配气机构结构原理

配气机构结构原理
配气机构结构原理

清远市技师学院(高级技工学校)教案用纸(A—8)

2、配气机构的传动

齿轮驱动形式

就是采用齿轮副来驱动凸轮轴。曲轴与凸轮轴的传动比为2:。即曲轴旋转720o,完成一个工作循环,发动各缸工作一次,对应的凸轮轴旋转360o给各缸近、排气一次。所以凸轮轴正时齿轮的齿数为曲轴正时齿轮齿数的二倍。凸轮轴下置时,一般都采用齿轮副驱动,正时齿轮多用斜齿。

链驱动形式

链式驱动,就是指曲轴通过链条来驱动凸轮轴

齿形皮带驱动

这种驱动方式与链驱动的原理相同。只是链轮改为齿轮,链条改成齿形皮带。

执行机构基本工作原理(一)1

执行机构基本工作原理(一) ——执行机构发展史 一、执行机构的由来 执行机构,又称执行器,是一种自动控制领域的常用机电一体化设备(器件),是自动化仪表的三大组成部分(检测设备、调节设备和执行设备)中的执行设备。主要是对一些设备和装臵进行自动操作,控制其开关和调节,代替人工作业。 按动力类型可分为气动、液动、电动、电液动等几类;按运动形式可分为直行程、角行程、回转型(多转式)等几类。由于用电做为动力有其它几类介质不可比拟的优势,所以电动型近年来发展最快,应用面较广。电动型按不同标准又可分为:组合式结构和机电一体化结构;电器控制型、电子控制型和智能控制型(带HART、FF协议);数字型和模拟型;手动接触调试型和红外线遥控调试型等。 它是伴随着人们对控制性能的要求和自动控制技术的发展而迅猛发展的: 1.早期的工业领域,有许多的控制是手动和半自动的,在操作中人体直接接触工业设备的危险部位和危险介质(固、液、气三态的多种化学物质和辐射物质),极易造成对人的伤害,很不安全; 2.设备寿命短、易损坏、维修量大; 3.采用半自动特别是手动控制的控制效率很低、误差大,生产效率低下。 基于以上原因,执行机构逐渐产生并应用于工业和其它控制领

域,减少和避免了人身伤害和设备损坏,极大的提高了控制精确度和效率,同时也极大提高了生产效率。随着电子元器件技术、计算机技术和控制理论的飞速发展,国内外的执行机构都已跨入智能控制的时代。 二、执行机构的应用领域 执行机构主要应用在以下三大领域: 1、发电厂典型应用有:火电行业应用送风机风门挡板、一次进风风门挡板、空气预热风门挡板、烟气再循环、旁路风门挡板、二次进风风门挡板、主风箱风门挡板、燃烧器调节杆、燃烧器摇摆驱动器液压推杆驱动器、叶轮机调速、烟气调节阀、蒸气调节阀、球阀和蝶阀控制、滑动门、闸门;其它电力行业的阀门执行器应用球阀、除尘控制喷水、叶轮机转速控制、控制大型液压阀、燃气控制阀、燃烧器点火启动、蒸气控制阀、冷凝水再循环, 脱氧机,锅炉给水,过热控制器,再加热恒温控制器,及其它相关阀门应用 2、过程控制用于化工、石化、模具、食品、医药、包装等行业的生产过程控制,按照既定的逻辑指令或电脑程序对阀门、刀具、管道、挡板、滑槽、平台等进行精确的定位、起停、开合、回转,利用系统检测出的温度、压力、流量、尺寸、辐射、亮度、色度、粗糙度、密度等实时参数对系统进行调整,从而实现间歇、连续和循环的加工过程的控制。 3.工业自动化用于较为广泛的航空、航天、军工、机械、冶金、开采、交通、建材等方面,对各类自动化设备和系统的运动点(运动

可变配气正时

可变配气正时 可变配气正时控制机构的主要目的是在维持发动机怠速性能情况下,改善全负荷性能。这种机构是保持进气门开启持续角不变,改变进气门开闭时刻来增加充气量。 (1)凌志LS400汽车可变配气正时控制机构(VVT-i) VVT-i系统用于控制进气门凸轮轴在50°范围内调整凸轮轴转角,使配气正时满足优化控制发动机工作状态的要求,从而提高发动机在所有转速范围内的动力性、经济性和降低尾气的排放。 VVT-i系统由VVT-i控制器、凸轮轴正时机油控制阀和传感器三部分组成,如下图所示。其中传感器有曲轴位置传感器、凸轮轴位置传感器和VVT传感器。 LS400汽车的发动机是8缸V型排列4气门式的,有两根进气凸轮轴和两根排气凸轮轴。在工作过程中,排气凸轮轴由凸轮轴齿形带轮驱动,其相对于齿形带轮的转角不变。曲轴位置传感器测量曲轴转角,向ECU提供发动机转速信号;凸轮轴位置传感器测量齿形带轮转角;VVT传感器测量进气凸轮轴相对于齿形带轮的转角。它们的信号输入ECU,ECU根据转速和负荷的要求控制进气凸轮轴

正时控制阀,控制器根据指令使进气凸轮轴相对于齿形带旋转一个角度,达到进气门延迟开闭的目的,用以增大高速时的进气迟后角,从而提高充气效率。 1)结构 VVT-i控制器的结构如下图所示,它包括由正时带驱动的外齿轮和与进气凸轮轴刚性连接的内齿轮,以及一个内齿轮、外齿轮之间的可动活塞。活塞的内、外表面上有螺旋形花键。活塞沿轴向的移动,会改变内、外齿轮的相对位置,从而产生配气相位的连续改变。 VVT外壳通过安装在其后部的剪式齿轮驱动排气门凸轮轴。 凸轮轴正时控制阀根据ECU的指令控制阀轴的位置,从而将油压施加给凸轮轴正时带轮以提前或推迟配气正时。发动机停机时,凸轮轴正时控制阀处于最延迟的位置,如下图(b)所示。

气动执行机构的结构原理

第十九章:气动执行机构检修 一、概述 气动执行器以无油压缩空气为动力,驱动阀门或挡板动作。主要有以下几种类型:气动调节阀、电磁阀、电信号气动长行程执行机构。 二、气动调节阀 气动调节阀由气动执行机构和调节阀两部分组成。气动执行机构以无油压缩空气为动力,接受气信号20~100kpa并转换成位移,驱动调节阀以调节流体的流量。为了改善阀门位置的线性度,克服阀杆的摩擦力和消除被调介质压力变化等的影响,提高动作速度,使用气动阀门定位器与调节阀配套,从而使阀门位置能按调节信号实现正确的定位。 气源质量应无明显的油蒸汽、油和其他液体,无明显的腐蚀气体、蒸汽和溶剂。带定位器的调节阀气源中所含固体微粒数量应小于0.1g/m3,且微粒执行应小于60цm,含油量应小于10 g/m3。 常用的气动调节阀由气动薄膜调节阀和气动活塞调节阀。 ⒈气动薄膜调节阀 气动薄膜执行机构气源压力最大值为500kpa。执行机构分正作用和反作用两种型式,正作用式信号压力增大,调节阀关小,又称气关式;反作用是信号压力增大,调节阀也开大,又称气开式。 ⒉气动活塞调节阀 气动活塞执行机构气源压力的最大值为700kpa。与气动薄膜执行机构相比,在同样行程条件下,它具有较大的输出力,因此特别适合于高静压、高差压的场合。 ⒊气动隔膜阀 气动隔膜阀根据所选择的隔膜或衬里材质的不同,可适用于各种腐蚀性介质管路上,作为控制介质流动的启闭阀。例如,化学水处理程序控制用的阀门,常采用气动隔膜发执行机构并与电磁阀配合,实现阀门的全开或全关控制。 ⒋阀门定位器 有电气信号和气信号两种。 气动阀门定位器与气动调节阀配套使用。定位器的气源压力大小与执行机构的型式及其压力信号范围(或弹簧压力范围)有关。例如ZPQ—01定位器与ZM系列气动薄膜执行机构配套时,若执行机构压力信号范围为0.02~0.1Mpa,则气源压力为0.14Mpa;若压力信号范围为0.04~0.2Mpa,则气源压力为0.28Mpa;若ZPQ—02定位器与ZS—02系列活塞式执行机构配套时,压力信号范围为0.02~0.1Mpa时,气源压力为0.5Mpa。 电信号阀门定位器也可称电-气阀门定位器,可将0~10mA或4~20mA DC电信号转换成驱动调节阀的标准气信号。 ⒌气动保位阀 气动保位阀用于重要的气动控制系统作为安全保护装置。当仪表气源系统发生故障时,它能自动切断调节器与阀门的通路,使阀门保持在原来的位置上。气动保位阀型号为ZPB—201,给定压力调整范围为0.08~0.25Mpa,通道压力为0.02~0.2Mpa。 气动阀门定位器与气动调节阀配套使用。根据气动阀不同每种阀门都有配套的阀门定位器。阀门定位器的气源压力大小与执行机构的型式及其压力信号范围有关(或弹簧压力范围)有关。 三、调试 气动执行器的调试主要任务是吹扫气源管、阀门的动作方向、阀门定位器调整、阀门的线性度调整。

汽车内燃机配气机构毕业设计

本科专业职业生涯设计 姓名 学号 年级 专业 系(院) 指导教师 2010年 4 月 15 日

目录 第一部分 同舟共济,自强不息,我的汽车工程师之路 (5) 前言 (5) 1 自我探索 (5) 1.1 职业兴趣 (5) 1.1.1 自我评估的结果:ECR (5) 1.1.2 职业测评的结果:SRI (6) 1.1.3 职业兴趣探索小结 (6) 1.2 职业能力 (7) 1.2.1 自我评估的结果:RIC (7) 1.2.2 职业测评的结果:RIS (7) 1.2.3 360度评估结果 (8) 1.2.4 职业能力探索小结 (8) 1.3 职业价值观 (9) 1.3.1 职业价值观测评结果 (9) 1.3.2 职业价值观小结 (9) 1.4 个性特征 (9) 2 了解和分析职业 (10) 2.1 世界大背景 (10) 2.2 国内汽车行业行情 (10) 2.3 汽车行业人才需求情况 (11) 3 匹配抉择 (11) 3.1 性格与爱好的匹配 (11) 3.2 性格与价值取向的匹配 (11) 3.3 爱好与价值取向的匹配 (11) 3.4 我的职业目标 (12) 3.4.1 同济大学汽车学院简介 (12) 3.4.2 执行路线 (13)

4 自我监控和调整 (13) 4.1 监控 (13) 4.1.1 目的 (13) 4.1.2 内容要素 (14) 4.2 修正方案 (14) 5 结束语 (14) 第二部分 汽车内燃机配气机构的优化设计 (15) 摘要 (15) ABSTRACT (16) 1 课题背景 (16) 1.1 配气机构的研究历程 (17) 1.2 配气机构优化设计的目的及意义 (17) 2 配气机构简介 (18) 2.1配气机构概述 (18) 2.2配气机构采用的新技术 (20) 2.2.1顶置凸轮轴技术 (20) 2.2.2 多气门技术 (20) 2.2.3 可变气门正时配气机构(VVA) (21) 3 总布置设计 (22) 3.1 气门的布置形式 (22) 3.1.1 气门顶置式配气机构 (22) 3.2 凸轮轴的布置形式 (22) 3.3 凸轮轴的传动方式 (22) 3.4 每缸气门数及其排列方式 (22) 3.5 气门间隙 (23) 4 配气定时工作原理 (23) 5 配气机构的零件和组件 (24) 5.1 气门组 (24)

执行机构原理修订稿

执行机构原理集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

摘要:是物料或能量供给系统中不可缺少的重要组成部分,而执行机构是调节阀的关键组 成部件。针对执行机构对调节阀工作性能的影响,分析了调节阀的执行机构类型,讨论了 不同类型执行机构的组成、工作原理和特点,在此基础上对不同类型的执行机构适用范围 进行了探讨,为调节阀的选择提供指导作用。1引言 调节阀广泛应用于火力发电、核电、等流体控制场合,是工业生产过程最常用的终端控制元件。执行机构和调节阀门是组成调节阀的两大部件,执行机构根据控制信号驱动调节阀门,对通过的流体进行调节,从而改变操纵变量的数值[1~2]。作为调节阀的驱动部分,执行机构在很大程度上影响着调节阀的工作性能。本文讨论了调节阀的执行机构,并对各种类型执行机构的性能特点进行了分析。 2调节阀执行机构 按操作的不同,调节阀执行机构可分为气动执行机构、电动执行机构和电液执行机构。 气动执行机构 气动薄膜执行机构是最常用的气动执行机构[3],工作原理如图1所示。将20~100kPa的标准气压信号P通入薄膜气室中,在薄膜上便产生一个向下的推力,驱动阀杆部件向下移动,调节阀门打开。与此同时,弹簧被压缩,对薄膜产生一个向上的反作用力。当弹簧的反作用力与气压信号在薄膜产生的推力相等时,阀杆部件停止运动。信号压力越大,在薄膜上产生的推力就越大,弹簧压缩量即调节阀门的开度也就越大。 气动薄膜调节阀 将与执行阀杆刚性连接的调节阀运动部件视为一典型的质量-弹簧-阻尼环节,系统运动受力模型如图2所示。系统在运动过程满足以下方程: 方程式(1) 式中:m为与执行阀杆刚性连接的运动部件总质量;x为阀杆位移;c为阻尼系数;f为摩擦力;Fs为信号压力在薄膜上产生的推力;G为运动部件总重力;Ft为调节阀所控流体在阀芯上的压力差产生的不平衡力;k为弹簧刚度系数。当阀杆由下往上运动时,式(1)等号左端各项符号变负。 图2系统运动受力模型

可变配气正时

哈尔滨应用职业技术学院毕业论文 教务处制

毕业论文项目表

摘要 本文介绍了国内外可变气门技术的发展状况。并根据气门控制参数的变化情况,对可变气门技术进行了详细的分类。结合目前典型的可变气门机构,对实现可变气门技术的途径进行了系统的阐述与评价。通过实例介绍了可变气门技术改善发动机性能及在实现汽油机均质充量压缩着火(HCCI)方面的应用。通过分析指出,叶片式可变凸轮轴相位机构是目前可行性较强的技术途径。 众所周知发动机是靠燃料在汽缸内燃烧做功来产生功率的,由于输入的燃料量受到吸入汽缸内空气量的限制,因此发动机所产生的功率也会受到限制,如果发动机的运行性能已处于最佳状态,再增加输出功率只能通过压缩更多的空气进入汽缸来增加燃料量,从而提高燃烧做功能力。因此在目前的技术条件下,涡轮增压器是惟一能使发动机在工作效率不变的情况下增加输出功率的机械装置。 关键词:可变配气正时;涡轮增压;汽油机

Abstract This paper introduces the development of variable valve technologies. Control parameters according to changes in valve, variable valve timing technology for a detailed classification. Combined with the current typical variable valve body, the variable valve technology to achieve a systematic approach described and evaluated. Introduced through examples variable valve technology to improve engine performance and in the realization of gasoline homogeneous charge compression ignition (HCCI) in the application. Through analysis that vane variable camshaft phase is the feasibility of a strong body of technical means. As we all know the engine is fuel combustion in the cylinder by acting to produce power, as the amount of fuel input by the inhalation of limits on the amount of air inside the cylinder, so the power generated by the engine will be limited, if the engine's operating performance has been at its best further increase in output power can only be compressed more air into the cylinders to increase fuel consumption, thereby enhancing the combustion of acting ability. Therefore, the current technical conditions, the turbocharger is the only way the efficiency of the engine without changing the mechanical device to increase power output. Key words: variable valve timing; turbocharged; gasoline

内燃机配气机构系统动力学分析_张晓蓉

第31卷第3期重庆大学学报 Vo.l 31 No .3 2008年3月 Jour nal of Chongqi n g U niversity M ar .2008 文章编号:1000-582X (2008)03-0294-05 内燃机配气机构系统动力学分析 张晓蓉1,2 ,朱才朝2 ,吴佳芸 2 (1.重庆科技学院机械学院,重庆400042;2.重庆大学机械传动国家重点实验室,重庆400030) 摘 要:内燃机配气机构直接影响着内燃机的性能和可靠性。论文对顶置四气门配气机构工作过程进行了分析,采用理论计算和实验方法确定了配气机构动力学模型的主要参数,利用AVL / TYCON 分析软件建立了顶置配气机构凸轮轴)摇臂)气门系统的一维动力学分析模型,并对其动态特性进行了数值仿真,验证了动力学模型及分析结果的正确性,为配气机构动态性能的评价和优化提出了理论依据。 关键词:内燃机;配气机构;动力学 中图分类号:TH 132.47 文献标志码:A System Dynam ic Analysis of Engine Valve -train ZHANG X i a o-ro ng 1,2 ,ZHU C a i -cha o 2 ,W U J i a -yun 2 (1.C ollege o fM echan ical Eng i n eeri n g ,Chongqi n g U niversity o f Science and Techno l o gy ,Chongqing 400042,P .R .China ; 2.State K ey Laboratory o fM echan ica lTrans m issi o n ,Chongqing University ,Chongq i n g 400030,P .R.Ch i n a)Abst ract :Va l v e tra i n is the key factor for the perfor m ance and reliab ility of eng ine .W e analyze the w or k i n g m echanis m of over head va l v e train w ith four valves ,and obtained the m a i n para m eters o f dyna m ic m odeli n g w ith t h eore tica l and experi m ental m ethods .On the basis of the above stud i e s ,w e buil d the m odel o f ca m shaf-t rocke-t valve syste m w ith AVL /TYCON soft w are .Its dyna m ic characteristics is si m ulated and ver ified by experi m ents .Th is paper prov ides a theoretical approach for the evaluati o n and opti m izati o n of dyna m ic perfor m ance of valve tra i n .K ey w ords :eng i n e ;va lve -train ;dyna m ics 配气机构是内燃机的重要组成部分,其设计优良与否直接影响内燃机的性能指标。这些指标不仅包括动力性、经济性,也包括运转性能如内燃机的振动、噪声、排放指标和可靠性等,因而开展配气机构系统动力学研究具有重要意义。 配气凸轮机构一直是内燃机研究的重要组成部分,研究内容已从最初单纯的凸轮经验设计,拓展到整个配气机构的运动学与动力学的综合研究。国外自20世纪初就有许多学者开始进行这方面的深入 研究;相比而言,国内则起步较迟,20世纪70年代起才开始全面研究凸轮设计与动力学分析,研究的重点放在凸轮型线设计、多质量动力学研究方面 [1-3] 。目前,国际上已有各种配气凸轮设计软件, 国内也出现了一些类似的软件,这些软件在速度与计算精度上都有所提高。文中以顶置四气门配气机构为例,通过理论计算和利用实验方法确定了配气机构动力学模型的主要参数,利用TYCON 分析软件建立了该配气机构的凸轮轴)摇臂)气门系统动力

可变配气正时控制机构

图为雷诺的可变配气正时控制机构。在凸轮轴与正时齿轮之间有两个液压室。一个为高压油区一个为低压油区。因此,只要调节两个油区之间的压力差,就能改变配气正时角了。而两个油区的油压是通过上图所标示的油压控制阀调节的。油压调节阀实质上就是一个电磁阀,通过电脑传输过来的脉冲电流来控制阀门的通断。当高压油路(图中红色的通道)接通时,整个油室处于加压状态,根据图中红色箭头的方向很容易判断,此时配气正时被推迟,重叠角增大,适用于低转速;当电磁阀控制黄色区域压力高于红色区域压力时,凸轮轴会如图中黄色箭头所示,提前一个角度,这样重叠角减小,适用于高转速。下图能更直观的表现这一工作过程: 注:“图中蓝色部分是凸轮轴末端,白色部分是正时齿轮”。对于可变配气正时控制,虽然各大车厂的名字叫法各不相同,但其功能作用和控制方法多为大同小异,所以了解了这些控制方式和性能特征,对于车型的选择也可以重新定位。我国汽车工业起步较晚,所以技术比较落后。由于这种技术结构复杂,成本相对比传统技术要高一些,所以国内车厂大多没有使用这些技术,他们的配器机构都是传统设计。但也有少数厂家,引进了这些先进的发动机控制技术,比如现在广州本田雅格2.4,新奥德塞2.4,还有东风本田CR-V上使用的I-VTEC 发动机都使用了这些技术。在家用经济型车中,广本飞度的1.5VTEC发动机是唯一使用了可变配气技术的车型。

可变配气技术详解(3) 除了配气会影响发动机吸气效率外,还有一个不容忽视的影响进气的因素就是进气管。不论是纯空气还是空气和汽油的混合物,都可以看成是有一定质量的流体,而流体是在进气管中流过的,根据流体力学和震动学的原理来优化进气管的设计对于提高发动机的吸气效率是非常重要的。具体方法有:把进气歧管内壁加工得非常光滑来减小气阻,也可以设计特殊的进气道形状让流体阻力得到优化,还可以减小空气滤清器的吸气阻力等等。这些都是传统对进气管的优化方法,现在大部分车都是这样做的。这里我们来介绍一种技术含量更高的进气道优化方法——可变进气管长度技术。首先让我门来看看进气歧管的长度对汽车的进气有哪些影响吧。大家都知道,4行程发动机是曲轴每旋转两圈为一个周期,而这个周期的1/4的时间是用来进气的,也就是说在一个周期内1/4的时间进气门打开,剩下的3/4的时间进气门是关闭的。这就造成进气管内的空气存在一定的进气频率。所以我们不妨把它假设成震动来进行分析。根据震动学的原理,当震动物体的震动周期和频率与他的固有周期和固有频率频率相同时,震动能量最大,震动波叠加,这就是人们常说的共振。对于震动的物体而言共振的能量是最大的。那么如果把进气看成是震动,那么当发动机的吸气频率与进气管中空气的固有频率相同时,进气能量最大。但发动机的吸气频率是随发动机转速的变化而变化的。当发动机转速高时,吸气频率也高;当发动机转速降低时,吸气频率就随之降低了。那怎么样才能让进气管内的空气的固有频率能与发动机的吸气频率保持一致呢?最可行的办法就 是改变进气管的长度。当发动机处于低转速时使用长进气管,因为进气管越长,空气在管内的震动频率越低,只要长度与转速相匹配就能得到最大的进气能量;反过来说,当发动机处于高转速时,由于吸气频率高,所以就要换上较短的进气管来提高空气在进气管内的固有频率,得到最大的进气能量。所以就需要设计一套可以让进气管长度变化的系统来达到这一目的,那么可变进气管长度技术就诞生了。如下图就是可变进气管长度的控制机构:

柴油机简介

柴油机简介 一、概念 柴油机是以柴油为燃料,利用空气在气缸内被压缩产生的高温高压,使喷入气缸的柴油自燃,并且膨胀作功的内燃机。 柴油机具有结构紧凑,使用可靠,动力性、经济性等技术指标优良,起动迅速,操作简单和维护方便等优点。 二、内燃机的分类 内燃机:汽油机、柴油机、煤气机、燃气轮机 外燃机:蒸汽机和气轮机 常用的往复活塞式内燃机分类方法如下: (1)按燃料分类:有柴油机、汽油机、煤气(包括各种代用燃料)机等。 (2)按一个工作循环的行程数分类:有四冲程内燃机、二冲程内燃机。 (3)按燃料着火方式分类:有压燃式内燃机、点燃式内燃机。 (4)按冷却方式分类:有水冷式内燃机、风冷式内燃机。 (5)按进气方式分类:有自然吸气式内燃机、增压式内燃机。 (6)按气缸数目分类:有单缸内燃机、多缸内燃机。 (7)按气缸排列分类:有直列式内燃机、V型内燃机、卧式内燃机、对置气缸内燃机等。 (8)按转速或活塞平均速度分类:有高速内燃机;中速内燃机;低速内燃机 (9)按用途分类:有农用、汽车用、工程机械用、拖拉机用、铁路机车用、船用及发电用等内燃机。 三、发动机的性能指标 1. 动力性指标 动力性指标是表征发动机作功能力大小的指标,一般用发动机的有效转矩、有效功率、转速和平均有效压力等作为评价发动机动力性好坏的指标。 (1)有效转矩 发动机对外输出的转矩称为有效转矩,记作Te,单位为N·m,有效转矩与曲轴角位移的乘积即为发动机对外输出的有效功。 (2)有效功率 发动机在单位时间对外输出的有效功称为有效功率,记作Pe,单位为kW。 (3)发动机转速 发动机曲轴每分钟的回转数称为发动机转速,用n表示,单位为r/min。 在发动机产品标牌上规定的有效功率及其相应的转速分别称作标定功率和标定转速。发动机在标定功

配气机构常见故障诊断与排除

配气机构常见故障诊断与排除 摘要本论文阐述配气机构的作用、组成、主要构造、工作原理、故障的检测步骤和排除方法,同时论述了各类配气机构的优缺点,以及配气机构运用的最新技术及配气机构的发展趋势。 关键词:配气机构配气相位各类配气机构特点

1 绪论 发动机的配气机构就好比人体的呼吸系统,进排气的机械动作就有 如人体的呼吸气。尽管配气机构的作用相当于人体的呼吸器官,但是它 的作动原理以及构造却相对要复杂许多 人体呼吸作用是指让氧气通过呼吸道进入到体内,使细胞在氧气的参与下经过体内酶的催化转换,将糖类、脂肪类以及蛋白质等有机物彻底氧化分解产生出二氧化碳和水,同时释放出大量能量供肌体活动的过程。通常我们所提到的呼吸都是指有氧呼吸,而有氧呼吸也是大多数生物体的主要呼吸形式。实际上,除了生物需要做有氧呼吸外,汽车也同样如此。表面看来,汽车虽然是一台冰冷的钢铁机器,但是通过将各种电子设备以及功能零部件进行叠加,汽车已俨然具有了生物所特有的灵性。 汽车的构成部件中,发动机的配气机构是非常重要的一个组成部分,它的作用和人体的呼吸器官一样掌控着氧气的进入,对于能否做功拥有决定权,不过它的工作环境可比呼吸器官严酷多了——油污、高温、高压,毫不夸张的说简直有如炼狱。配气机构的主要功能是按照一定时限自动开启和关闭各气缸的进、排气门。它的作用则是空气及时通过进气门向气缸内供给可燃混合气(汽油机)或新鲜空气(柴油机)。并且及时将燃烧做功后形成的废气从排气门排出,实现发动机气缸换气补给的整个过程。 2配气机构的概述 2.1配气机构的作用 配气机构的功用是按照发动机每一气缸内所进行的工作循环和发火次序的要求,定时开启和关闭各气缸的进、排气门,使新鲜充量得以及时进入气缸,废气得以及时从气缸排出;在压缩与膨胀行程中,保证燃烧室的密封。新鲜充量对于汽油机而言是汽油和空气的棍合气,对于柴油机而言是纯空气。

DDC 控制器原理及结构

DDC 控制器原理及结构 的输入/输出信号根据物理性质通常分为模拟输入量(Analogy Input,缩写为AD〉、模拟输出量(Analogy Output,缩写为AO)、数字输入量(Digital input,缩写为DI和数字输出量〈digital output,缩写为DO)四类. 在系统设计和使用中,需要掌握DDC输入和输出的连接, (1)模拟量输入的物理量有温度、湿度、压力、流量等,这些物理量由相应的传感器感应测得,往往经过变送器转变为电信号送入DDC的模拟输入口(AI).此电信号可以是电流信号 (0-10mA),也可以是电压信号〈0?5 V或0?10 V〉。一般一个DDC 控制器可有多个AI输入口,若变送器输出为电流信号,通常由接在输入端口的电阻转变为电压信号. (2)DDC计箅机能够直接判断D1通道上的电平高低(相当于开/关)两种状态,并将其转换为数字量〈1或0〉,进而对其进行逻辑分析和计箅.对于以开关状态为输出的传感器,如水 流开关、风速开关、压差开关等,可以直接接到DDC的DI通道上.除了測量开关状态外,DI通道还可以直接对脉冲信号进行測量,如测量脉冲頻率及高电平或低电平的脉冲宽度,或对脉冲个数进行计数. (3)DDC的模拟量输出(A0〉信号是0?5 V、0?10 V的电压或0?10mA、4?20mA的电流.其输出电压或电流的大小由控制软件决定.由于DDC计算机内部处理的信号都是数字信号,所以这种可连续变化

的模拟量信号是通过内部数字

/模拟拟转换器(D/A)产生的。 通常,模拟量输出(A0)信号控制风阀、水阀等执行器动作。风阀、水阀有气动执行器和电动执行器两种类型,采用气动执行器时需要将控制器的棋拟量输出信号(A0〉接至电气转换器,电气转换器根据输入的电压或电流的大小产生0?0.1 Mpa的空气,再通过气路送至气动执行器的气室中,推动活塞或隔膜完成对阀的调节.也有的气动执行器本身带有电动定位装置,可以直接将控制器输出的模拟量信号接到电动定位装置接线端子上.气动风阀、水阀动作可靠,故障率低,可以在较恶劣的环境下运行,在有现成的压缩空气源的场合,应该优先选择气动执行器。由于阀门执行机构是气动的,因此一般都没有阀位的电反馈信号,故这种控制器不能获得真实的阀门位置信号,无法判别阀门的机械故障.在选择电气转换器或阀门定位器时,一定要注意它所要求的输人信号的形式、范围。 风阀、水阀的电动执行器一般由一台三相或单相电动机通过机械减速系统与阀连接,由此控制速系统还与一可变电阻器相连,这样阀门的不同位置将使可变电阻器输出不同电阻值,成为反映阀位状态的电反馈信号.为了防止阀门全开或全关后电动机继续运转,执行器内还在相应位置设有限位开关.当阀门到达全开或全关位置时,可以通过机械装置直接切断限位开关,使电动机停止 (4)数字量输出D0也称开开量输出,它可由控制软件将输出通道变成高电平或低电平,通过驱动电动机电路即可带动继电器或其他幵关元件动作,也可使指示灯处于显示状态。

可变配气机构

发动机气门技术解析 [汽车DIY] 传统的发动机都配备了气门式配气机构,按照发动机的动作顺序和工作循环,定时的开启关闭进排气门。进气量的多少直接关系到发动机的功率和扭矩。如何保证进气量足够多,又要保证排气够干净,因此在配气这个环节有很多的技术。 首先我们来认识一下配气定时,以曲轴转角表示的进、排气门开闭时刻及其开启的持续时间称作配气定时。一般情况下,进气门会早开,目的是为了在进气开始进气门能有较大的开度或者较大的

进气通过面,从而减小进气阻力,使进气顺畅,相应的,而进气门晚关是为了充分利用进气的惯性增大进气量。相应的排气门早开是为了在气压较大时排干净,而排气门晚关也是为了利用惯性排气。由于进气门早开和排气门晚关,致使活塞在上止点附近出现进、排气门同时开启的现象,称其为气门重叠。 气门重叠显示图 发动机不同转速需要的配气定时也不同。这是因为当发动机转速改变时,进气流和排气流也随着改变,所以一直采用不变的气门开关时间将会影响燃油的燃烧效率,一般情况下,随着转速的升高,气门重叠角和气门升程随着增加,这样讲有利于获得更好的发动机性能,以便更好的提高发动机的动力输出。

双顶置凸轮轴 VVTi,i-Vtec和VVEL等各种可变气门技术相信大家都有所了解,基本上,目前市面上新车所搭载的绝大部分发动机都或多或少的使用了可变气门技术。可能大家也都知道可变气门技术都可以有效提升发动机动力并节省油耗,但是它们都是通过什么原理实现的呢

我们都知道,发动机的配气机构负责向汽缸提供汽油燃烧做功做必须的新鲜空气,并将燃烧后的废气排除出去,这一套动作的工作原理可以看做是动物呼吸器官的吸气和呼气。从工作原理上讲,配气机构的主要功能是按照一定时限自动开启和关闭各气缸的进、排气门,从而使空气及时通过进气门向气缸内供给新鲜空气或者可燃混合气,并且及时将燃烧做功后形成的废气从排气门排出,实现发动机气缸换气补给的整个过程。

执行机构原理

摘要:调节阀是物料或能量供给系统中不可缺少的重要组成部分,而执行机构是调节阀的关 键组成部件。针对执行机构对调节阀工作性能的影响,分析了调节阀的执行机构类型,讨论 了不同类型执行机构的组成、工作原理和特点,在此基础上对不同类型的执行机构适用范围 进行了探讨,为调节阀的选择提供指导作用。 1引言 并 方程式(1) 点击此处查看全部新闻图片 式中:m为与执行阀杆刚性连接的运动部件总质量;x为阀杆位移;c为阻尼系数;f为摩擦力;Fs为信号压力在薄膜上产生的推力;G为运动部件总重力;Ft为调节阀所控流体在阀芯上的压力差产生的不平衡力;k为弹簧刚度系数。当阀杆由下往上运动时,式(1)等号左端各项符号变负。 图2系统运动受力模型

点击此处查看全部新闻图片 式(1)中的摩擦力是造成调节阀死区与滞后的主要原因[4]。对于气动执行机构而言,由于工作介质的可压缩性比较大,使得摩擦对其动态响应特性的影响更为显著。当生产过程受到扰动的影响,虽然调节阀控制器的输出产生了一个用于纠正偏差的控制信号,但由于摩擦的存在,使得该信号并没有产生相应的阀杆位移。这就要求控制器输出更大的信号,只有当控制信号超过一定范围,即死区,才能使阀杆产生位移。死区的存在使调节不能及时进行,有时还造成调节的过量,使调节阀的控制品质变差。 为了减小调节阀死区与滞后的影响,除了改进阀杆密封填料结构,采用合适密封材料等外,目前的主要改进措施是通过给气动调节阀配备气动阀门定位器[2],如图3所示。 1 8 1 号进行比较,当两者有偏差时,改变对伺服放大器的输出,使执行阀杆动作,从而建立起输入信号与调节阀执行阀杆位移(即调节阀开口量)一一对应的关系。通常电动执行机构的输入信号是标准的电流或电压信号,输出位移可以是直行程、角行程和多转式等类型[2]。 图4电动执行机构组成框图 点击此处查看全部新闻图片 2.3电液执行机构

配气机构的正时分析

CVTC:即随发动机的转速、负荷、水温等运行参数的变化,适时的调正,配气正时和气门升程.使发动机在高低速下均能达到最高效率降低排放节省燃料的技术。有两根突轮轴一根低速用一根高速用,用电磁阀控制。 活塞式四冲程引擎都由进气、压缩、做功、排气4个冲程完成,气缸进气的基本原理是“负压”,也就是气缸内外的气体压强差。在引擎低速运转时,气门的开启程度切不可过大,这样容易造成气缸内外压力均衡,负压减小,从而进气不够充分,对于气门的工作而言,这个“小程度开启”需要短行程的方式加以控制;而高速恰恰相反,转速动辄5000rpm,倘若气门依然羞羞答答不肯打开,引擎的进气必然受阻,所以,我们需要长行程的气门升程。往往,工程师们既要兼顾引擎在低速区的扭矩特性,又想榨取高速区的功率特性,只能采取一条“折中”的思路,到头来引擎高速没功率,低速缺扭矩……所以在这样的情况下,就需要一种对气门升程进行调节的装置,也就是我们要说的“可变气门正时技术”。 雷诺、日产合并之后,多项技术都在集团内部进行共用。其中就包括日产潜心研究的CVTC连续可变气门正时系统。其原理与本田VTEC接近,也是采用液压作用改变凸轮轴同步齿形带轮与凸轮轴末端的夹角,从而改变配气正时角。在凸轮轴与正时齿轮之间有高压油区和低压油区。只要调节两个油区之间的压力差,就能改变配气正时角了。两个油区的油压通过油压控制阀调节的。当高压油路接通时,整个油室处于加压状态,凸轮轴顺时针偏转一定角度,配气正时被推迟,重叠角增大,适用于低转速;当电磁阀控制黄色区域压力高于红色区域压力时,凸轮轴逆时针偏转一定角度,配气正时被提前,这样重叠角减小,适用于高转速。 以上太多专业术语,在这里只是让大家了解这项技术呵呵. CVVT系统包含以下零件:油压控制阀、进气凸轮齿盘、曲轴位置感应器、凸轮位置感应器、油泵、引擎电子控制单元(ECU)。

发动机配气机构液压挺柱介绍

液压挺柱介绍 一、 液压挺杆的功用 气门间隙(valve clearance)是指发动机在冷状态下,当气门处于关闭状态时,气门与传动件的间隙。 发动机在工作时,气门及其传动件,如挺柱、推杆等都将受热膨胀而伸长;如果气门与其传动件之间,在冷状态的时候没有预留间隙,则在热状态下由于气门及其传动件膨胀伸长而顶开气门,破坏气门和气门座圈之间的密封,造成漏气,影响发动机性能。 所以在装配发动机时,在气门与其传动件之间预留适当的间隙,当然,这个间隙不能过大也不能过小,气门间隙过小,不能完全消除上述弊病;气门间隙过大,气门和气门座圈以及传动件之间将产生撞击和异响,造成过度磨损。 为了消除以上弊病,采用液压挺杆(气门间隙自动补偿器)实现零气门间隙。当气门及其传动件因温度升高而膨胀,或者因为磨损而缩短时,液压挺杆进行自动调整和补偿。 二、 液压挺杆的结构

1、柱塞式液压挺杆结构 2、杯状式液压挺杆结构 ①、 带导向通道的挺杆外壳 ②、 柱塞 ③、 间隙调节器外壳 ④、 单向球阀 ⑤、 单向阀弹簧 ⑥、 单向阀帽 ⑦、 回位弹簧 三、 液压挺杆的工作原理 外壳housing 单向球阀Single ball 柱塞piston 单向阀弹簧Single valve 单向阀帽Single valve cover 回位弹簧Backtrack

机油从缸盖油道进入液压挺杆的柱塞,在机油压力的作用下,单向阀弹簧和回位弹簧被压缩,单向球阀被打开,机油立即充满柱塞下的高压油腔;单向球阀回位关闭,柱塞上升,消除气门间隙。 当配气机构中的运动件磨损后,例如滚子摇臂和液压挺杆之间、滚子摇臂和气门之间;由于机油压力保持一定,这时候在机油压力的作用下,单向球阀打开,机油立即充满柱塞下的高压油腔,柱塞上升,气门间隙自动补偿。

可变配气机构和新技术

图1 发动机速度特性 可变配气机构及其新技术 摘要:本报告先介绍可变配气机构,主要从采用可变配气机构的原因、可变配气机构的分类等方面进行概述。然后就目前比较先进的可变配气正时新技术进行阐述。 关键词:可变配气;VVT ;VANOS 1 可变配气机构概述 1.1 采用可变配气机构的原因 不同的发动机,由于结构和转速的不同,其配气正时也不相同。即使是同一台发动机,其配气正时也应随转速的变化而变化。这是因为:当发动机转速改变时,由于进气流速和强制排气时期的废气流速也随之改变,因此在气门晚关期间利用气流惯性增加进气和 促进排气的效果将会不同。例如,当发动机在低速运转时, 若配气正时保持不变,则部分进气将被活塞推出气缸,使进 气量减少,气缸内残余废气将会增多。当发动机在高速运转 时,气流惯性大,若此时增大进气迟后角和气门重叠角,则 会增加进气量和减少残余废气量,使发动机的换气过程臻于 完善。总之,四冲程发动机的配气正时应该是进气角和气门 重叠角随发动机转速的升高而加大。如果气门升程也能随发 动机转速的升高而加大,则更有利于获得良好的发动机高速性能。采用可变配气正时机构对发动机性能的改善,可由图1一目了然。 此外,能源与环境问题是目前汽车工业所面临的两个重要问题。研发能耗低、污染低的“节能-高效-环保”发动机是目前发动机新技术的发展方向。可变配气相位技术已成为提高发动机动力性和经济性的新技术之一,显著改善了发动机的怠速稳定性和排放特性。 1.2 可变配气机构的分类 按照控制参数的不同,可变配气技术可分为可变气门正时(VVT )和可变气门升程(VVL )两类。可变气门正时即气门开启与关闭时刻可变,根据气门开启持续期的变化又分为可变气门相位(VP )和可变气门相位与持续期(VET )两类;可变气门升程主要是改变了气门开启的最大升程,按照气门正时与持续期的变化情况又可分为可变气门升程与正时(VLT )和气门升程单独可变两类。 实现可变配气有多种途径,按照有无凸轮轴可分为基于凸轮轴的可变配气机构和无凸轮轴的可变配

第四章 配气机构

汽车工程系教案 200 /200 学年第二学期 课程名称:汽车构造(一)授课教师:李佳星 班级:第10 讲题目:第四章配气机构 第10讲配气机构主要零部件 第周星期 本讲教学目标: 知识点: ·气门组主要零件的结构特点 ·气门传动组主要零件的结构特点·可变配气正时及气门升程机构 能力点: ·正确理解气门组主要零件结构及特点·正确理解传动组主要零件结构及特点本讲主要内容: ·配气机构的零件和组件 ·可变配气正时及气门升程机构 本讲教学要求及适合专业: ·汽车检测与维修专业(2课时) ·车辆工程(2课时) ·汽车服务工程(2课时) ·汽车制造与维修专业(2课时) ·重点讲解配气机构的零件和组件 ·启发分析可变配气正时及气门升程机构 教学重点:·气门组结构及特点 ·传动组结构及特点 教学难点:·可变配气正时及气门升程机构 教学方法及手段:导入、重点分析、简介、重点介绍、归纳小结、多媒体 作业或课外阅读资料: ·同步学习《汽车构造课程建设》中的《汽车发动机网络教程》 ·具体书面作业从《汽车发动机网络教程》获取,由教师根据不同专业要求布置

·气门弹簧的弹力足够 2.气门

1)气门顶面(图4-9) ·平顶:结构简单、制造方便、受热面积小、质量小;目前应用最多。进排气门均可用 ·凹顶:头部与杆部有较大的过渡圆弧,可以减小进气阻力;头部弹性较大,能较好适应气门座圈的变形。适用于进气门,不宜用于排气门 ·凸顶:头部刚度大,排气阻力小;但受热面积大,质量大,加工较复杂。适用于排气门 2)气门锥面(图4-10) ·气门锥角:气门锥面与气门顶面之间的夹角。一般为45°,少数进气门为30°。 ·较小气门锥角:气门通过断面较大,进气阻力较小,可以增加进气量。但气门头部边缘较薄,刚度较差,致使密封性变差 ·较大气门锥角:可提高气门头部边缘的刚度,气门落座时有较好的自动对中作用及较大的接触压力。有利于密封与传热及挤掉密封锥面上的积炭

执行机构原理及结构

执行器的工作原理及结构 一、概述 执行器在现代生产过程自动化中起着十分重要的作用。人们常把它称为实现生产过程控制的手足,因为它在自动化控制系统中接受调节器的控制信号,自动的改变调节变量,达到对被调参数(如温度、压力、流量、液位等)进行调节的目的,使生产过程按预定要求正常进行。 执行器根据执行机构使用的能源不同可可分为气动、电动和液动三大类。 电动执行器 电动执行器是以电能为动力的,它的特点是获取能源方便,动作快,信号传递速度快,且可远距离传输信号,便于和数字装置配合使用等。所以电动执行器处于发展和上升时期,是一种有发展前途的装置。其缺点是结构复杂,价格贵和推动力小,同时,一般来说电动执行器不适合防火防爆的场合。但如果采用防爆结构,也可以达到防火防爆的要求。 气动执行器 气动执行器是以压缩空气为动力的,具有结构简单、动作可靠稳定、输出力大、维护方便和防火防爆等优点。所以广泛应用于石油、化工、冶金、电力等部门,特别适用于具有爆炸危险的石油、化工生产过程。其缺点是滞后大,不适宜远传(150m以内),不能与数字装置连接。 目前,国内外所选用的执行器中,液动的很少。 执行器的基本结构 执行器由执行机构和调节阀(调节机构)两个部分组成,执行机构是执行器的推动装置,它根据控制信号的大小,产生相应的推力,推动调节阀动作。调节阀是执行器的调节部分,在执行机构推力的作用下,调节阀产生一定的位移或转角,直接调节流体的流量。 为了保证执行器能够正常工作,提高调节质量和可靠性,执行器还必须配备一定的辅助装置。常用的辅助装置有阀门定位器和手轮机构。阀门定位器利用反馈原理改善执行器性能,使执行器能按调节器的控制信号,实现准确定位。手轮机构用于直接操作调节阀,以便在停电、停气、调节器无输出或执行机构损坏而失灵的情况下,生产仍能正常工作。 二、气动执行机构 气动执行机构接受气动控制器或阀门定位器输出的气压信号,并将其转换成相应的推杆直线位移,以推动调节阀动作。 气动执行机构主要有两种类型:薄膜式与活塞式。薄膜式执行机构简单、动作可靠、维修方便、价格低廉,是最常用的一种执行机构;活塞式执行机构允许操作压力可达500kpa,因此输出推力大,但价格较高。 气动执行机构又可分为有弹簧和无弹簧两种,有弹簧的气动执行机构较之无弹簧的气动执行机构输出推力小、价格低。 气动执行机构有正作用和反作用两种形式。当信号压力增加时推杆向下动作的叫正作用式执行机构;信号压力增加时推杆向上动作的叫反作用式执行机构 气动薄膜执行机构使用弹性膜片将输入气压转变为推杆的推力,通过推杆使阀芯产生相应的位移,改变阀的开度,气动活塞式执行机构以汽缸内的活塞输出推力,由于汽缸允许压力较高,可获得较大的推力,并容易制成长行程执行机构。一个典型的气动薄膜型执行机构主要由弹性薄膜、压缩弹簧和推杆组成。

相关文档
最新文档