ANSYS与ABAQUS稳定性分析比较

ANSYS与ABAQUS稳定性分析比较
ANSYS与ABAQUS稳定性分析比较

ANSYS与ABAQUS稳定性分析比较(转载-来自结构工程师崔家春的个人空间)其实,这些东西很简单,大多数朋友应该都比较了解。但是作为整个稳定性分析的一部分,觉得还是整理一下吧,也算是对后来者又抛了一块砖。

算例描述:

为了能体现出一般性,我故意找了一个比较大的结构。这是一个单层网壳结构,最大尺寸在90m左右,杆件长度在1.13m-3.63m之间,截面形式为箱型截面;构件布置见下图。荷载任意挑选一个标准组合(具体是哪个不记得,只是验证软件单元特征,没有关系)。

在ANSYS软件中分别采用BEAM44、BEAM188和BEAM189进行计算。分析结果见下文。

2阶屈曲荷载因子;

由表格可以看出,利用ANSYS软件进行Buckling分析时,不同BEAM单元类型对单元剖分数量的要求。

(1)BEAM44和BEAM189对单元的剖分数量要求较低,每根构件采用1个单元和采用2、3、4个单元时计算结果相差不大,在工程上这种误差应该是可以接受的。

(2)BEAM188单元对单元剖分数量的要求要高一些,从结果来看,每根杆件采用5个BEAM188单元计算结果才与采用1个BEAM44或BEAM189单元计算结果相同。

(3)在利用ANSYS进行Buckling分析时,以选用BEAM44与BEAM189单元为佳。

(4)选用BEAM44单元时,虽然每根杆件采用1个单元和多个单元计算结果相差不大,但是本人还是建议每根杆件选用2至3个单元。理论上对于每根构件而言,在设计时已经保证了其稳定性,但是我们也可以在整体稳定性分析过程中进一步对其进行校核。如果采用1个单元,就达不到这个效果。

(5)理论上能选择189单元是最好不过啦,不过考虑其是3节点单元,有时候从其它软件数据转过来时可能会有点不方便。

(6)考虑到后期进行非线性稳定计算,由于BEAM44单元不能考虑材料非线性,在前后延续上还是采用BEAM189比较好,而且3节点单元在单元剖分数量上要求也较低。

下面给出每种单元计算得到的屈曲模态(每行从左到右分别为第1、2、3阶):

BEAM44单元计算结果

BEAM188单元计算结果

BEAM189单元计算结果

从振型图可以看出,不同单元类型、不同单元剖分数量条件下计算得到的屈曲模态是相同的,虽然屈曲荷载因子有所不同。

在ABAQUS软件中,常用的梁单元有B31、B32和B33。其中B31和B33是两节点单元,而B32是三节点单元。仍采用上文ANSYS分析对象为模型,计算结果见下文。

2阶屈曲荷载因子;

而B32和ANSYS的BEAM189相似,都是二次积分梁单元;B33相当于ANSYS 的BEAM44单元,都是Euler-Bernoulli梁。所以从上面表格中可以看出,它们的计算结果数据特征也较为相似。

(1)B31对单元剖分的密度要求较高,每根构件采用3个B31单元时,其计算结果才与采用1个B32单元时的相同;而且从计算结果的稳定性来看,选用B31单元时,其单元剖分数量应在3以上;

(2)B32是三节点单元,所以计算精度较高。从分析结果来看,在进行Buckling 分析时,每根构件采用1个B32已经满足工程精度要求;

(3)B33介于B31和B32之间,更接近与B32;分两段已经足够精确。(4)建议在Buckling分析中采用B32单元。

下面给出B31和B32单元计算得到的屈曲模态(每行从左到右分别为第1、2、3阶):

B31单元计算结果

B32单元计算结果

B33单元计算结果

从振型图可以看出,不同单元类型、不同单元剖分数量条件下计算得到的屈曲模态是相同的,虽然屈曲荷载因子有所不同。

前文《ANSYS与ABAQUS稳定性分析比较1-Buckling分析ANSYS单元选取》和《ANSYS与ABAQUS稳定性分析比较2-Buckling分析ABAQUS单元选取》分别利用ANSYS和ABAQUS对一个单层网壳结构进行Buckling分析,目的是比较这两个软件的不同梁单元对单元剖分数量的要求,以及通过计算结果分析每种单元对Buckling分析的适用性。这里我想就两个软件的单元进行一下对比。前文中建议,当采用ANSYS分析时,可以采用BEAM189单元,而采用ABAQUS 时宜选取B32单元。

那么我们就把问题集中在这两种单元上吧。

回头比较一下BEAM189和B32的计算结果:

是哪个结果更准确呢?这估计就要追溯软件的内核了,有空再进行研究。

其实,现在的软件内核都是有限元,可能每家的求解方法稍有不同,但是其本质基本上是一样的。就拿Buckling分析来说吧,选择哪个软件应该都没有问题,只要采用合适的单元类型,保证足够的单元剖分数量,计算结果应该几乎相同,其误差在工程上是完全可以接受的。

ANSYS的三个梁单元和ABAQUS中三个梁单元刚好一一对应,以后大家用起来可以相互作为参考,其对应关系为:

BEAM44 ←→B33:Euler-Bernoulli梁,两节点

BEAM188←→B31:Timoshenko梁,线性积分,两节点

BEAM189←→B32:Timoshenko梁,二次积分,三节点

接着前面的工作,仍采用那个单层网壳结构计算模型作为分析对象,分别利用ANSYS和ABAQUS进行非线性整体稳定分析。ANSYS中选用BEAM189单元,而ABAQUS中选用B32单元,每根杆件取一个单元。都是采用RIKS弧长法,施加的荷载均为前文Buckling分时中荷载的7.0倍。

提取结果时均提取同一个节点的Z向位移,计算结果见下图:

由上图可以看出,两个软件的数值大小和曲线走势吻合的较好,ANSYS的结果比ABAQUS稍大,但可以认为在误差数量级以内。总体上讲,这两个计算结果都不错,基本上反映出结构的屈曲过程,“荷载-位移”曲线比较完整。

其实ANSYS的曲线是结算结果的完整曲线,曲线的终点也就是计算发散位置;而ABAQUS那条曲线只是计算结果的一部分,后面还很长一段被我去掉了,因为觉得没什么意义。

最大荷载系数时结构的变形见下图:

由上图可以看出,最大荷载系数时两个软件计算得到的变形相同。

下面可以对两个软件做一个小结:

(1)利用弧长法都可以进行结构的非线性稳定分析,计算得到的最大荷载因子、荷载-位移曲线、最大荷载对应的变形图基本相同;

(2)ABAQUS计算速度更快,十几分钟即可结束战斗,而且可以得到整个屈曲过程的荷载-位移曲线(甚至觉得曲线太长了);而ANSYS需要几个

小时(注:可能与我的设置有关,请勿被误导)。

(3)ABAQUS比较容易收敛,而且较容易得到完整的“荷载-位移”曲线;

而ANSYS通常很难得到屈曲后的过程,除非反复调整参数,但随之带来的问题是较长的计算时间。

(4)大型、复杂的结构在ABAQUS中建模比较困难,即使是利用其它手段也会导致调整比较麻烦的问题,而ANSYS前处理则可以较好的实现模型调整的功能,后处理也非常方便。

(5)其实,两个软件算非线性稳定都很OK。主要是看用户自己哪个用的比较顺手。

失稳破坏是一种突然破坏,人们没有办法发觉及采取补救措施,所以其导致的结果往往比较严重。正因为此,在实际工程中不允许结构发生失稳破坏。

导致结构失稳破坏的原因是薄膜应力,也就是轴向力或面内力。所以在壳体结构、细长柱等结构体系中具有发生失稳破坏的因素和可能性。这也就是为什么在网壳结构的设计过程中稳定性分析如此被重视的原因。

下面根据本人多年来的研究及工程计算经验,谈谈个人对整体稳定性分析的一点看法,也算做一个小结。

1稳定性分析的层次

在对某个结构进行稳定性分析,实际上应该包括两个层次。(一)是单根构件的稳定性分析。比如一根柱子、网壳结构的一根杆件、一个格构柱(桅杆)等。单根构件的稳定通常可以根据规范提供的公式进行设计。不过对于由多根构件组成的格构柱等子结构,还是需要做试验及有限元分析。(二)是整个结构的稳定分析。比如整个网壳结构、混凝土壳结构等结构整体的稳定性分析。整体稳定性分析目前只能根据有限元计算来实现。

2整体稳定性分析的内容

通常,稳定性分析包括两个部分:Buckling分析和非线性“荷载-位移”全过程跟踪分析。

(1)Buckling分析

Buckling分析是一种理论解,是从纯理论的角度衡量一个理想结构的稳定承载力及对应的失稳模态。目前几乎所有的有限元软件都可以实现这个功能。Buckling分析不需要复杂的计算过程,所以比较省时省力,可以在理论上对结构的稳定承载力进行初期的预测。但是由于Buckling分析得到的是非保守结果,偏于不安全,所以一般不能直接应用于实际工程。

但是Buckling又是整体稳定性分析中不可缺少的一步,因为一方面Buckling 可以初步预测结构的稳定承载力,为后期非线性稳定分析施加的荷载提供依据;另一方面Buckling分析可以得到结构的屈曲模态,为后期非线性稳定分析提供结构初始几何缺陷分布。

另外本人认为通过Buckling分析还可以进一步校核单根构件截面设计的合理性。通过Buckling分析得到的屈曲模态,我们可以看出结构可能发生的失稳破坏是整体屈曲还是局部屈曲。如果是局部屈曲,那么为什么会发生局部屈曲?局部屈曲的荷载因子是否可以接受?是否是由于局部杆件截面设计不合理所导致?这些问题希望能引起大家的注意。

(2)非线性稳定分析

前文已经讲过,Buckling分析是一种理论解。但是由于加工误差、安装误差、温度应力、焊接应力等因素的存在,现实中的结构多少都会存在一些初始缺陷,其稳定承载力与理论解肯定存在一定的差别。另外,由于Buckling分析是线性的,所以它不可以考虑构件的材料非线性,所以如果在发生屈曲之前部分构件进入塑性状态,那么Buckling也是无法模拟的。所以必须利用非线性有限元理论对结构进行考虑初始几何缺陷、材料弹塑性等实际因素的稳定性分析。

目前应用较多的是利用弧长法对结构进行“荷载-位移”全过程跟踪技术,来达到计算结构整体稳定承载力的目的。

由于弧长法属于一种非线性求解方法,而且在非线性稳定分析中通常需要考虑几何非线性、材料非线性及弹塑性,所以通常需要求助于通用有限元软件。比如ANSYS、ABAQUS、NASTRAN、ADINA等。而设计软件,比如PKPM、SAP2000、MIDAS等通常不具备这种功能,或者具备功能而比较难得到满意的结果。

在这些通用有限元软件中,可以较好的计算结构的屈曲前、屈曲后性能。通常通过“荷载-位移”曲线来判断计算结果的合理性及结构的极限稳定承载力。通过有限元软件不但可以较好的对结构进行非线性稳定分析,同时还可以考虑初始几何缺陷、材料非线性、材料弹塑性等问题。基本上可以实现对结构的真实模拟分析。

3整体稳定性分析的关键问题

结构的整体稳定性分析是很长时间以来一直备受关注的课题,而且在今后很长一段时间内仍将是热门研究对象。这是因为结构整体稳定承载力的影响因素很多,比如初始几何缺陷、焊接应力、材料非线性、荷载形式等。所以很多问题需要大家深入考虑:

(1)结构是否存在稳定性问题。我觉得这非常重要,因为通常情况下只要用户给一个模型,软件都会算出一个稳定系数。但是实际上结构不一定存在失稳问题,可能很显然地是属于强度破坏问题。所以,前期的判断很重要,不要把时间和精力浪费在没有意义的事情上。

(2)结构的非线性。在整体稳定性分析中可能涉及三种非线性,分别为几何非线性、材料非线性、边界非线性。其中几何非线性是必须要考虑的;如果要真实的考虑结构的材料行为还必须考虑材料的非线性问题,也就是材料的应力-应变关系。对于一些特殊问题,比如结构某些支承点有可滑动能力,那么还必须考虑边界非线性,这样的话问题就更为复杂。

(3)初始几何缺陷。由于加工制造、施工安装、运输等原因,实际结构与最初的计算模型肯定有一些差别。所以在计算时通常对计算模型施加一定的初始几何缺陷,来考虑几何误差对结构稳定承载力产生的影响。实际工程中几何缺陷的分布与大小应该是与加工厂家、施工单位有关的,应该一种“已知”的“随机分布”。之所以说是已知的,是因为实际上某一个固定单位的加工、施工误差肯定存在一定的规律,只是我们没有去深入研究它。比如一个固定机器的制作误差

是可以通过大量测试数据来分析的。而它又是“随机分布”的,因为对于整个大结构而言,每个节点的几何误差应该是有一定随机分布的特征。

不过,在国内的做法是“一致模态法”,就是按照Buckling分析的第一阶屈曲模态来进行初始几何缺陷的施加,而最大缺陷大小则按照《网壳技术规程》规定的数值(原来是跨度的1/300,不知新规范是否有更改)。这种方法在理论上是一种保守方法,因为按照第一阶屈曲模态施加的初始几何缺陷是最不利的。但是原规范规定的最大缺陷值(L/300)一直存在争议,因为在现有技术条件下有时候偏大很多。

希望国内的制造、施工单位能对自己公司的产品进行统计分析,为更好地预测结构的初始几何缺陷提供技术支持。

(4)材料的弹塑性。Buckling是一种线弹性分析方法,它预测结构稳定承载力的前提是假定结构处于线弹性状态。但是把使用荷载的几倍、十几倍甚至几十倍施加于结构上,很可能部分构件已经进入了塑性。所以,最佳方法是在进行非线性稳定分析过程中考虑材料的弹塑性行为,否则可能会得到非保守的结果。

(5)稳定系数的控制。计算得到结构的整体稳定荷载系数后,问题便集中在荷载系数K的控制上。按照《网壳结构技术规程》给出的建议值,K取5.0。但是在实际应用中发现很多工程是算不到5.0的。这有两方面的问题,一是计算采用的荷载是什么?设计中我们有很多荷载组合(一般采用标准组合),不同的荷载组合计算得到的K肯定是不同的,所以可能采用某些组合是可以满足要求的,而另外一些则不满足要求;二是5.0的限值或许有点大。因为通常5.0的荷载作用下结构部分构件已经进入了塑性,也意味着结构可能已经发生了强度破坏,所以稳定系数已经失去意义。

(6)对计算结果的判断。在一些资料和论文上经常看到“荷载-位移”曲线为一段上升的曲线,但是曲线又处于明显的上升阶段。所以通过曲线让人无法判断计算结果是否达到了结构的稳定承载力。其实目前有限元的计算方法是对模型施加一定的荷载,然后让软件去算,到计算不收敛时,即认为荷载加到了结构的稳定承载力。但是存在这样一个问题:模型达到稳定承载力是不收敛的,但是并不是结构不收敛都是因为达到了结构的稳定承载力。也可能是由于数值不收敛、用户计算参数设置有问题等等原因。所以对计算结果进行合理的判断非常重要。不要算出一条曲线就说是达到了结构的稳定承载力,是不科学的。最好的结果是能够算出下降段,可以明显地找到最大荷载因子。不过,有时候很困难,需要用户掌握较深的非线性分析理论及具备较多的计算经验。

第7章 结构的弹性稳定性分析

ANSYS 入门教程 (9) - 结构的弹性稳定性分析 第 7 章结构弹性稳定分析 7.1 特征值屈曲分析的步骤 7.2 构件的特征值屈曲分析 7.3 结构的特征值屈曲分析 一、结构失稳或结构屈曲: 当结构所受载荷达到某一值时,若增加一微小的增量,则结构的平衡位形将发生很大的改变,这种现象叫做结构失稳或结构屈曲。 结构稳定问题一般分为两类: ★第一类失稳:又称平衡分岔失稳、分枝点失稳、特征值屈曲分析。结构失稳时相应的载荷可称为屈曲载荷、临界载荷、压屈载荷或平衡分枝载荷。 ★第二类失稳:结构失稳时,平衡状态不发生质变,也称极值点失稳。结构失稳时相应的载荷称为极限载荷或压溃载荷。 ●跳跃失稳:当载荷达到某值时,结构平衡状态发生一明显的跳跃,突然过渡到非邻近的另一具有较大位移的平衡状态。可归入第二类失稳。 ★结构弹性稳定分析 = 第一类稳定问题 ANSYS 特征值屈曲分析(Buckling Analysis)。 ★第二类稳定问题 ANSYS 结构静力非线性分析,无论前屈曲平衡状态或后屈曲平衡状态均可一次求得,即“全过程分析”。 这里介绍 ANSYS 特征值屈曲分析的相关技术。在本章中如无特殊说明,单独使用的“屈曲分析”均指“特征值屈曲分析”。 7.1 特征值屈曲分析的步骤 ①创建模型 ②获得静力解 ③获得特征值屈曲解 ④查看结果 一、创建模型 注意三点: ⑴仅考虑线性行为。若定义了非线性单元将按线性单元处理。 刚度计算基于初始状态(静力分析后的刚度),并在后续计算中保持不变。 ⑵必须定义材料的弹性模量或某种形式的刚度。非线性性质即便定义了也将被忽略。 ⑶单元网格密度对屈曲载荷系数影响很大。例如采用结构自然节点划分时(一个构件仅划分一个单元)可能产生 100% 的误差甚至出现错误结果,尤其对高阶屈曲模态的误差可能更大,其原因与形成单元应力刚度矩阵有关。经验表明,仅关注第 1 阶屈曲模态及其屈曲载荷系数时,每个自然杆应不少于 3 个单元。 二、获得静力解 注意几个问题: ⑴必须激活预应力效应。

abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,笫2步做极限强度分析。 第1步:屈曲分析 载荷步定义如下: Step 1-Initial Step 2- Buckle

? Re Mbs M^nce C^wvoini live 2oc*$ *l^*?4 tjdp V :i.Jsa&# 录 +r A AJIu fffiC? fe3 Ha ? ;r????y fa-t n>rr ?: OfEYcm v Se?今 gh 3, gqcvKeiry C*p*?9r ? ? O?lec? ■ %?no?v C5 廉 H5Wr> MM fa Tin* Forti Sv Al€ *dep6?? ve^ tbjUx9)lo t JeiWA Tc?D -^lQZlll?hQ we' E ejewwiw b>w* biE Glcte 」r?>w* 69D eJe*MKi r?jw* bee CWfcr*?9*^ s£ Zac? “ Iraftet H U 匕“rb ? 2 更 K?4dCu^u!R? 虫 Hntwr GUput b 伽》ezi5 &■心 AcUxv? V H H?*?ctnr? 易 htecMtlar. hra, 日 CcrtadCcrtra 0 C?Wl >?wt K Ccctect sub lx 權 CwMoarSt Hj fiUdi _n ,.. ? ?! ? MCg WtW Swtfc lk2 pe**j". liwar p?nwbia?ko ▼ freque." 拯 sufAuun The 11?-51>^ )L>4ldH9jjn-2 “9 wioZ S *0 Sxe U>* oil^ 51 “ed S iU* TO . 0 . -ISO -MO mtb rew :t no 心 &逐Ply OCCOIIMV * 巧恪tc ?:?L -5Moe>?* bw tZfft to ?D7cp 炉、?ZlHWr? Me" “乡“r?x HMldrann ?2 vd 乡 tygeJa* 400 0 0 with x*w :? ?o tfi* oc

ansys分析钢结构稳定问题

ANSYS软件分析轴压和压弯构件的 稳定性问题

摘要:轴心受压杆件和压弯杆件广泛应用于工程中,本文通过ansys软件对该两种杆件进行分析,对于轴心受压杆件,运用beam189、solid95、shell65单元,进行弹性稳定分析和非线性分析,得到其屈曲荷载和变形情况;对于压弯杆件,在集中荷载和分布荷载的条件下,运用beam3单元进行非线性分析,得到其最大弯矩值,通过和理论值相比较,验证其正确性。 关键词:ANSYS;轴心受压杆件;压弯杆件;非线性分析 Abstract:Axial strut pieces and bending rods are widely used in engineering. This paper, using ANSYS software, analyzes the two rods. For Centrally Compressed Members, this paper using beam189, solid95, shell65 unit, carries out elastic stability analysis and nonlinear analysis, getting the buckling load and deformation. For the bending rod under conditions of concentrated loads and distributed loads, nonlinear analysis was conducted using beam3 unit, getting its greatest moment, and was compared to theoretical value to verify its correctness. Keywords: ANSYS;Centrally Compressed Members; the bending rod member; nonlinear analysis 钢材具有高强度、质轻、力学性能良好的优点,是制造结构物的一种极好的建筑材料,所以广泛运用于工程实例中,它和钢筋混凝土结构相比,对于充任相同受力功能的构件,具有截面轮廓尺寸小、构件细长和构件柔薄的特点。对于因受压、受弯和受剪等存在受压受压区的构件或板件,如果技术上处理不当,可能使钢结构出现整体失稳或局部失稳。失稳前结构物的变形可能很微小,突然失稳使结构物的几何形状急剧改变而导致结构物完全丧失抵抗能力,以致整体塌落。钢结构的稳定性能是决定其承载力的一个特别重要的因素[1]。对于钢结构稳定性的研究也就极其重要。而轴压杆件和压弯杆件是钢结构的基础,对此杆件进行稳定性分析也就是不可避免的和尤为重要的。所以,非常有必要利用大型通用ANSYS软件对这两类杆件进行分析,得到一系列的研究成果。 一、基本理论 结构在荷载作用下由于材料的弹性性能而发生变形,若变形后结构上的荷载保持平衡,这种状态称为弹性平衡。如果结构在平衡状态时,受到扰动而偏离平衡位置,当扰动消除后仍能恢复到原来平衡状态的,这种平衡状态称为稳定平衡状态。根据失稳的性质,结构的稳定问题可以分为平衡分岔失稳,极值点失稳和跃越失稳三种情况。结构的弹性稳定分析属于平衡分岔失稳,在ANSYS中对应的分析类型是特征值屈曲分析(Buckling Analysis)[2]。

ANSYS框架结构分析

有限元分析大作业报告 一、结构形式及参数 1、结构基本参数 某框架结构如下图所示,为两榀、三跨七层框架。结构由梁板柱组成,梁板柱之间刚结。材料为C35混凝土,弹性模量为3.15e10N/m2,泊松比取0.25,质量密度为2500kg/m3,梁截面为300mm×700 mm,柱截面为500mm×500mm,楼板厚度为120mm。梁和柱采用beam44 单元,板采用shell 63单元。单位采用国际单位制。 二、静力分析及结果 1、荷载详情 荷载包括自重荷载,采用命令acel,0,0,9.8施加;以及垂直板面向下的均布恒荷载0.35 kN/m2和活荷载0.15 kN/m,两者合并后采用命令*do,mm,204,245,1 sfe,mm,2,pres,,500,500,500,500 *end do施加。 2、结构变形:最大变形发生在91号节点,数值为1.573mm,方向竖直向下(-Z方向)。

3、位移云图 4、等效应力云图:最大等效应力发生在78号节点,数值为175064Pa。

5、支座反力(保留两位小数,单位如表中所示) 节点编码FX(kN) FY(kN) FZ(kN) MX(kN﹒m) MY(kN﹒m) MZ(kN﹒m) 1 -3.87 5.33 514.15 -5.19 -3.74 0.00 2 -6.36 0.09 774.5 3 -0.12 -6.13 0.00 3 -6.36 -0.09 774.53 0.12 -6.13 0.00 4 -3.87 -5.33 514.1 5 5.19 -3.74 0.00 5 0.00 8.2 6 693.8 7 -8.00 0.00 0.00 6 0.00 0.06 107.28 -0.08 0.00 0.00 7 0.00 -0.06 107.28 0.08 0.00 0.00 8 0.00 -8.26 693.87 8.00 0.00 0.00 9 3.87 5.33 514.15 -5.19 3.74 0.00 10 6.36 0.09 774.53 -0.12 6.13 0.00 11 6.36 -0.09 774.53 0.12 6.13 0.00 12 3.87 -5.33 514.15 5.19 3.74 0.00 三、模态分析结果 1、各阶振型频率及类型 振型阶次自振频率(Hz)振动形式 1 1.838 2 弯曲振型 2 1.8627 弯曲振型 3 2.2773 扭转振型 4 5.6636 弯曲振型 5 5.7097 弯曲振型

ANSYS课程作业-边坡稳定性分析

边坡稳定性分析、问题描述 边坡围岩分别选择3种材料,用强度折减法判断稳定性及安全系数。、建模 三、材料参数 单元类型:PLANE82 受力状态:平面应变Plain strain

四、载荷 1. 位移条件 两侧边约束X方向位移,底边约束X、Y方向位移。 2. 受力条件 重力10g/cm2 1 NODES U 五、结果分析 1?收敛结果 ANSYS R15XJ JUN 28 Z015 13:03:04 丄塔丄』;;冷:忖:£ K :

伴随强度折减系数的增加,边坡的塑性应变增大,塑性区也随之扩大,当塑性区发展成一个贯通区域,边坡就不稳定,此时求解也不收敛。与此同时,边坡水平位移也变大。因此, 主要通过观察后处理中边坡变形图、应力图、塑形区来判断稳定性与否。 2. F=1.0结果分析 F=1.0时边坡变形图 311^1 KY5-€ W —.0S3TM MH -.C5S*44 -.SLSil ■“”戸呂0^36C"? ,0315^3 .eCSTgfl AN SYS R15.0 JUK 冲 12:aa:Z4 F=1.0时边坡X方向位移云图

F=1.0时边坡X方向应力云图 AN SYS R15.0 JOE品p冨耶43 12:DO15Q T.[?SE-L EPFLE J JV悵V⑹ Mt SME --34&E-34 M 强“阴.1&91-0< .2A0K-Q4 .HCS?-CI 3?K-?& . ll&E-CH . I^lE-04 . E ECB-O^ . J:4fiE-CH F=1.0时边坡塑性变形云图 此时边坡坡趾处有微小塑性应变,塑性区范围较小。

用ANSYS进行桥梁结构分析

用ANSYS进行桥梁结构分析 谢宝来华龙海 引言:我院现在进行桥梁结构分析主要用桥梁博士和BSACS,这两种软件均以平面杆系为计算内核,多用来解决平面问题。近来偶然接触到ANSYS,发现其结构分析功能强大,现将一些研究心得写出来,并用一个很好的学习例子(空间钢管拱斜拉桥)作为引玉之砖,和同事们共同研究讨论,共同提高我院的桥梁结构分析水平而努力。 【摘要】本文从有限元的一些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使用方法和利用APDL语言快速进行桥梁的结构分析,最后通过工程实例来更近一步的介绍ANSYS进行结构分析的一般方法,同时进行归纳总结了各种单元类型的适用范围和桥梁结构分析最合适的单元类型。 【关键词】ANSYS有限元APDL结构桥梁工程单元类型 一、基本概念 有限元分析(FEA)是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元模型是真实系统理想化的数学抽象。 真实系统有限元模型 自由度(DOFs)用于描述一个物理场的响应特性。

节点和单元 荷载 1、每个单元的特性是通过一些线性方程式来描述的。 2、作为一个整体,单元形成了整体结构的数学模型。 3、信息是通过单元之间的公共节点传递的。 4、节点自由度是随连接该节点单元类型变化的。 单元形函数 1、FEA仅仅求解节点处的DOF值。 2、单元形函数是一种数学函数,规定了从节点DOF值到单元内所有点处DOF值的计算方法。 3、因此,单元形函数提供出一种描述单元内部结果的“形状”。 4、单元形函数描述的是给定单元的一种假定的特性。 5、单元形函数与真实工作特性吻合好坏程度直接影响求解精度。 6、DOF值可以精确或不太精确地等于在节点处的真实解,但单元内的平均值与实际情况吻合得很好。 7、这些平均意义上的典型解是从单元DOFs推导出来的(如,结构应力,热梯度)。 8、如果单元形函数不能精确描述单元内部的DOFs,就不能很好地得到导出数据,因为这些导出数

ANSYS与ABAQUS稳定性研究比较

ANSYS与AB AQUS稳定性分析比较(转载?来自结构工程师崔家春的个人空间)其实,这些东西很简单,大多数朋友应该都比较了解。但是作为整个稳定性分析的一部分,觉得还是整理一下吧,也算是对后来者乂抛了一块砖。 算例描述: 为了能体现岀一般性,我故意找了一个比较大的结构。这是一个单层网壳结构, 最大尺寸在90m左右,杆件长度在1.13nv3.63m之间,截面形式为箱型截面;构件布置见下图。荷载任意挑选一个标准组合(具体是哪个不记得,只是验证软件单元特征,没有关系)。 在ANSYS软件中分别采用BEAM44x BEAM 188和BEAM 189进行计算。分析结果见下文。 备注:表格中Nl、N2分别代表每根构件采用1、2个单元;El、E2代表第1、 2阶屈曲荷载因子; ANSYS BEAM 188分析结果

山表格可以看出,利用ANSYS软件进行Buckling分析时,不同BEAM单元类型对单元剖分数量的要求。 (1)B EAM44和BEAM 189对单元的剖分数量要求较低,每根构件采用1个单元和采用2、3、4个单元时计算结果相差不大,在工程上这种误差应该是可以接受 的。 (2)B EAM 188单元对单元剖分数量的要求要高一些,从结果来看,每根杆件釆用5个BEAM 188单元计?算结果才与釆用1个BEAM44或BEAM189 单元计算结果相 同。 (3)在利用ANSYS进行Buckling分析时,以选用BEAM44与BEAM 189单元为佳。(4)选用BEAM44单元时,虽然每根杆件釆用1个单元和多个单元计算结果相差不大,但是本人还是建议每根杆件选用2至3个单元。理论上对于每根构件而 言,在设计时已经保证了其稳定性,但是我们也可以在整体稳定性分析过程中进一步对其进行校核。如果采用1个单元,就达不到这个效果。 (5)理论上能选择189单元是最好不过啦,不过考虑其是3节点单元,有时候从其它软件数据转过来时可能会有点不方便。 (6)考虑到后期进行非线性稳定计算,山于BEAM44单元不能考虑材料非线性,在前后延续上还是釆用BEAM 189比较好,而且3节点单元在单元剖分数量上要求也较低。 下面给岀每种单元计算得到的屈曲模态(每行从左到右分别为笫1、2、3阶): BEAM44单元讣算结果

(完整word版)abaqus6.12-典型实例分析

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。其中,刚性墙的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28;保险杠、平板以及横梁的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28,塑形应力-应变数据如表2.1所示。 表2.1 应力-应变数据表 应力210 300 314 325 390 438 505 527 应变0.0000 0.0309 0.0409 0.0500 0.1510 0.3010 0.7010 0.9010 注:本例中的单位制为:ton,mm,s。 3.案例详细求解过程 本案例使用软件为版本为abaqus6.12,各详细截图及分析以该版本为准。3.1 创建部件 (1)启动ABAQUS/CAE,创建一个新的模型数据库,重命名为The crash simulation,保存模型为The crash simulation.cae。 (2)通过导入已有的*.IGS文件来创建各个部件,在主菜单中执行【File】→【Import】→【Part】命令,选择刚刚创建保存的的bumper_asm.igs文件,弹出【Create Part From IGS File】对话框如图3.1所示,根据图3.1所示设定【Repair Options】的相关选项,其它参数默认,单击【Ok】按钮,可以看到在模型树中显示了导入的部件bumper_asm。 图3.1 Create Part From IGS File对话框

ANSYS工程分析 基础与观念Chapter04

第4章 ANSYS结构分析的基本观念Basic Concepts for ANSYS Structural Analysis 这一章要介绍关于ANSYS结构分析的基本观念,熟悉这些基本观念有助于让你很快地区分你的工程问题的类别,然后依此选择适当的ANSYS分析工具。在第1节中我们会对分析领域(analysis fields)做一个介绍,如结构分析、热传分析等。第2节则对分析类别(analysis types)作一介绍,如静力分析、模态分析、或是瞬时分析等。第3节解释何谓线性分析,何谓非线性分析。第4节要对结构材料模式(material models)作一个讨论并作有系统的分类。第5节讨论结构材料破坏准则。第6、7节分别举两个实例,一个是结构动力分析,一个是非线性分析来总合前面的讨论。这两个例子再加上第3章介绍过的静力分析例子,这三个例子可以说是用来做为正式介绍ANSYS命令(第5、6、7章)之前的准备工作。最后(第8节)我们以两个简单的练习题做本章的结束。

第4.1节学科领域与元素类型 Disciplines and Element Types 4.1.1 学科领域(Disciplines) 我们之前提过,ANSYS提供了五大学科领域的分析能力:结傋分析、热传分析、流场分析、电场分析、磁场分析(电场分析及磁场分析可统称为电磁场分析),此外ANSYS也提供了偶合场分析(coupled-field analysis)的能力。为了能分析横跨多学科领域的偶合场,ANSYS提供了一些偶合场元素(coupled-field elements),但是这些元素还是无法涵盖所有偶合的可能性(举例来说,ANSYS 并没有流场与结构的偶合场元素)。但是在ANSYS的操作环境下,再加上利用APDL [Ref. 20],理论上可以进行各种偶合场分析(但是计算时间及收敛性常是问题所在)。下一小节将举几个例子来解说偶合场分析的含义,更详细的偶合场分析步骤你必须参阅Ref. 15。 4.1.2 偶合场分析 以下我们举三个例子来说明何谓偶合场分析。 第一个例子是热应力的计算,这是最常会遇到的问题之一。当你进行热应力分析时,通常分成两个阶段:先做热传分析解出温度分布后,再以温度分布作为结构负载来进行结构分析,而解出应力值。在第一个阶段,热边界条件(thermal boundary conditions)是热传分析的负载,我们希望知道在此热边界条件之下,温度是怎么分布的。因为不均匀的温度分布会造成结构的翘曲变形,所以第二个阶段是希望知道在这些温度分布下结构的变形及应力。这是一个很典型的偶合场分析问题,因为结构怎么变形是依温度怎么分布而定,而温度如何分布则与结构如何变形(变形量很大时,几何形状会改变)有关,这种相依的关系就称为偶合(coupling)。严格来说,前述的分析程序(先做热传分析再做结构分析)观念上不是很正确的,较正确的做法应该是热传与结构分析必须同时进行,也就是说温

ANSYS与ABAQUS稳定性分析比较

ANSYS与ABAQUS稳定性分析比较(转载-来自结构工程师崔家春的个人空间)其实,这些东西很简单,大多数朋友应该都比较了解。但是作为整个稳定性分析的一部分,觉得还是整理一下吧,也算是对后来者又抛了一块砖。 算例描述: 为了能体现出一般性,我故意找了一个比较大的结构。这是一个单层网壳结构,最大尺寸在90m左右,杆件长度在1.13m-3.63m之间,截面形式为箱型截面;构件布置见下图。荷载任意挑选一个标准组合(具体是哪个不记得,只是验证软件单元特征,没有关系)。 在ANSYS软件中分别采用BEAM44、BEAM188和BEAM189进行计算。分析结果见下文。 2阶屈曲荷载因子;

由表格可以看出,利用ANSYS软件进行Buckling分析时,不同BEAM单元类型对单元剖分数量的要求。 (1)BEAM44和BEAM189对单元的剖分数量要求较低,每根构件采用1个单元和采用2、3、4个单元时计算结果相差不大,在工程上这种误差应该是可以接受的。 (2)BEAM188单元对单元剖分数量的要求要高一些,从结果来看,每根杆件采用5个BEAM188单元计算结果才与采用1个BEAM44或BEAM189单元计算结果相同。 (3)在利用ANSYS进行Buckling分析时,以选用BEAM44与BEAM189单元为佳。 (4)选用BEAM44单元时,虽然每根杆件采用1个单元和多个单元计算结果相差不大,但是本人还是建议每根杆件选用2至3个单元。理论上对于每根构件而言,在设计时已经保证了其稳定性,但是我们也可以在整体稳定性分析过程中进一步对其进行校核。如果采用1个单元,就达不到这个效果。 (5)理论上能选择189单元是最好不过啦,不过考虑其是3节点单元,有时候从其它软件数据转过来时可能会有点不方便。 (6)考虑到后期进行非线性稳定计算,由于BEAM44单元不能考虑材料非线性,在前后延续上还是采用BEAM189比较好,而且3节点单元在单元剖分数量上要求也较低。 下面给出每种单元计算得到的屈曲模态(每行从左到右分别为第1、2、3阶): BEAM44单元计算结果

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应得简单实例ABAQUS时程分析法计算地震反应得简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2、1e11Pa,泊松比0、3,所有振型得阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 得集中质量。反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越周期Tg=0、45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS得反应谱法计算过程以及后处理要比ANSYS方便得多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2、1e11,poisson’s ratio:0、3、

基于ANSYS的拱坝坝肩及坝基整体稳定分析

1002 -5634(2012)03 -0004 -05 基于ANSYS的拱坝坝肩及坝基整体稳定分析 丁泽霖1,2王婧1黄德才2 1.华北水利水电学院,河南郑州450011:2贵州省黔西南州望谟县水利局,贵州望谟552300 摘 要:结合拱坝坝肩与坝基的地形、地质特征以及软弱结构面分布状况,通过ANSYS软件建立拱坝天然地基条件下的三维数值模型,并进行超载法计算,分析坝体变形与应变特征、坝肩和断层的变位分布特征、坝肩的破坏形态和过程,得到整体稳定超载安全系数,评价拱坝的安全度,为工程设计、施工和加固处理提供依据.拱坝;有限元;坝肩稳定 2012 -04 -05 丁泽霖( 1983-),男,满族,辽宁凤城人,讲师,博士,主要从事水工结构工程方面的研究. 万方数据

密或少量 曲泥瞒存情万方数据

万方数据

i梁剖面塑万方数据

@@[1]苑宝军,张玉文.加快四川水电建设打造中国水电基地 [J].水利科技与经济,2006,12(2):118 -120. @@[2 ] Boulon M, Alachaher A. A new incrementally nonlinear  constitutive law for finite element applications in geome chanics[ J ]. Computers and Geotechnics, 1995,17 (2) : 177 - 201. @@[3]陈胜宏,汪卫明.小湾高拱坝坝踵开裂的有限单元法分 析[J].水利学报,2003(1):66 -71. @@[4]杨强,吴浩,周维垣.大坝有限元分析应力取值的研究 [J].工程力学,2006,23(1):69 -72. @@[5]王新敏.ANSYS工程结构数值分析[M].北京:人民交 通出版社,2007. Stability Analysis of Foundation and Abutment of Arch Dam Based on ANSYS  DING Ze-linWANG JingHUANG De-cai 万方数据

ANSYS 非线性_结构分析

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 1

第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析 非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金 2

属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 3

非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。 接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。 几何非线性 如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。 4

基于ANSYS的铁塔动态特性及稳定性有限元分析

延 边 大 学 2018年9月3日 本 科 毕 业 论 文 本科毕业设计 题 目:基于A N S Y S 的铁塔动态特性及 稳定性有限元分析 学生姓名: 学 院:工学院 专 业:机械设计制造及其自动化 班 级: 指导教师:

目录 catalog 摘要 (1) 引言 (2) 第一章绪论 (3) 1.1国内外关于铁塔的研究现状 (3) 1.2本文工作 (4) 第二章 1C-SJ1-27m110KV输电线路杆塔的有限元建模 (5) 2.1 1C-SJ1-27m110KV输电线路杆塔概述 (5) 2.2 1C-SJ1-27m110KV输电线路杆塔有限元模型的建立 (5) 2.3 1C-SJ1-27m110KV输电线路杆塔有限元模型的建立 (6) 2.4 1C-SJ1-27m110KV铁塔的计算载荷 (9) 2.4.1 1C-SJ1-27m110KV铁塔的外载荷简介 (9) 2.4.2 1C-SJ1-27m110KV输电线路杆塔载荷计算 (9) 2.5 小结 (10) 3.1 1C-SJ1-27m110KV铁塔的静力分析 (10) 3.2 1C-SJ1-27m110KV铁塔的模态分析 (13) 3.3 小结 (18) 第四章 1C-SJ1-27m110KV输电铁塔的整体稳定性分析 (19) 4.1 1C-SJ1-27m110KV铁塔的在大风工况下(14N)的风振响应 (19) 4.1.1 铁塔在大风工况下的分析 (21) 4.2 1C-SJ1-27m110KV铁塔雪载工况 (23) 4.3 1C-SJ1-27m110KV铁塔的整体稳定性分析方法 (25) 4.4 拉线铁塔的简单介绍及想法 (26) 4.5 小结 (26) 第五章有限元分析法及软件的简要介绍 (27) 5.1 有限元分析法介绍 (27) 5.2 ANSYS软件介绍 (27) 结论 (28) 参考文献 (29) 致谢 (32)

(完整word版)ABAQUS实例分析

《现代机械设计方法》课程结业论文 ( 2011 级) 题目:ABAQUS实例分析 学生姓名 XXXX 学号 XXXXX 专业机械工程 学院名称机电工程与自动化学院 指导老师 XX 2013年 5 月8 日

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (6) 二、具体步骤 (6) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (23)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生 成一个Abaqus输入文件。提交给Abaqus/Standard或 Abaqus/Explicit。 2.分析计算(Abaqus/Standard或Abaqus/Explicit):在分析计算阶段, 使用Abaqus/Standard或Abaqus/Explicit求解输入文件中所定义的

基于ANSYS的支架稳定性分析

基于ANSYS的支架稳定性分析 摘要: 随着大跨度桥梁在我国西南大山大河地区的高速发展,超高的桥梁支架在工程建设中的应用也日益广泛,这种细长结构的稳定性问题与强度问题同样重要,有时甚至起控制作用,因此对此类支架进行稳定性分析是十分必要的。 本文利用有限元分析软件ANSYS 建立了扣件式钢管支架的计算模 型,通过对比不同支撑搭设方式下支架的极限承载力,对扣件式支架结 构体系中支撑的作用进行了分析。主要内容有: 1.在ANSYS 有限元软件中建立分析支架结构的合理模型,并验证模型的 正确性。 2.利用所建立的有限元模型,分析此类支架结构体系的失稳形式和其中 支撑的作用。 关键词:扣件支架,稳定性,有限元分析,力学模型

目录第1章绪论 1.1 研究目的和意义 1.2 国内外研究现状及分析 第2章ANSYS中的屈曲分析 2.1 屈曲分析的概念 2.2 特征值屈曲分析 2.3 非线性屈曲分析 第3章支架结构体系在 ANSYS 软件中的实现 3.1 ANSYS中的单元模型 3.2 材料的本构关系 第4章扣件式钢管支架体系中支撑作用分析第5章结论和建议 参考文献

第1章绪论 1.1研究目的和意义 一般地,可以把建筑物的生命周期分为三个阶段施工建造阶段、正常使用阶段和维修加固阶段。研究人员及设计工程师把大量的努力用在如何保障建筑物在正常使用阶段安全可靠的工作上。虽然施工建造阶段存在大量的未知不定性,但在该方面的研究工作却相对较少。对于一般性建筑物来说,建造时间一般为一到两年,其使用寿命大致为五十年左右,然而,据统计。事故绝大多数发生在建筑施工阶段,其中桥梁支架、模板架这些临时辅助施工设施的坍塌是事故发生的主要原因。可见,对施工过程中桥梁支架体系的研究是一项必要、迫切和重要的工作。 钢管支架大致可分为固定式组合支架、移动式支架和吊支架三大类, 其中固定式组合支架又包括钢管支架和框式支架两大类。本文主要介绍的扣件式钢管支架由钢管和扣件组成、具有加工简便、搬运方便、通用性强等特点,已成为当前我国使用量最大、应用最普遍的一种支架,占支架使用总量的左右,在今后较长时间内,这种支架仍占主导地位。但是, 这种支架的安全保证性较差,施工工效低,不能满足高层建筑施工的发展需要。 在钢管支架不断完善和发展的同时,桥梁支架以其施工简便快捷、整体性好等特点而得到广泛的应用于桥梁施工过程中,但同时也伴随着一个日趋突出的问题一支架倒塌问题,近年来,一些地区多次发生施工过程中钢管支架倒塌的重大工程事故,造成人员和财产的巨大损失,产生了恶劣的社会影响,因此,有必要对桥梁支架进行进一步的深入研究。 1.2国内外研究现状 牛津大学编制了计算脚手架稳定特征值程序且有不少国家已在不同程度上规定了考虑材料进入弹塑性的方法,同时也考虑了初始缺陷及风荷载的影响。日本曾对门式钢管脚手架结构进行了试验分析,并编制了安全技术规程。他们主要从单跨入手,对单层,2层,3层,5层进行了试验分析,得到了基本的压屈形态及极限承载力,同时还给出了计算单榀门架压屈承载力的方法。 英国的Godley比较了二维模型和三维模型对计算脚手架刚度的影响程度,指出节点半刚性的考虑对脚手架动力特性研究的重要性。后来,Godley在计算脚手架系统时进行了二阶几何非线性分析并考虑使用节点非线性模型。美国的Weesner和Jones对四种不同形式的高度为5米的承重脚手架进行了极限承载力试验研究并与利用有限元软件ANSYS得到的脚手架特征值屈曲荷载和几何非线性分析结果加以分析对比,认为几何非线性分析得到的极限承载力数值低于特征值屈曲荷载,但与试验数值相近。

ansys结构分析基本原理

1 应力-应变关系 本文将介绍结构分析中材料线性理论,在后续再介绍材料非线性的理论。在线弹性理论中应力-应变关系: (1) 其中: {σ}:应力分量,即在ANSYS软件里以S代替σ形式出现。 [D]:弹性矩阵或弹性刚度矩阵或应力-应变矩阵。利用(14)~(19)给出了其具体表达式。(4)给出了其逆矩阵的表达式。通过给出完整的[D]可以定义少数的各向异性单元。在ANSYS中利用命令:TB,ANEL来输入具体数值。 :弹性应变矢量。在ANSY中以EPEL形式输出。 {ε}:总的应变矢量,即 {εth}:热应变矢量,(3)给出了其定义式,在ANSYS中以EPTH形式给出。 注意: {εel}:是由应力引起的应变。 软件中的剪切应变( εxy、εyz和εxz)是工程应变,他们是拉伸应变的两倍。ε通常用来表示拉伸应变,但为了简化输出而采用此表示。将在材料的非线性分析中说明总应变的分量,以EPTO形式输出。 图1 单元的应力矢量图 如图1给出了单元应力矢量图。ANSYS程序中规定正应力和正应变拉伸是为正,压缩时为负。 (1)式还可以被写作以下形式:

(2) 三维情况下,热应变矢量为: (3) 其中: :方向的正割热膨胀系数。 ΔT=T-T ref T:问题中节点当前温度。 :参考温度也就是应变自由时的温度。用TREF或MP命令输入。 T ref 柔度矩阵的定义: (4) 其中: E x: 方向上的杨氏模量,在MP命令中用EX输入。 v xy:主泊松比,在MP命令中用PRXY输入。 :次泊松比,在MP命令中用NUXY输入。 v yx G : 平面上的剪切模量,在MP命令中用GXY输入。 xy 此外,[D]-1是对称矩阵,因此 (5)

基于ANSYS的支架稳定性分析

基于ANSYS 的支架稳定性分析 摘要: 随着大跨度桥梁在我国西南大山大河地区的高速发展,超高的桥梁支架在工程建设中的应用也日益广泛,这种细长结构的稳定性问题与强度问题同样重要,有时甚至起控制作用,因此对此类支架进行稳定性分析是十分必要的。 本文利用有限元分析软件ANSYS 建立了扣件式钢管支架的计算模型,通过对比不同支撑搭设方式下支架的极限承载力,对扣件式支架结构体系中支撑的作用进行了分析。主要内容有: 1.在ANSYS 有限元软件中建立分析支架结构的合理模型,并验证模型的正确性。 2.利用所建立的有限元模型,分析此类支架结构体系的失稳形式和其中支撑的作用。 关键词:扣件支架,稳定性,有限元分析,力学模型

目录 第1章绪论 1.1 研究目的和意义 1.2 国内外研究现状及分 析 第2章ANSYS中的屈曲分 析2.1 屈曲分析的概念 2.2 特征值屈曲分析 2.3 非线性屈曲分析 第3章支架结构体系在ANSYS 软件中的实现3.1 ANSYS 中的单元模型 3.2 材料的本构关系 第4章扣件式钢管支架体系中支撑作用分析第5章结论和建议参考文献

第 1 章绪论 1.1研究目的和意义 一般地,可以把建筑物的生命周期分为三个阶段施工建造阶段、正常使用阶段和维修加固阶段。研究人员及设计工程师把大量的努力用在如何保障建筑物在正常使用阶段安全可靠的工作上。虽然施工建造阶段存在大量的未知不定性, 但在该方面的研究工作却相对较少。对于一般性建筑物来说, 建造时间一般为一到两年, 其使用寿命大致为五十年左右, 然而, 据统计。事故绝大多数发生在建筑施工阶段, 其中桥梁支架、模板架这些临时辅助施工设施的坍塌是事故发生的主要原因。可见,对施工过程中桥梁支架体系的研究是一项必要、迫切和重要的工作。 钢管支架大致可分为固定式组合支架、移动式支架和吊支架三大类, 其中固定式组合支架又包括钢管支架和框式支架两大类。本文主要介绍的扣件式钢管支架由钢管和扣件组成、具有加工简便、搬运方便、通用性强等特点, 已成为当前我国使用量最大、应用最普遍的一种支架,占支架使用总量的左右, 在今后较长时间内, 这种支架仍占主导地位。但是, 这种支架的安全保证性较差, 施工工效低, 不能满足高层建筑施工的发展需要。 在钢管支架不断完善和发展的同时, 桥梁支架以其施工简便快捷、整体性好等特点而得到广泛的应用于桥梁施工过程中, 但同时也伴随着一个日趋突出的问题一支架倒塌问题,近年来,一些地区多次发生施工过程中钢管支架倒塌的重大工程事故,造成人员和财产的巨大损失, 产生了恶劣的社会影响,因此,有必要对桥梁支架进行进一步的深入研究。 1.2国内外研究现状牛津大学编制了计算脚手架稳定特征值程序且有不少国家已在不同程度上规定了考虑材料进入弹塑性的方法, 同时也考虑了初始缺陷及风荷载的影响。日本曾对门式钢管脚手架结构进行了试验分析,并编制了安全技术规程。他们主要从单跨入手,对单层,2 层,3 层,5 层进行了试验分析,得到了基本的压屈形态及极限承载力,同时还给出了计算单榀门架压屈承载力的方法。 英国的Godley 比较了二维模型和三维模型对计算脚手架刚度的影响程度,指出节点半刚性的考虑对脚手架动力特性研究的重要性。后来,Godley 在计算脚手架系统时进行了二阶几何非线性分析并考虑使用节点非线性模型。美国的Weesner和Jones 对四种不同形式的高度为5 米的承重脚手架进行了极限承载力试验研究并与利用有限元软件ANSYS得到的脚手架特征值屈曲荷载和几何非线性分析结果加以分析对比,认为几何非线性分析得到的极限承载力