研究离心压缩机振动故障以及解决方法

研究离心压缩机振动故障以及解决方法
研究离心压缩机振动故障以及解决方法

研究离心压缩机振动故障以及解决方法

摘要:离心压缩机在工作中可以高速运转的设备,而且它在运行时振动的产生也是不可避免的,但是对于离心压缩机来说其振动值超过规定的范围时,就会引起振动故障,照成机组静动件的摩擦以及磨损等,严重的还会引发事故。因此,应该积极针对离心压缩机的振动故障进行分析才行,文章就对离心压缩机使用过程中出现的故障进行分析,找出离心压缩机振动故障的原因,并给出故障维修的解决方法,确保今后离心压缩机的安全稳定运行。

关键词:离心压缩机振动故障故障排除运行解决方法

离心压缩机在现代化生产中发挥着巨大的作用,一直被看作是石油、化工、冶金等行的重要设备。其实在现实的生产过程中,离心压缩机作为一种高转速、高功率、制造精度高的动力机械,运行过程中比较容易出现振动故障,若压缩机的振动故障不能及时排除,就会对企业的生产中带来严重的安全隐患。以下本篇文章就以日本神户制钢制造的,型号为dh9m的离心压缩机为例,为您讲解离心压缩机振动故障的维修和保养方法,以确保在以后的工作生产中,离心压缩机可以能够安全稳定的运行。

一、离心压缩机的振动故障分析

离心压缩机在使用中造成振动故障的原因有很多,我们采用的dh9m型号的离心压缩机,是由功率为4900kw,转速为2980r/min 的电动机来直接驱动的,而且离心压缩机在生产中的作用也就是将循环气升压,来维持生产中流化床反应器的流化过程。dh9m型号离

离心式空气压缩机运行故障分析及处理示范文本

离心式空气压缩机运行故障分析及处理示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

离心式空气压缩机运行故障分析及处理 示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 国内工业生产已经步入机械自动化时代,机械控制系 统是企业内部生产调度的主要平台,满足了各类机械设备 传动作业的控制需求。离心式空气压缩机是现代工业常见 的一种设备,利用动能转换原理提升了设备内部的气体压 力,维持着内外装置的稳定性运转。受到多方面因素的干 扰,离心式空气压缩机故障率持续上升,对机械控制系统 运行造成了诸多不便。本文分析了离心式空气压缩机工作 原理,对其常见运行故障分析及处理方法进行总结,为机 械自动化生产提供可靠的指导。 空气压缩机是能量转换的有效控制设备,通过把电动 机运转产生的机械能变为气体压力能,帮助机械设备内部

系统正常地运转动作。伴随着我国空气压缩行业技术的快速发展,空气压缩机在结构布局及功能形式方面有了很大的改进,离心式空气压缩机成为了新一代空气压缩装备。由于石化工业生产对离心式压缩机原理掌握不足,实际生产控制存在着设备故障风险,详细分析离心式压缩机故障成因及处理方法,对机械设备自动化调度具有指导性作用。 1.离心式压缩机原理 从不同的角度对压缩机进行划分,其可以划分的类别是多种多样的,如图1,常按照压缩机形式分为固定式、移动式、封闭式等类别,离心式压缩机是最为常用的设备之一。 1.1.原理。离心式空气压缩机属于速度式压缩机,在用气负荷稳定时离心式空气压缩机工作稳定、可靠。离心式空气压缩机是由叶轮带动气体做高速旋转,使气体产生离

压缩机常见故障及维修办法

压缩机常见故障及维修方法 2007年05月29日星期二19:25 压缩机是空调器制冷系统最重要的部件,由于压缩机不同于冷凝器、蒸发器之类的非运动部件,在系统工作中要高速运转,又是一种机电一体化的高精度装置,所以在实际使用中经常会发生故障。 故障现象: 1、绕组短路、断路和绕组碰机壳接地:这类故障都是由压缩机的电机部分引起的,其故障现象断路时为电源 正常,压缩机不工作;短路和碰壳时通电后保护器动作,或烧保险丝;要注意的是如果绕组匝间轻微短路时,压缩机还是能够工作的,但工作电流很大,压缩机的温度很高,过不了多久,热保护器就会动作。绕组短路和绕组碰机壳接地一般用万用表即可检查;绕组短路特别是轻微短路,由于绕组的电阻本身就很小,所以不容易 判定,应根据测量电流来判定。 2、压缩机抱轴、卡缸:压缩机如果失油或有杂质进入往往会引起抱轴或卡缸,其故障现象为,通电后压缩机 不运转,保护器动作。 3、压缩机吸、排气阀关闭不严:如果压缩机的吸、排气阀门损坏,即使制冷剂充足系统也不能建立高低压或 难以建立合格的高低压,系统不制冷或制冷效果很差。 4、压缩机的震动和噪音:这类问题在维修工作中经常发生,一般对制冷性能并没有多大影响,但会使用户感 觉不正常,引起的原因往往是管道和机壳相碰、压缩机的固定螺栓松动和减震块脱落等。 5、热保护器损坏:热保护器是压缩机的附件,故障一般为断路或动作温度点变小。断路会引起压缩机不工作;动作温度点变小会引起压缩机工作一段时间后就停机并反复如此,该问题往往容易和绕组匝间轻微短路相混淆,区别是热保护器损坏时工作电流是正常的,绕组短路时电流偏大。 维修方法: 压缩机电机部分出现问题、压缩机吸、排气阀关闭不严和热保护器故障应采取更换的办法。 压缩机抱轴、卡缸故障可以先尝试维修,具体方法为以下几种: (1)敲击法: 开机后用木锤敲压缩机下半部,使压缩机内部被卡部件受到震动而运转起来。 (2)电容起动法: 可以用一个电容量比原来更大的电容接入电路启动。 (3)高压启动法: 可以用调压器将电源电压调高后启动。 (4)卸压法: 将系统的制冷剂全部放空后启动。 如果上述方法都不能奏效,就只有更换了。 压缩机的震动和噪音问题处理时,应检查并分开相互碰击的部件;检查并紧固压缩机地脚螺栓,要注意压缩机的地脚螺栓是不能完全拧到底的,设计要求必须保持1mm左右的间隙,维修过程中就有将压缩机地脚螺栓拧死 而引起压缩机剧烈震动的事例;要检查减震块是否脱落、粘帖是否牢*,也可以试着增加减震块,具体位置用尝试法,帖在那里效果好就帖那里。 压缩机故障的判断及处理: 1.如何识别全封闭式压缩机机壳上的3只接线柱?

压缩机振动位移安装注意事项

压缩机振动位移安装注意事项 许居贵 一、压缩机测量仪表 1.振幅 也就是振动的幅值。振幅是描述振动大小的一个重要参数。 运行正常的设备,其振动幅值通常稳定在一个允许的范围内, 如果振幅提高变化,便意味着设备的状态有了改变。因此可 以用来判断设备的运行状态。 2.转速 压缩机的转速变化与设备的运行状态有着非常密切的关系, 它不仅表明了设备的负荷,而且当设备发生故障时,通常转 速也会有相应的变化。例如当离心式压缩机组发生喘振时, 转速会有大幅度的波动:当转子与静止件发生碰磨时,转速 也会表现得不稳定。因此,转速通常是设备状态监测与故障 诊断中比较重要的参数。 3.轴位移 轴向位置是止推盘和止推轴承之间的相对位置。因为转子系 统动静件之间的轴向摩擦是压缩机常见的故障之一,同时也 是最严重的故障之一,所以轴位移也是最重要的参量之一。

对轴位移的监测是为了防止转子系统动静件之间摩擦故障的 发生。除些之外,当机器的负荷或机器的状态发生变化时, 例如压缩机组喘振时,轴向位置会发生变化。因此轴向位置 的监测可以为判断设备的负荷状态的冲击状态提供必要的信 息。 二、振动、位移测量 在对转轴振动、位移测量仪器中,电涡流传感器使用最广泛。世界上第一支电涡流传感器是由美国Doald E.Bently于1954年研究并应用于工业生产的。 1、工作原理 电涡流传感器的工作原理是电涡流效应。当接通传感器系统电源时,在前置器内会产生一个高频电流信号,该信号通过电缆送到探头的头部,在头部周围产生的交变磁场H1。如果在磁场H1的范围内没有金属导体材料靠近,则发射到这一范围内的能量全部被释放;反之,如果有金属导体材料靠近探头头部,则交变磁场H1将在导体表面产生电涡流场,该电涡流场也会产生一个方向与H1相反的交变磁场H2.由于H2的反作用,就会改变探头头部线圈高频电流的幅度和相位,即改变了线圈的有效阻抗。 H1

压缩机过热故障分析

压缩机过热故障分析 育龙网 WWW.CHINA-B.C0M 2009年06月15日来源:互联网 育龙网核心提示: 1.引言压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷 1.引言 压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷却措施。然而在实际使用中,由于超范围使用、电源不正常、电机过载、制冷剂泄漏、冷凝压力太高等问题引起的电机高温、排气温度过高、润滑油焦糊等过热现象比较常见,并已成为压缩机常见故障之一。 气缸排气温度是判断压缩机是否过热的重要指标之一。由于测量上的困难,实际应用中是通过测量排气管表面的温度(即排气管温度)来判断是否过热。由于润滑油到150°C 时会变得很稀薄,在175°C左右将开始分解变质,因此气缸排气温度应该控制在150°C 以内,而排气管温度通常比排气温度低10~40°C。因此,如果排气管温度超过135°C,一般认为压缩机已经处于严重过热状态;而如果排气温度低于120°C,压缩机温度正常。空调压缩机和冰箱压缩机的排气温度通常还要低一些。 2.危害 高温对压缩机电机和润滑油具有很大的危害。长时间过热,不仅会降低电机绝缘性能和可靠性,缩短电机寿命,而且还会降低润滑油的润滑能力,甚至引起润滑油碳化和酸解。 润滑油碳化后润滑能力大大降低,将引起曲轴、连杆、活塞、活塞环等严重磨损,甚至会出现抱轴、卡缸等堵转现象以及由堵转而引起的连杆折断事故。碳化油还会在阀片和阀板上结碳,引起阀片泄漏和阀片断裂。润滑油中的酸性物质会腐蚀绕组漆包线、降低绕组的绝缘性能。酸化润滑油还会引起镀铜现象。 实际中,润滑油碳化总是伴随着酸解,因而磨损和腐蚀总是行影相随。磨损产生的细小金属屑夹杂于润滑油中,一方面削弱了润滑油的润滑作用;另一方面,细小的金属屑由于磁性而聚集于电机绕组中,构成导电回路。漆包线绝缘层被腐蚀后就可能出现一些微小的裸露点,很容易引起局部放电。如果金属粒形成导电回路,立即会短路或击穿,烧毁电机。

离心式压缩机喘振分析及解决措施

离心式压缩机喘振分析及解决措施 摘要:论述了离心式压缩机喘振机理、影响因素、危害及判断,以及本车间气压机组发生喘振时的处理措施。 关键词:离心式压缩机喘振机理影响因素危害判断措施 0 引言 离心压缩机是速度式压缩机中的一种,由于具有排气量大,效率高,结构简单,体积小,气体不受油污染以及正常工况下运转平稳、压缩气流无脉动等特点,目前已广泛应用于石油、化工、冶金、动力、制冷等行业。离心压缩机的安全可靠运行对工业生产有着非常重要的意义。然而,离心压缩机对气体的压力、流量、温度变化较敏感,易发生喘振。喘振是离心压缩机固有的一种现象,具有较大的危害性,是压缩机损坏的主要诱因之一。早在1945年于英国首先发现了离心压缩机的喘振现象并引起了人们的注意。 1 离心式压缩机的喘振机理及影响因素 1.1 离心式压缩机的喘振机理离心压缩机工作的基本原理是利用高速旋转的叶轮带动气体一起旋转而产生离心力,从而将能量传递给气体,使气体压力升高,速度增大,气体获得了压力能和动能。在叶轮后部设置有通流截面逐渐扩大的扩压元件(扩压器),从叶轮流出的高速气体在扩压器内进行降速增压,使气体的部分动能转变为压力能。可见,离心压缩机的压缩过程主要在叶轮和扩压器内完成。当离心压缩机的操作工况发生变动,而偏离设计工况时,如果气体流量减小则进人叶轮或扩压器流道的气流方向发生变化,气流向着叶片的凸面

(工作面)冲击,在叶片的凹面(非工作面)的前缘部分,产生很大的局部扩压度,于是在叶片非工作面上出现气流边界层分离现象,形成旋涡区,并向叶轮出口处逐渐扩大。气量越小,则分离现象越严重,气流的分离区域就越大。由于叶片形状和安装位置不可能完全相同及气流流过叶片时的不均匀性,使得气流的边界层分离可能先在叶轮(或叶片扩压器)的某个叶道中出现,当流量减少到一定程度,随着叶轮的连续旋转和气流的连续性,这种边界层分离现象将扩大到整个流道,而且气流分离沿着叶轮旋转的反方向扩展,以至叶道中形成气流旋涡,从叶轮外圆折回到叶轮内圆,此现象称为旋转脱离,又称为旋转失速。发生旋转脱离时叶道中气流通不过去,级的压力突然下降,排气管内较高压力的气体便倒流回级里来。瞬间,倒流回级中的气体补充了级流量的不足,叶轮又恢复正常工作,重 新把倒流回来的气体压出去。这样又使级中流量减小,于是压力又突然下降,级后的压力气体又倒流回级中来,如此周而复始,在系统中产生了周期性的气流振荡现象,这种现象称为“喘振”。 2 喘振的危害及判断 2.1 喘振的危害喘振现象对压缩机十分有害,主要表现在以下几个方面:①喘振时由于气流强烈的脉动和周期性振荡,会使供气参数(压力、流量等)大幅度地波动,破坏了工艺系统的稳定性。②会使叶片强烈振动,叶轮应力大大增加,噪声加剧。③引起动静部件的摩擦与碰撞,使压缩机的轴产生弯曲变形,严重时会产生轴向窜动,碰坏叶轮。④加剧轴承、轴颈的磨损,破坏润滑油膜的稳定性,使轴承合金

离心式压缩机常见故障分析及处理方法

压缩机常见故障分析及处理方法 序号故障现象故障原因处理方法 1 压缩机异常 振动 1.机组不对中 1.重新对中,消除管道外力的影响,必要时进行热态对中检查 2.压缩机转子不平衡 2.检查转子弯曲度及是否结垢或破损,如有必要应对转子重新 进行平衡 3.轴承不正常 3.检查并修复轴承消除半速涡动因素 4.联轴器故障或不平衡 4.检查修复或更换联轴器,进行平衡 5.动静部分摩擦,基础不均 匀下沉或机座变形 5.调整安装间隙或更换超差件,消除机座变形,加固基础 6.油压、油温不正常 6.检查各润滑点油压,油温及油系统工作情况,找出异常原因 设法解决 7.压缩机喘振7.检查压缩机运行时是否远离喘振点,防喘裕度是否正确,气 体纯度是否降低,根据原因按操作法规定进行处理消除 8.气体带液或杂物浸入8.消除带液和清除杂物 9.轴颈测振部位的机械跳 动和电跳动过大 9.消除轴颈部位的机械和电磁偏差 10.转子热弯曲10.修复或更换转子 11.转子有裂纹11.修复或更换转子 2 压缩机管线 异常振动 1.管道应力过大 1.消除管道应力 2.压缩机气流激振 2.调整工艺参数,消除气流激振 3.管线支撑设计不当 3.重新复核压缩机管线支撑 3 压缩机轴向 推力过大及 轴位移增加 1.级间密封损坏或磨损,造 成密封间隙增大 1.更换密封 2.齿式或膜片式联轴器齿 面或磨损磨损 2.修复或更换联轴器及其余部件 3.压缩机喘振或气流不稳 定 3.及时调整工艺参数,使压缩机运行稳定 4.推力盘端面跳动大,止推 轴承座变形大 4.更换推力盘或轴承座 5.轴位移探头零位不正确, 探头特性不好 5.校核探头,重新校对探头零位 6.油温、油压波动 6.调整油温、油压 7.止推轴承损坏7.更换止推轴承 4 压缩机轴承 温度升高 1.温度计安装不当或热电 偶损坏 1.检查测温套的安装情况,校准温度计,更换或修复热电偶及 其余测温元件 2.供油温度高或油质不符 合要求 2.检查冷却水的压力和流量,投用备用冷却器或更换补充新油 3.润滑油量减小或油压低 3.1 检查油的粘度、含水量和抗乳化度等 3.2 检查油箱的油位及泵工作情况 3.3 检查润滑油过滤器前后的压差,投用备用过滤器或清洗 3.4 检查油系统阀门开度和漏油情况 4.轴承损坏 4.检查修理或更换轴承 5.轴向推力增大或止推轴 承组装不当 5.检查压缩机转子及密封情况,调整间隙,检查止推轴承,消 除缺陷,消除压缩气体带液现象 6.压缩机气封漏气 6.调整气封间隙或更换气封

压缩机常见故障分析及处理方案

一、对于活塞式压缩机,什么事余隙容积?由哪几部分组成? 二、活塞式压缩机排气量不足的原因有哪些 (1)气缸、活塞、活塞环磨损严重、超差、使有关间隙增大,泄漏量增大,影响到了排气量。属于正常磨时,需及时更换易损件,如活塞环等。 (2)填料函不严产生漏气使气量降低。其原因首先是填料函 本身制造时不合要求;其次可能是由于在安装时,活塞杆与填料函中心对中不好,产生磨损、拉伤等造成漏气。一般在填料函处加注润滑油,它起润滑、密封、冷却作用。 (3)压缩机吸排气阀的故障对排气量的影响。阀座与阀片间 掉入金属碎片或其它杂物,关闭不严,形成漏气。这不仅影响排气量,而且还影响间级压力和温度的变化。阀座与阀片接触不严形成漏气而影响了排气量,一是制造质量问题,如阀片翘曲等,二是由于阀座与阀片磨损严重而形成漏气。 (4)气阀弹簧力匹配不好。弹力过强会使阀片开启迟缓,弹

力太弱则阀片关闭不及时,这些不仅影响了气量,而且会影响到 功率的增加,以及气阀阀片和弹簧的寿命。同时,也会影响到气 体压力和温度的变化。 (5)压紧气阀的压紧力不当。压紧力小,则要漏气,当然太紧 也不行,会使阀罩变形损坏。一般压紧力p=kD2P2π/4,D 为阀腔直径,P2 为最大气体压力,k>1,一般取1.5~2.5,低压时k=1.5~2,高压时k=1.5~2.5。这样取k 值,实践证明是好的。气阀有故障,阀盖必然发热,同时压力也不正常。 三、活塞式压缩机排气温度高的原因有哪些?处理措施有哪些? 造成活塞压缩机机排气温度过高的原因如下: 1、一级吸气温度高。 2、级间冷却器冷却效率低,致使后一级的吸气温度高。 3、气阀有漏气现象,使排出的高温气体又漏回气缸,重新压缩后,排出温度就更高。 4、由于后一级漏气,本级的压缩比升高,致使排气温度升高。 5、活塞环磨损或质量不好,活塞两侧吸、排气之间相互窜气。 6、气缸水套及冷却水管上有水垢、水污,影响冷却效率。 故障解决方法: 1、在滤清器处搭阴棚或用淋水法降低一级吸气温度,夏天尤其就注意。当吸气温度超过额定值时,不能运转。 2、修理中间冷却器。

离心式压缩机喘振的分析和处理方法

离心式压缩机喘振的分析和处理方法 摘要:本文就离心式压缩机为主要描述对象,分析了喘振的原因和主要问题,并针对这些原因提出了消除喘振的方法。就喘振现象的发生机理以及影响因素,本文做出了详细论述,旨在为减轻喘振来提高离心式压缩机的性能。 关键词:离心式压缩机喘振分析 前言 离心式压缩机具有很多特点,诸如效率高,排气量大以及气体不受油污污染以及运转平稳等,成为目前应用广泛的速度式压缩机种类之一。在工业生产上,离心压缩机的安全性能起重要作用。但离心压缩机容易发生喘振,作为一种有着较大危害的固有现象,喘振对压缩机的使用寿命有很大的损害,应该受到重视。 1.离心式压缩机的喘振机理 由实际物体的高速转动带来气体的转动,从而形成离心力,这一过程实现了能量的传递,气体获得动能和压力能。叶轮中高速转动的气体在扩压器内实现动能向压力能的转化。所以说主要的压缩过程在叶轮和扩压器内。这也是离心式压缩机的基本工作原理。当时机情况偏离设计工况时,会出现气流量减小的情况,以致进入叶轮和扩压器的气体反向流动,冲向工作面,增加了非工作面边缘的扩压度,导致气流边界分层,最终形成了漩涡区。在越靠近叶轮出口的地方,这种漩涡现象越严重,波及的范围也更大。这是与偏离设计工况的程度成正相关关系的,因为偏离程度越大,气流量也就越小,工作面和非工作面之间出现的气流边界分层现象也就原来越严重。而在离心式压缩机的实际构造中,由于叶轮中叶片的不完全对称性,导致气流流动的不均匀,气流边界分层可能会出现在不确定的某个叶道中。当气流量减小到某一临界值时,叶轮的旋转会将整个分层现象扩张到更广的区域,此时气流向叶轮旋转的反向流动,气流旋涡开始形成,并出现在叶轮的外圆和内圆中,发生旋转失速的情况。旋转失速的情况下,叶道中的气流无法通过,排气管中的高压气体会向压力下降的级里流动,及时填补了级流量不足的空缺,促使压缩机恢复运转,将倒流的气体重新排放出去。此时又出现了级中气流量不足的情况,然后高压气体又流向低压区域的级里,促使叶轮正常工作。这样周而复始的循环工作兴城路周期性的气流振荡,即“喘振”现象。 2.喘振的危害及判断 2.1.喘振的危害 喘振对于离心式压缩机的危害很大,可以总结为以下几点:①离心机的工艺过程和工作系统都是在特定的参数下进行的优化设计,尤其是对于气体参数的要求更高,但是喘振时气流的强烈振荡会带来一定的不稳定性。②叶片的强烈震动会带来极大噪声。③各部件之间的摩擦加大,压缩机的主轴也会受到影响,甚至

压缩机探头的安装,调试及故障判断

引言 压缩机是化工生产装置中重要的设备,广泛使用的有离心式压缩机和往复式压缩机(对称平衡和对置平衡)两种,它将工艺介质加压至后系统需要的反应压力,使装置生产出高质量的化工产品。对压缩机运转状况的监控主要靠电涡流传感器(探头)来完成,所以我们对探头正确的安装,调校及良好的维护,使压缩机长周期运转成为可能。 准备知识 概念: 楞次定律:感生电流的方向,总是使它的磁场阻碍原来磁场的变化。 固有频率:系统的自由振动频率。一个机组或其中的一个零部件一旦制造完成,它的固有频率则是一定的。 临界转速:是指产生大振动幅度时的任何转速。此转速常与系统的固有频率相对应。 压缩机的喘振:压缩机在运转过程中,流量不断减小,当小到最小流量界限时,流动就会严重恶化,出口压力突然大幅度下降,此时 管网压力高于压缩机出口压力,气体倒流回压缩机出口,压 力平衡后,压缩机又向管网供气,管网压力恢复后,压缩机 流量又减小,管网的气体又产生倒流,周而复始,产生“喘 振”。 单位换算 1MM=1000UM 1道=10UM 1MIL=2.54道=25.4UM 探头 种类(电涡流传感器):5MM,8MM,11MM,14MM四种,其中5MM,8MM电涡流传感器的灵敏度为200MV/MIL(7.87V/MM),线性范 围达2MM(80MILS),11MM,14MM电涡流传感器的灵敏度为 100MV/MIL(3.94V/MM),线性范围达4MM(160MILS)。四种传 感器均有正装,反装之分,见图一:

3300XL 8MM电涡流传感器 使用条件:-24VDC 供电,10KΩ负载,观测目标材料为:4140#钢。 电源要求:-23----26VDC,最大电流为12MA,当电压高于-23.5VDC时,会导致线性范围的减小。 供电电压的灵敏度:输入供电电压每变化1VDC,输出电压变化小于1MVDC。 直流阻抗:7.3Ω。 现场连线:应使用三芯屏蔽电缆,从前置器到监视器的最大距离为305米。 线性范围:2MM(80MILS),从被测靶面0.25---2.3MM(10---90MILS)。 推荐间隙设定值:1.27MM(50MILS)。 系统长度:5米系统:探头总长(探头壳体+猪尾线的长度)+延伸电缆 长度=5米。 9米系统:探头总长(探头壳体+猪尾线的长度)+延伸电缆 长度=9米。 环境温度:探头:-35---177℃ 延伸电缆:-51---177℃ 前置器:-35---85℃ 3300XL 8MM电涡流传感器解读: 部件号-AA-BB-CC-DD-EE 部件号:330101,330102,330103,330104,330106,330140,330141。 AA:无螺纹长度:04=0.4英寸 BB;壳体总长度:24=2.4英寸 CC:总长度:05=0.5米

压缩机常见故障及解决方法

压缩机常见故障及解决方法 摘要:在科学技术日益发展的今天,压缩机在各个行业受到广泛应用,尤其是在大型的煤化行业、机械行业等行业中。压缩机状态的好坏直接决定着装置的安全运行。活塞式压缩机在运转过程中会出现烧瓦,注油器不上油及压力偏低气量不足等常见故障。如何迅速准确地判断并及时处理故障,直接影响压缩机的开工率和产品产量。本文主要分析压缩机的基本原理、常见故障及解决方法。 关键词:压缩机,故障,烧瓦,注油,压力偏低 1压缩机分类与简介 随着工业技术的发展。空压机的类别与型号不断更新,按原理和结构不同可以分为:活塞式、回转式,离心式与轴流式四种。 而根据应用不同又可分为不同的类型,如用于制冷的压缩机通常可分为[1]:一、封闭式压缩机:此类型压缩机由于功率小,主要用于冰箱、家用空调等电器中,它由电机(绕组、转子等)与机械(曲轴、活塞等)部分组成一体,置于密封的缸体中。一旦出现故障修复起来比较困难。二、半封闭和开启式压缩机:此类型压缩机由于功率大,广泛用于中央空调、冷库等大型制冷、空调净化等部门,由于电机与机械分为两部分,一经出现故障可便于拆装修理。 2压缩机的常见故障及解决方案 从气流的角度来讲,可能出现的故障是:风压过高或压缩空气温度过高;风量不足或风量过低。前者当保护装置失灵时,有可能引起积炭自燃、压力容器爆炸,而后者直接影响生产。图1为压缩机常见故障树。从压风机结构来看,造成压缩机故障主要有润

滑系统故障、冷却水路故障,压缩空气气路故障和机械故障四类[2]。 下面主要分析以下几点常见故障[3]: 2.1烧瓦 活塞式压缩机运转中出现烧瓦、主轴瓦或连杆大头瓦巴氏合金层烧伤或脱落,使轴瓦温度升高。产生高温并冒烟,巴氏合金熔化。 2.1.1 油温过低引起烧瓦 以往我们注意曲轴箱油温,都是担心油温过高引起烧瓦。比如说明书中注明油温不能超过60℃或7O℃,但确投有油温下限.忽略了油温过低也引起烧瓦。冬季停机之后压缩机曲轴箱油温降低,所以油非常粘稠,开机后发生烧瓦。因此,冬季采用稠度低的机油为好。 图l 压缩机常见故障树 2.1.2 曲轴箱油位过低引起烧瓦 油标下孔堵塞,油位低时不能发现油位下降,曲轴箱油位过低时.油泵断续吸入空

浅析离心式压缩机喘振故障原因及解决方法

浅析离心式压缩机喘振故障原因及解决方法 喘振问题作为离心式压缩机最常见的问题之一,严重影响着压缩机的运行,也是造成压缩机损坏的主要原因之一。在实际生产中,往往由于对喘振故障认识不足,可能会出现压缩机发生喘振故障时没有得到及时的判断和处理,造成压缩机硬件损坏,甚至危及压缩机使用寿命及功能的情况发生。 一、离心式压缩机控制系统现状 离心压缩机控制系统主要是保障压缩机的安全、稳定运行,充分应用压缩机工艺区域,在工艺压力与流量范围内,保障工况稳定运行,提升离心压缩机操作的便捷性与自动化水平。通过应用控制系统,可将离心压缩机的工作状态实时展现出来,促使操作人员掌握相应的信息,实时储存运行数据,为后期查询与分析奠定基础。 受到某些原因的影响,若离心式压缩机运行不稳定,控制系统可及时预测各类影响因素,在出现故障与问题的情况下,通知操作人员。系统能够依据不同的情形,采取针对性的解决对策,合理做出动作,促使离心式压缩机迅速恢复到正常的运行轨道。离心式压缩机控制系统设计本身属于关键性问题,本文主要从以下三方面入手,深入分析离心式压缩机控制系统设计现状,主要包括:(1)选择控制系统硬件平台,目前国内是在经典压缩机控制系统基础上,选择模拟调节器,实现运行参数(比如:排气量、排气压力等)调节,以此实现对保护装置安全运行提供保障,更好的满足实际工艺需求。但就实际情况而言,这类调节器难以应变大负荷,就突发工况变化无法精准应对,难以使机组处于最佳运行状态中。(2)合理选择控制系统软件,国外进口的压缩机组,供货商一般会选择配套的控制系统,这类系统的针对性较强,且控制效果比较理想。也可购买第三方厂家的主要控制软件,将其直接应用在上位机监控系统内,可实现开发周期缩短,但这类方式会增加开发成本。(3)选择控制策略,在离心式压缩机控制系统设计工作中,应当将防喘振数字划分为直接控制,实现最小流量控制,就不同故障情形,采取不同的解决对策。不断引入先进的控制技术,比如:模糊控制、神经网络控制技术,为后期压缩机智能控制奠定良好基础。在智能化技术背景下,传统的控制方式已经难以满足上述控制需求,只有积极引入先进的PDI控制技术,才可实现离心压缩机控制水平的提升。 二、离心式压缩机喘振故障的解决方法

离心式压缩机常见振动故障诊断及解决办法

离心式压缩机常见振动故障诊断及解决办法 摘要离心压缩机是高速运转的设备,运行中产生振动是不可避免的。但是振动值超出规定范围时的危害很大。对设备来说,引起机组静动件之间摩擦、磨损、疲劳断裂和紧固件的松脱,间接和直接发生事故。对操作人员来说,振动噪音和事故都会危害健康。下面就常见的振动现象进行简单诊断并提出相应的解决的办法。 关键词离心压缩机;振动;转子;共振;喘振 1 油膜振荡 1.1 油膜振动值的变化有一定规律 1)振动值与环境温度的变化存在一定规律,温度下降,振动值略有升高;反之会下降。环境温度的变化影响润滑油温、润滑油粘度、油膜刚度的变化,从而影响轴承振动值的变化。 2)振动值大小与声音的剧烈程度同步:振动大时,声音剧烈;振动小时,声音平缓。 3)其他运行参数变化时,振动值变化较迟钝,压缩机在空负荷运行时(吸风阀未打开时)就产生剧烈振动,在吸风、力口压过程中,振动值基本不变。 1.2 故障解决方案 油膜振荡是由半速涡动发展而成,即当转子转速升至两倍于第一临界转速时,涡动频率与转子固有频率重合,使转子一轴承系统发生共振性振荡而引起,如果能提高转子的第一临界转速,使其大于0.5倍工作转速,即可避免发生油膜振荡,但这显然无法实现。 只有通过加大轴承的载荷,使轴颈处于较大的偏心率下工作,提高轴瓦稳定性的办法解决。 在振荡发生时,提高油温,降低润滑油的粘度。 2 临界转速 临界转速是指数值等于转子固有频率时的转速。转子如果在临界转速下运行,会出现剧烈的振动,而且轴的弯曲度明显增大,长时间运行还会造成轴的严重弯曲变形,甚至折断。 装在轴上的叶轮及其他零、部件共同构成离心式压缩机的转子。离心式压缩

压缩机常见三种详细故障分析报告

压缩机常见三种详细故障分析 压缩机常见故障分析(1)——电机烧毁 电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转; (2)金属屑引起的绕组短路;(3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6) 用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1.异常负荷和堵转 电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加,以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大,是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸(活塞卡在气缸内),连杆断裂等严重损坏。 堵转时的电流(堵转电流)大约是正常运行电流的4-8倍。电机启动瞬间,电流的峰值可接近或达到堵转电流。由于电阻放热量与电流的平方成正比,启动和堵转时的电流会使绕组迅速升温。热保护可以在堵转时保护电极,但一般不会有很快的响应,不能阻止频繁启动等引起的绕组温度变化。频繁启动和异常负荷,使绕组经受高温考验,会降低漆包线的绝缘性能。

离心式压缩机的防喘振控制(正式版)

文件编号:TP-AR-L6485 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 离心式压缩机的防喘振 控制(正式版)

离心式压缩机的防喘振控制(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。 离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的

“喘振”。 喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二是管路系统中要有能自由升降的液位或其他能贮存和放出能量的部分。 因此,对离心泵的情况,当遇到具有这种特点的管路装置时,则应避免选用具有驼峰型特性的泵。 对离心压缩机,由于它的性能曲线大多呈驼峰型,并且输送的介质是可压缩的气体,因此,只要串联着的管路容积较大,就能起到贮放能量的作用,故发生不稳定跳动的工作情况便更为容易。连接离心式压缩机不同转速下的特性曲线的最高点,所得曲线称喘振极限线,其左侧部分称为喘振区,如图6—20中

状态检测、故障诊断技术在离心压缩机上的运用

状态检测、故障诊断技术在离心压缩机上的应用 原作者:蔡广斌温宾江 出处: 【关键词】离心式压缩机,振动,故障诊断 【论文摘要】旋转机械故障诊断技术在发电、化工行业等大型透平,离心机组上的应用日益广泛。介绍了大庆天然气公司从美国DRSSER-RAND公司引进的D10R9B离心压缩机应用振动检测,故障诊断技术,分析、推断、处理的轴振动超高的问题及收到的良好效果。 Application of Condition Detecting and Trouble Diagnosis Technology on Centrifugal Compressor

AbstractSPAN class=zye style="FONT-SIZE: 10pt">Application of rotary mechanism trouble diagnosis technology on Large turbin and centrifugal unit used in power station and chemical industry is getting extensive day by day.Da Qing Natural Gas Company imported D10R9B Centrifugal compressor from American DRSSER-RAND Company is introduced.Problems of exceeding vibration limit of shaft are analyzed,judged and treated by using vibration detection and trouble diagnosis technology,and good effect is obtained. Key words SPAN class=gje style="FONT-SIZE: 10pt">Centrifugal compressor Vibration Trouble diagnosis D10R9B离心压缩机是大庆天然气公司喇二压气站浅冷装置从美国DRSSER-RAND公司引进的。1998年10月2日投运时,轴振动在同意范围之内。运行52天后,压缩机的驱动端轴振动报警,VT-701Y在53μm左右,之后此状态没有改善。1999年6月20日开始,VT-701Y达到60μm,轴振动加剧,阻碍正常生产。该机组每天处理天然气40万m3,每天产值30万元左右。而且该机组采纳的是90年代先进设计、制造技术。为了幸免事故扩大,需尽快查明振动值高的缘故,采取有效的处理措施,把损失降到最小。我们组织有关人员对该机组及相关系统实施振动检

离心式空气压缩机运行故障分析及处理

离心式空气压缩机运行故障分析及处理 姓名:XXX 部门:XXX 日期:XXX

离心式空气压缩机运行故障分析及处理 国内工业生产已经步入机械自动化时代,机械控制系统是企业内部 生产调度的主要平台,满足了各类机械设备传动作业的控制需求。离心式空气压缩机是现代工业常见的一种设备,利用动能转换原理提升了设备内部的气体压力,维持着内外装置的稳定性运转。受到多方面因素的干扰,离心式空气压缩机故障率持续上升,对机械控制系统运行造成了诸多不便。本文分析了离心式空气压缩机工作原理,对其常见运行故障分析及处理方法进行总结,为机械自动化生产提供可靠的指导。 空气压缩机是能量转换的有效控制设备,通过把电动机运转产生的 机械能变为气体压力能,帮助机械设备内部系统正常地运转动作。伴随着我国空气压缩行业技术的快速发展,空气压缩机在结构布局及功能形式方面有了很大的改进,离心式空气压缩机成为了新一代空气压缩装备。由于石化工业生产对离心式压缩机原理掌握不足,实际生产控制存在着设备故障风险,详细分析离心式压缩机故障成因及处理方法,对机械设备自动化调度具有指导性作用。 1.离心式压缩机原理从不同的角度对压缩机进行划分,其可以划分的类别是多种多样的,如图1,常按照压缩机形式分为固定式、移动式、封闭式等类别,离心式压缩机是最为常用的设备之一。 1.1. 原理。离心式空气压缩机属于速度式压缩机,在用气负荷稳定时离心式空气压缩机工作稳定、可靠。离心式空气压缩机是由叶轮带动气体做高速旋转,使气体产生离心力,由于气体在叶轮里的扩压流动,从而使气体通过叶轮后的流速和压力得到提高,连续地生产出压缩空气。依据这一原理,离心式压缩机在机械传动系统中可提供足够的空气压力,促进

空压机常见故障及处理方法

本文详细分析了空气压缩机的常见故障现象、故障原因及处理方法。如,在发动机运转,空气压缩机向储气罐充气的情况下,气压表指示气压达不到起步压力值(空气压力不足)。出现这种情况的原因可能是: 1、气压表失灵。 2、空气压缩机与发动机之间的传动皮带过松打滑或空气压缩机到储气罐之间的管路破裂或接头漏气。 3、油水分离器、管路或空气滤清器沉积物过多而堵塞。 4、空气压缩机排气阀片密封不严,弹簧过软或折断,空气压缩机缸盖螺栓松动、砂眼和气缸盖衬垫冲坏而漏气。 5、空气压缩机缸套与活塞及活塞环磨损过甚而漏气。 那么相对应的处理方法是: 1、观察气压表,如果指示压力不足,可让发动机中速运转数分钟,压力仍不见上升或上升缓慢,当踏下制动踏板时,放气声很强烈,说明气压表损坏,这时应修复气压表。 2、如果上述试验无放气声或放气声很小,就检查空气压缩机皮带是否过松,从空气压缩机到储气罐、到控制阀进气管、接头是否有松动、破裂或漏气处。 3、如果空气压缩机不向储气罐充气,检查油水分离器和空气滤清器及管路内是否污物过多而堵塞,如果是堵塞,应清除污物。 4、经过上述检查,如果还找不到故障原因,则应进一步检查空气压缩机的排气阀是否漏气,弹簧是否过软或折断,气缸盖有无砂眼、衬垫是否损坏,根据所查找的故障更换或修复损坏零件。 5、检查空气压缩机缸套、活塞环是否过度磨损。 6、检查并调整卸荷阀的安装方向与标注(箭头)方向是否一致。 具体的各类空气压缩机的故障及排除方法详见下表1——1。 表1——1 空气压缩机的故障及排除方法 故障现象故障原因处理方法 空气压缩机空气压力不足 1、气压表失灵。 2、空气压缩机与发动机之间的传动皮带过松打滑或空气压缩机到储气罐之间的管路破裂或接头漏气。 3、油水分离器、管路或空气滤清器沉积物过多而堵塞。 4、空气压缩机排气阀片密封不严,弹簧过软或折断,空气压缩机缸盖螺栓松动、砂眼和气缸盖衬垫冲坏而漏气。 5、空气压缩机缸套与活塞及活塞环磨损过甚而漏气。 1、观察气压表,如果指示压力不足,可让发动机中速运转数分钟,压力仍不见上升或上升缓慢,当踏下制动踏板时,放气声很强烈,说明气压表损坏,这时应修复气压表。 2、如果上述试验无放气声或放气声很小,就检查空气压缩机皮带是否过松,从空气压缩机到储气罐、到控制阀进气管、接头是否有松动、破裂或漏气处。

离心式压缩机的喘振原因及预防14

离心式压缩机的喘振原因及预防] 离心式压缩机的喘振原因及预防 田立华 (中石油前郭石化分公司) 摘要离心式压缩机发生喘振时,转子及定子元件经受交变的动应力,级间压力失调引起强烈的振动,使密封及轴承损坏,甚至发生转子与定子元件相碰、压送的气体外泄、引起爆炸等恶性事故。因此,离心式压缩机严禁在喘振区域内运行。本文针对喘振的原因和预防措施做了详细论述。 关键词离心式压缩机喘振喘振点性能曲线旋转脱离 一、喘振机理 喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。当外界条件适合内在因素时,便发生喘振。 2.喘振与管网的关系 离心压缩机的喘振是其本身的固有特性。压缩机是否在喘振工况点附近运行,这主要取决于管网的特性曲线P=Pa+AQ2。图2为离心压缩机和管网联合工作性能曲线。交点M为稳定工况点,当出气管路中的闸阀关小到一定程度时,管道中的阻力系数A增大,管网特性曲线左移到图2中曲线4的位置时,与压缩机性能曲线2交于N点,压缩机出现喘振工况,N点即为喘振点。相反闸阀开大时,管道中的阻力系数A减小,管网特性曲线1右移,压缩机流量达到Qmax时,出现滞止工况。最小流量与滞止流量之间的流量为离心压缩机的稳定工况范围。 3.喘振的产生 从图2可以看出:由于管网阻力的增加,管网特性曲线左移,致使压缩机工况点向小流量偏移。压缩机的流量Qj 减少,气体进入叶轮和叶片扩压器的正冲角i增加,附面层分离区扩大,产生相对于叶轮旋转方向的“旋转脱离”,使叶轮前后压力产生强烈的脉动。发生旋转脱离时在叶轮的凹面形成涡流区,当流量减小到Qmin时,上述的正冲角i 增加得更大,涡流区扩大到整个叶片流道,气流受到阻塞,压缩机出口压力突然下降,而管网中气体压力并不同时下降,这时,管网中压力P1大于压缩机出口压力P2,因而管网中气体倒流向压缩机,直至管网中压力下降到低于压缩机出口压力时才停止倒流。这时压缩机又开始向管网压送气体,使管网中的气体压力再次升高至P1时,压缩机的流量Qj减少到Qmin,出口压力突然降到P2,P1>P2后,管网中气体又倒流向压缩机。如此周而复始地进行,压缩机时而有气流输出,时而有气体由管路倒灌入机器,产生周期性气流脉动,出现喘振。喘振过程中参数变化的频率和幅度的大小与管网容量有很大的关系。管网的容量相当于整个系统的基本谐振器。管网的容量愈大,喘振的频率愈低,振幅愈大;管网的容量愈小,喘振的频率则愈高,振幅愈小。由此可知,发生喘振的根本原因就是低流量,在操作中造成低流量的因素很多,归纳为以下几个方面: (1)压缩机出口压力升高,系统压力大于出口压力,使气体流量降到喘振流量。稳定系统压力高,造成压缩机出口憋压,气体倒流入压缩机,造成机内气体低流量。 (2)入口流量低于规定值,反飞动调节阀失灵。在一定转数和一定气体密度下,能维持一定压力,当开、停机时气体流量少,或者放火炬阀开得过大,最容易引起压缩机入口流量低。 (3)气体密度变化,在一定转数下,离心力下降,引起出口压力及排量下降,通常误认为是抽空现象。 (4)分馏系统操作不稳致使压缩机入口气体带油(例如瓦斯罐液位、界位失灵),液体组分进入机体。 (5)汽轮机的蒸汽压力低或质量差(温度低),机组出现满负荷,转速下降。 (6)调速系统失灵,辅助系统故障,真空效率下降,机组不能额定做功。

相关文档
最新文档