线时,应使每一项重量的重心在船长方向坐标不变,其重量分布范围与实际占据的范围应大致对应,而每一项理论站距内的重量则当做是均匀的。最终,重量曲线下所包含的面积应等于船体重量,该面积的形心纵向坐标应与船体重心的纵向坐标相同。 13.静水力浮力曲线的绘制:浮力曲线的垂向坐标表示作用在船体梁上单位长度的浮力 值,其与纵向坐标轴所围的面积等于作用在船体上的浮力,该面积的形心的纵向坐标即为浮心的纵向位置。浮力曲线通常根据邦戎曲线来求得。 14.用于总纵强度计算的剪力曲线和弯矩曲线的特点:①首尾端点处的剪力和弯矩为零, 亦即剪力和弯矩曲线在端点处封闭②零载荷点与剪力的极值相对应,零剪力点与弯矩的极值相对应③剪力曲线大致是反对称的,零点在靠近船中的某处,在离首尾约船长的1/4处具有最大正值或负值④弯矩曲线在两端的斜率为零,最大弯矩一般在船中 0.4倍船长范围内。 15.波浪剪力:完全由波浪产生的附加浮力引起的附加剪力。

54000散货船结构强度设计【开题报告】

开题报告 船舶与海洋工程 54000散货船结构强度设计 一、综述本课题国内外研究动态,说明选题的依据和意义: 自上世纪七八十年代以来,干散货船得到了迅猛发展,据Drewry 统计,目前干散货船队规模已达到4.5 亿载重吨左右[1]。虽然近几年国际航运市场低迷,船队运力闲置情况较严重,但据辛浦森航运咨询有限公司(SSY)研究中心主管John Kearsey 预测,依靠中国和印度等新兴市场的贸易大幅增加和发达国家经济的缓慢复苏,干散货海运贸易仍将呈现超过年8%的增幅。全球干散货船队运力规模呈现持续上升的趋势,而受益于干散货行情和铁矿石定价谈判的落实,干散货渐次走出了低迷行情。在干散货行情重新高涨的背景下,航运企业新建干散货船的热情再起[2-3]。 干散货船兴盛的背后,也让我们看到了一些不谐现象:在2000年3月23日一艘满载50000吨盐、PRS级的Panamamax散货船LeaderL(1977年日本建造)在距加拿大海岸500海里的水域,在未遭遇恶劣天气的情况下,船体突然开裂,该轮在不到一分钟的时间内便折断沉没,造成了32名船员中有19人失踪。而在LeaderL沉没三个月后,满载矿石的BV船级Capsize散货船Treasure(1983年日本建造)在南非好望角,第四货舱右舷船壳板在海况并非十分恶劣的情况下被撕开长度约14米、高约10米的口子,造成海水大量涌入货舱,在坚持数小时后因该轮实际承受的弯距远远超过允许极限值,逐渐沉入海底。2000年7月6日挪威海事当局向IACS提交了1997年2月8日在距挪威海岸仅30海里的水域,满载的RAIN级Handysize散货船Leros Strength(1976年日本建造)沉船的事故调查报告。此起沉船是在船长向海上救助中心报告发现船头己被海水淹没的3分钟后,便失去与救助中心的联系沉入海底,20名船员无一生还[4]。 海损事故的不断发生,让我们不得不深思干散货船的安全问题。根据劳氏海事信息服务(LMIS)海事数据库显示,对于载重量大于2万吨的散货船(指装载干货的散货船),自1978至1998年共发生3058起海难事故,普遍认为在许多

船体强度与结构设计复习要点

一引起船体梁总纵弯曲的外力计算 1 在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简称船体梁。船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。船体梁抵抗总纵弯曲的能力,称为总纵强度。 2 船体总纵强度计算的传统方法:将船舶静置在波浪上,求船体梁横剖面上的剪力和弯曲力矩以及相应的应力,并将它与许用应力相比较以判断船体强度。 3 重力p(x)与浮力b(x)是引起船体梁总纵弯曲的主要外力。载荷q(x),剪力N(x),弯矩M(x)。 4 中拱:船体梁中部向上拱起,首、尾两端向下垂。中垂:船中部下垂,首、尾两端向上翘起。 5重量曲线:船舶在某一计算状态下,描述全船重量沿船长分布状况的曲线。绘制重量曲线的方法:静力等效原则。 6 重量的分类:按变动情况来分,①不变重量,即空船重量,包括:船体结构、舾装设备、机电设备等各项固定重量。②变动重量,即装载重量,包括货物、燃油、淡水、粮食、旅客、压载等各项可变重量。按分布情况来分,①总体性重量,即沿船体梁全长分布的重量,通常包括:主体结构、油漆、锁具等各项重量。②局部性重量,即沿船长某一区段分布的重量。 7 重量的分布原则:静力等效原则。①保持重量的大小不变,这就是说要使近似分布曲线所围成的面积等于该项实际重量。②保持重量重心的纵向坐标不变,即要使近似分布曲线所围的面积的形心纵坐标与该项重量的重心坐标相等。③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。 8 浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线 1

9 载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。 10 静水剪力、弯矩曲线:船体梁在静水中所受到的剪力和弯矩沿船长分布状况的曲线。 11 静波浪剪力和弯矩计算:船舶由静水进入波浪时,重量曲线p(x)并未改变,但水面线发生了变化,从而导致浮力的重新分布。波浪下浮力曲线相对静水状态的浮力增量是引起静波浪剪力和弯矩的载荷。由此可知,静波浪弯矩与船型、波浪要素以及船舶与波浪的相对位置有关。 12 传统的标准计算方法:坦谷波理论。在实际计算时,取计算波长等于船长,并且规定按波峰在船中和波谷在船中两种典型状态进行计算。传统标准计算方法:①将船舶静置于波浪上,即假想船舶以波速在波浪的传播方向上航行,船舶与波浪处于相对静止状态。②以二维坦谷波作为标准波形,计算波长等于船长,计算波高按有关规范或强度标准选取。③取波峰位于船中及波谷位于船中两种状态分别进行计算。 13 波浪浮力修正(史密斯修正):考虑波浪动水压力影响对浮力曲线所做的修正。 二船体总纵强度计算 1 船体剖面模数。W=I/|Z︱,它是表征船体结构抵抗弯曲变形能力的一钟几何特性,也是衡量船体总纵强度的一个重要标志。 2 纵向强力构件:纵向连续并能有效地传递总纵弯曲应力的构件。如甲板板、外板、内底板、内龙骨、纵桁、纵骨等。长度较短的纵向构件应视作间断构件 3 强力甲板:构成船体梁上翼板的最上层连续甲板。强力甲板处剖面模数为船体剖面的最小剖面模数。 2

船舶结构强度分析.

船舶结构强度分析 近几年来,国内船舶修理公司如雨后春笋般出现,修理任务急剧扩张,修理的船型也是多种多样,涵盖整个船舶市场。而对船体结构的修理也是首当其冲,由于船厂的技术水平和工人技能等多方面原因,对于结构修理过程中拆换结构也会出现不同的修理方案,导致船舶结构在修理后出现异常情况。因此对于船舶结构强度分析的提出是相当重要的。其主导思想是在船舶修理的船体拆换强度分析的应用中,运用的基本计算原理和方法,是以船舶原理和船舶结构力学为理论基础。在以往的工程实际中,修船工程技术人员往往忽略或者不重视将这些理论的知识与船舶修理工程充分地结合起来。为了很好地说明这些基础理论在修船工程实际中的应用,本文将以船舶原理和船舶结构力学的基本理论,来阐述在船舶修理工程中的基本强度理论和基本计算原理及方法。 一、船舶结构力学 在船舶工程传统意义上,船舶结构力学研究和解决船体结构在静力响应,即在给定的外力作用下如何确定船体结构(局部和整体)中的应力、变形情况。在船舶修理工程中,因船舶在设计建造时已经对船舶的强度进行了计算和设计,所以要解决的问题就是强度计算,概括来讲,就是在船体结构尺寸已知的条件下,在给定的外载荷或工况下,计算出结构的应力和变形,并与许用值比较,从而判断船体结构的强度是否足够。船体结构强度的计算是依据船舶原理的基本设计理念,运用理论力学和材料力学的力学基本理论来对船舶的结构强度进行计算和校核的。 二、力学模型和船体模型 在船舶修理工程中的结构强度计算中,为了便于计算,须对实际的结构进行简化,在简化模型的基础上,施加外载荷,再运用船舶结构力学的基本理论和方法来计算船体结构的应力和变形情况。为了满足计算的需要,可以将在船舶修理工程实际情况下的船体结构的简化模型分成两个类型,一是基于传统船舶结构力学基础上的“力学模型”,二是在便于现代计算机计算和有限元理论分析的“船体模块”,这两个类型有渐进的关系。 “力学模型”的建立是根据实际结构的受力特征、结构之间的相互影响以及对计算精度的要求等各个方面的因素来确定的。 在船舶修理工程中,船体“力学模型”的简化一般有以下几种形式: 一是船体中的受压或者拉压的板,可以把四周由纵横骨架支持的这种受压或者拉压的板看作具有矩形周界的平板模型。在甲板纵骨被局部割断后,在未断纵骨和框架之间的主甲板就可以简化成这样的模型,在舱口围横梁被拆断后,舱口围板就成为受压板结构了,同样可以简化成这一类的力学模型结构。 二是船体结构中解除部分约束条件的骨架可以看作力学中的“杆系系统”。连续梁、刚架和板架结构是“杆系系统”中典型的结构。因舷侧板需换新,在拆除后,相应位置的肋骨因支撑板约束的解除而成为受压杆件。至于船体的双层底结构,在实际的计算处理中一般可以简化为刚架和板架结构。 而“船体模块”是为了便于计算机的计算方便,将船体的结构进行离散处理,化成小的能够表达结构的所有特征的子结构。“船体模块”的确定既要考虑到该结构的几何形状,又要考虑其结构载荷的特点,同时又必须采取适合有限元方法的计算特点来进行。 三、强度分析与计算 与船舶设计建造中的结构强度计算一样,船舶修理实际的工程中,对船体结构的改变(拆装或新加),同样是应用力法、位移法、能量法和矩阵法等方法。但与船舶设计不同的是,船舶修理是在原有结构被拿掉后,产生新的外载荷和新的边界条件,这时要对新情况下的强度进行计算和校核,确定在新的外载荷和边界条件下的结构应力和变形。下面以某船的局部构件换新为例,来探讨力法、位移法、能量法和矩阵法在船舶修理工程中的应用。

相关文档
最新文档