浙江大学离散数学2015期末考试题(英文班)

浙江大学离散数学2015期末考试题(英文班)
浙江大学离散数学2015期末考试题(英文班)

Department of Information Science and Electronic Engineering

Zhejiang University

Final Examination

11193011Discrete Mathematics

Assoc.Prof.Dr.Thomas Honold

M.Sc.Jingmei Ai

Fall Semester,2014

Name:

Matric.No.:

Question123456

Marks Obtained

Maximal Marks151515201520100

Time allowed:120minutes

Instructions to candidates:

?This examination paper contains six(6)questions.

?Please answer every question and subquestion,and justify your answers.

?For your answers please use the space provided after each question.If this space is insu?cient,please continue on the blank sheets provided.

?This is a CLOSED BOOK examination,

except that you may bring1sheet of A4paper(hand-written only)and a Chinese-English dictionary(paper copy only)to the examination.

Question1(15marks)

a)Is(p1?p2)∨p1a tautology?

b)Are(p1→p2)→p3and p1→(p2→p3)logically equivalent?

c)Fermat’s Last Theorem(FLT)states that the equation x n+y n=z n has

no integer solution with xyz=0and n≥3.Express FLT as a formula of

predicate calculus with domain Z.

Note:You may use the basic operations of ordinary arithmetic,including

powers‘x n’and the comparison operators’=’,’≤’.No further abbreviations

are allowed.The domain(universe of discourse)must be the set of all integers. Question2(15marks)

Three black balls,three red balls and three yellow balls are arranged in a3×3 matrix in such a way that there is no monochromatic row or column(“monochro-matic”refers to balls of the same color).Balls of the same color are considered as indistinguishable.In how many ways can this be done?

Question3(15marks)

Suppose a1,a2,...,a10are integers satisfying1≤a1≤a2≤···≤a10≤40.Show that there exist distinct3-subsets{i,j,k}and{r,s,t}of{1,2,...,10}such that

a i+a j+a k=a r+a s+a t.

Question4(20marks)

Let G be the simple graph whose vertices are the subsets S?{1,2,3,4,5,6,7} with|S|=3,two vertices S and T being adjacent if and only if S∩T=?.

a)How many vertices and edges does G have?

b)Is G regular?If applicable,determine its degree.

c)Is G connected?

d)Is G bipartite?

Question5(15marks)

a)Find a particular solution of the recurrence relation

a n=3a n?1?4a n?3+4n.

Hint:The recurrence relation has a solution of the form a n=cn+d,where

c,d are constants.

b)Determine the general solution of the recurrence relation in a).

Question6(20marks)

A list a=(a0,a1,...,a n?1)of integers is said to have a(contiguous)zero subsum

if there exist0≤i≤j≤n?1such that a i+a i+1+···+a j=0.

a)Write(using a programming language or some form of pseudocode)a boolean

function has zero subsum(a)with parameter a as above,which returns true if a has a zero subsum and false otherwise.

b)Determine the worst-case time complexity of your algorithm,using additions

and comparisons of list elements as basic operations.Both the exact number of basic operations and an asymptotic growth estimate should be given.

c)Does there exist a more e?cient algorithm for this task?Brie?y justify your

answer.

Solutions

1a)No.1This can be proved either by a truth table or,e.g.,as follows:If p 1is false and p 2is true then p 1?p 2is false.Hence the disjunction (p 1?p 2)∨p 1is false as well.4b)No.1For the proof one can use again a truth table or,e.g.,the following shorter argument:p 1→(p 2→p 3)is false for exactly one assigment of truth values to p 1,p 2,p 3,viz.p 1=p 2=T ,p 3=F .On the other hand,(p 1→p 2)→p 3is false whenever p 1=p 3=F (since p 1→p 2=T in this case),and hence for at least two

assigments of truth values (in fact for exactly three).

4c)An appropriate formula is

??x ?y ?z ?n ?(xyz =0)∧n ≥3∧(x n +y n =z n ) .

5

1=15

2Write A for the set of all arrangements of the 9balls (without any restriction)and A i (B j )for the set of arrangements with row i (resp.,column j )monochromatic.Then the desired number is |A \(A 1∪A 2∪A 3∪B 1∪B 2∪B 3)|.2We use the PIE for the computation.The number of unrestricted arrangements is |A |= 93,3,3 = 93 63 =84·20=1680.3Further we have

|A i |=|B j |=3 63

=60,2|A i,j |=|B i,j |=3!=6,

2|A 1,2,3|=|B 1,2,3|=6,3

since 2monochromatic rows force the 3rd row to be monochromatic as well.

All other intersections between the sets A i ,B j involve at least one A i and at least one B j .Since monochromatic rows and columns exclude each other,these intersections

are all empty.

1It follows that the desired number is

1680?6·60+6·6?2·6=1344.2

2=15

3The number of distinct 3-subsets of {1,2,...,10}is

103 =10·9·83·2·1=120.5

The 120sums a i +a j +a k are integers in the range [3,120].There are 118such integers.5

=?By the pigeonhole principle,since 120>118,the sums cannot be distinct.Hence there exist at least two 3-subsets with the same sum.5

3

=15

4a)The number of vertices of G is 73 =35.3The number of edges of G is 73 43 ·12=70.Alternatively,use b)and the formula

e =vr

2

for the number of edges of a regular graph.)3b)Yes.The degree of a vertex {a,b,c }is the number of 3-subsets of {1,2,...,7}\{a,b,c },which is a 4-set.Hence G is regular of degree 43 =4.4c)Yes.Consider two non-adjacent vertices S and T .Then |S ∩T |∈{1,2}.1If |S ∩T |=2then |S ∪T |=4and S ,T have a common neighbor,viz.{1,2,...,7}\(S ∪T ).Hence S and T are connected by a path of length 2.2If |S ∩T |=1,let w.l.o.g.S ={1,2,3},T ={1,4,5}.Then,e.g.,M ={4,5,6}is adjacent to S ,N ={2,3,7}is adjacent to T ,and M ,N are adjacent as well.Hence

S and T are connected by a path of length 3.

2In all G is connected and has diameter 3.

d)No.G has cycles of length 7,viz.

{1,2,3}→{4,5,6}→{7,1,2}→{3,4,5}→{6,7,1}→{2,3,4}→{5,6,7}→{1,2,3}

3

Since G has cycles of odd length,G cannot be bipartite.2

4

=20

5a)The sequence a n =cn +d is a solution if and only if,for every n ,

cn +d =3 c (n ?1)+d ?4 c (n ?3)+d +4n

=3cn ?3c +3d ?4cn +12c ?4d +4n

=(4?c )n +9c ?d 2

This is in turn equivalent to the system c =4?c ∧d =9c ?d ,which has the (unique)

solution c =2,d =9.Hence a (p )n =2n +9is a particular solution.3

b)The characteristic equation is

r 3?3r 2+4=0.2

The roots of this equation are 2(of multiplicity 2)and ?1(of multiplicity 1).3This can be proved,for example,by checking that 2and ?1are solutions,and using the fact that the coe?cient of r 2is the negative sum of all three roots.

Hence the general solution of the associated homogeneous linear recurrence relation is a(h)n=α1·2n+α2·n2n+α3(?1)n(α1,α2,α3∈C).3 From this and a)the?nal answer is

a n=α1·2n+α2·n2n+α3(?1)n+2n+9,whereα1,α2,α3∈C.2

5

=15 6a)

def has_subset_sum(a):

#a=[a(0),...,a(n-1)]list of integers

#We use Python’s convention that indexing starts with0

#n denotes the length of the list

n=len(a)

for i in range(n):#range(n)=[0,...,n-1]

sum=0

for j in range(i,n):#range(n)=[i,...,n-1]

sum=sum+a[j]#Initially sum=a[i]

if sum==0:

return True

return False

...10 b)During Pass i through the outer for-loop,the inner for-loop is executed at most

n?i times,with1addition and1comparison per iteration.Hence the total number of basic operations is at most

n?1

i=02(n?i)=2

n+(n?1)+···+1

=n(n+1)=Θ(n2).5

(The worst case,n(n+1)operations,occurs if and only if a has no zero subsum except possibly a n?1=0.)

c)Yes.Consider the list of partial sums s i=a0+a1+···+a i,0≤i≤n?1,amended

by s?1=0.Then a i+a i+1+···+a j=s j?s i?1,and hence a has a zero subset sum if and only if two elements of the list s=(s?1,s0,s1,...,s n?1)are equal.

The list s can be computed in time O(n).Further we can test distinctness of its members in time O(n log n)(by sorting the list?rst,and then checking whether s i< s i+1by one further pass through the list).The total time complexity of this algorithm is only O(n log n).5

6

=20

Exam

=100

离散数学试题及答案精选版

离散数学试题及答案 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

一、填空题 1设集合A,B,其中A={1,2,3},B={1,2},则A-B=____________________; (A)-(B)=__________________________. 2.设有限集合A,|A|=n,则|(A×A)|=__________________________. 3.设集合A={a,b},B={1,2},则从A到B的所有映射是 _______________________________________,其中双射的是 __________________________. 4.已知命题公式G=(PQ)∧R,则G的主析取范式是 _______________________________ __________________________________________________________. 6设A、B为两个集合,A={1,2,4},B={3,4},则从AB= _________________________;AB=_________________________;A-B=_____________________. 7.设R是集合A上的等价关系,则R所具有的关系的三个特性是 ______________________,________________________,__________________ _____________. 8.设命题公式G=(P(QR)),则使公式G为真的解释有 __________________________, _____________________________,__________________________. 9.设集合A={1,2,3,4},A上的关系 R 1={(1,4),(2,3),(3,2)},R 2 ={(2,1),(3,2),(4,3)},则

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

2006年浙江大学427数学分析考研真题【圣才出品】

1 / 3 2006年浙江大学427数学分析考研真题 浙江大学2006年攻读硕士学位研究生入学试题 考试科目:数学分析(427) 考生注意: 1.本试卷满分为150 分,全部考试时间总计180 分钟; 2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。 一、(20分) ()i 证明:数列 1111ln (1,2,3,)23n x n n n =++++-=收敛; ()ii 计算:1111lim()1232n n n n n →∞ +++++++. 二、(15分) 设()f x 是闭区间 [],a b 上的连续函数,对任一点(),x a b ∈,存在趋于零的数列,使得 2()()2()lim 0k k k k f x r f x r f x r →∞++--=. 证明:函数()f x 为一线性函数. 三、(15分) 设()h x 是 (),-∞+∞上的无处可导的连续函数,试以此构造连续函数()f x ,在 (),-∞+∞上仅在两点可导,并且说明理由.

2 / 3 四、(15分) 设22222221()sin ,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=?. ()i 求(,)f x y x ??以及(,)f x y y ??; ()ii 问(,),(,)f f x y x y x y ????在原点是否连续?(,)f x y 在原点是否可微?试说明理由. 五、(20分) 设()f x 在()0,+∞的任何闭子区间[],αβ上黎曼可积,且0()f x dx +∞ ?收敛, 证明:对于常数 1a >,成立 000lim ()()xy y a f x dx f x dx ++∞+∞-→=??. 六、(15分) 计算曲面积分 32222()S xdydz ydzdx zdxdy I ax by cz ++=++?? 其中 {}2222(,,)S x y z x y z r =++=,常数0,0,0,0a b c r >>>>. 七、(15分) 设V 为单位球: 2221x y z ++≤,又设,,a b c 为不全为零的常数,计算: cos()V I ax by cz dxdydz =++???. 八、(20分) 设函数21()12f x x x =--,证明级数 ()0!(0)n n n f ∞=∑收敛. 九、(15分) 设()f x 在)0,+∞??上可微,(0)0f =.若有常数0A >,使得对任意 ) 0,x ∈+∞??,有

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学试题及解答

离散数学 2^m*n 一、选择题(2*10) 1.令P:今天下雨了,Q:我没带伞,则命题“虽然今天下雨了,但是我没带伞”可符号化为()。 (A)P→?Q (B)P∨?Q (C)P∧Q (D)P∧?Q 2.下列命题公式为永真蕴含式的是()。 (A)Q→(P∧Q)(B)P→(P∧Q) (C)(P∧Q)→P (D)(P∨Q)→Q 3、命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死的”的否定 是()。 (A)所有人都不是大学生,有些人不会死 (B)所有人不都是大学生,所有人都不会死 (C)存在一些人不是大学生,有些人不会死 (D)所有人都不是大学生,所有人都不会死 4、永真式的否定是()。

(A)永真式(B)永假式(C)可满足式(D)以上均有可能 5、以下选项中正确的是()。 (A)0= ? (B)0 ? (C)0∈? (D)0?? 6、以下哪个不是集合A上的等价关系的性质?() )。 (A)2 (B)4 (C)3 (D)5 10.连通图G是一棵树,当且仅当G中()。 (A)有些边不是割边(B)每条边都是割边 (C)无割边集(D)每条边都不是割边

二、填空题(2*10) 1、命题“2是偶数或-3是负数”的否定是________。 2、设全体域D是正整数集合,则命题?x?y(xy=y)的真值是______。 3、令R(x):x是实数,Q(x):x是有理数。则命题“并非每个实数都是有理数”的符号化表示为 4 5 6、设 7 8 (1)若A去,则C和D中要去1个人; (2)B和C不能都去; (3)若C去,则D留下 五、(15分)设A={1,2,3},写出下列图示关系的关系矩阵,并讨论它们的性质:

【浙江工商大学】《离散数学》期末考试题(B)

《离散数学》期末考试题(B) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为 ( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二、单选题(每小题3分,共15分) 1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1 -?R R 是A 上的 (A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立 2.由2个命题变元p 和q 组成的不等值的命题公式的个数有 (A)2 (B)4 (C)8 (D)16 3.设p 是素数且n 是正整数,则任意有限域的元素个数为 (A)n p + (B)pn (C)n p (D)p n 4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是 (A)有界格 (B)分配格 (C)有补格 (D)布尔格 5.3阶完全无向图3K 的不同构的生成子图有 (A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”. 1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( ) 2.命题联结词→不满足结合律. ( ) 3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“?8”的逆元为 4. ( ) 4.整环不一定是域. ( )

离散数学考试试题(A、B卷及答案)

离散数学考试试题(A卷及答案) 一、证明题(10分) 1) (P∧Q∧A C)∧(A P∨Q∨C ) (A∧(P Q ))C。P<->Q=(p->Q)合取(Q->p) 证明: (P∧Q∧A C)∧(A P∨Q∨C) (P ∨Q ∨A∨C)∧(A∨P∨Q∨C) ((P ∨Q ∨A)∧(A∨P∨Q))∨C反用分配律 ((P∧Q∧A)∨(A ∧P ∧Q))∨C ( A∧((P∧Q)∨(P ∧Q)))∨C再反用分配律 GAGGAGAGGAFFFFAFAF

( A∧(P Q))∨C (A∧(P Q ))C 2) (P Q)P Q。 证明:(P Q)((P∧Q))(P ∨Q))P Q。 二、分别用真值表法和公式法求(P(Q∨R))∧(P∨(Q R))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。 主析取范式与析取范式的区别:主析取范式里每个括号里都必须有全部的变元。 主析取范式可由析取范式经等值演算法算得。 GAGGAGAGGAFFFFAFAF

证明: 公式法:因为(P(Q ∨R))∧(P∨(Q R)) (P∨Q∨R)∧(P∨(Q ∧R )∨(Q ∧R)) (P∨Q ∨R)∧(((P∨Q)∧(P ∨R ))∨(Q ∧R ))分配律 (P∨Q∨R)∧(P∨Q ∨Q)∧(P∨Q ∨R)∧(P∨R ∨Q)∧(P∨R ∨R) (P∨Q ∨R)∧(P∨Q ∨R )∧(P ∨Q∨R) M∧5M∧6M使(非P析取Q析取R)为0 4 GAGGAGAGGAFFFFAFAF

所赋真值,即100,二进制为4 GAGGAGAGGAFFFFAFAF

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

2001年浙江大学436数学分析考研真题【圣才出品】

2001年浙江大学436数学分析考研真题 浙江大学2001年攻读硕士学位研究生入学试题 考试科目:数学分析(436) 一、(30分) ()i 用“εδ-语言”证明2211lim 3233n n n n n →∞-+=+-; ()ii 求极限tan 21lim(2)x x x π→-; ()iii 设101(ln )1x f x x x <≤?'=?>?,且(0)0f =,求()f x . 二、(10分) 设()y y x =是可微函数,求(0)y ',其中 2sin 7x y y ye e x x =-+-. 三、(10分) 在极坐标变换cos ,sin x r y r θθ==之下,变换方程2222(,)z z f x y x y ??+=??. 四、(20分) ()i 求由半径为a 的球面与顶点在球心,顶角为2α的圆锥面所围成区域的体积; ()ii 求曲面积分222()()()s I y x dydz z y dzdx x z dxdy =-+-+-??,其中S 是曲面 222(12)z x y z =--≤≤的上侧.

五、(15分) 设二元函数(,)f x y 在正方形区域 [][]0,10,1?上连续,记[]0,1J =. ()i 试比较inf sup (,)y J y J f x y ∈∈与supinf (,)y J y J f x y ∈∈的大小并证明之; ()ii 给出一个使等式inf sup (,)supinf (,)y J y J y J y J f x y f x y ∈∈∈∈=成立的充分条件并证明之. 六、(15分) 设()f x 是在 []1,1-上可积且在0x =处连续的函数,记 (1)01()10n n nx x x x e x ??-≤≤?=?-≤≤?? . 证明:11lim ()()(0)2n n n f x x dx f ?-→∞=?.

《离散数学》测试题答案

《离散数学》测试题答 案 https://www.360docs.net/doc/5e8746808.html,work Information Technology Company.2020YEAR

测试题 ——离散数学 一、选择题 1、G是一棵根树,则()。 A、G一定是连通的 B、G一定是强连通的 C、G只有一个顶点的出度为0 D、G只有一个顶点的入度为1 2、下面哪个语句不是命题()。 A、中国将成功举办2008年奥运会 B、一亿年前地球发生了大灾难 C、我说的不是真话 D、哈密顿图是连通的 3、设R是实数集合,在上定义二元运算*:a,b∈R,a*b=a+b-ab,则下面的论断中正确的是()。 A、0是*的零元 B、1是*的幺元 C、0是*的幺元 D、*没有等幂元 4、下面说法中正确的是()。 A、所有可数集合都是等势的 B、任何集合都有与其等势的真子集 C、有些无限集合没有可数子集 D、有理数集合是不可数集合 5、无向完全图K3的不同构的生成子图有()个。 A. 6 B.5 C. 4 D. 3 6、下面哪一种图不一定是无向树? A、无回路的连通图 B、有n个顶点n-1条边的连通图 C、每对顶点间都有通路的图 D、连通但删去一条边则不连通的图 7、设集合A={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。 A.1 A B.{{4,5}} A C. {1,2,3} A D.A 8、在有界格中,若一个元素有补元,则补元( )。 A、必惟一 B、不惟一 C、不一定惟一 D、可能惟一 9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A是不封闭的() A、 x*y=max{x,y} B、 x*y=min{x,y} C、 x*y=GCD(x,y),即x,y的最大公约数 D、 x*y=LCM(x,y),即x,y的最小公倍数

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R) ?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R) ?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R ?T∧R(置换)?R 2) ?x (A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x)) ??x?A(x)∨?xB(x) ???xA(x)∨?xB(x) ??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E,?E→(A∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E P (2) ?E→(A∧?B) P (3) (C∨D)→(A∧?B) T(1)(2),I (4) (A∧?B)→(R∨S) P (5) (C∨D)→(R∨S) T(3)(4), I (6) C∨D P (7) R∨S T(5),I 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) P

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

浙江大学数学分析考研试题

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:数学分析 科目代号:427 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 111(20)1...log ,log 23111lim(...)122n n x n e n n n n →∞=++++-+++++一、分(1)证明数列收敛其中表示以为底的对数;(2)计算2 (15)[,],()()2()lim 0.()k k k k k a b r x f x r f x r f x r f x →∞++--=二、分函数f(x)在闭区间上连续,存在收敛于零的数列使得对任意的, 证明:为线性函数. (15)()(),()h x f x f x 三、分假设函数为处处不可导的连续函数,以此为基础构造连续函数使仅在两点可导,并说明理由。 22222221()sin ,0(20)(,)0,0(1)(,),(,)(2),(,)x y x y x y f x y x y f f x y x y x y f f f x y x y ?++≠?+=??+=? ????????四、分二元函数求 是否在原点连续,在原点是否可微,并说明理由。 0 000 (15)()[,]()1 lim ()()xy y f x a b f x dx a a f x dx f x dx ∞ ∞ ∞-→+>=???五、分在任意区间黎曼可积,收敛,证明: 2222223/21 (15),0,0,0.()x y z xdydz ydzdx zdxdy a b c ax by cz ++=++>>>++??六、分计算 222(15):1cos().V V x y z I ax by cz dxdydz ++==++???七、分计算在单位球上的积分 2()01!(20)(),12(0)n n n f x x x f ∞==--∑八、分设函数证明级数收敛。 (15)()(0)0,'()(),[0,)()0.f x f x f x Af x f x =≤∞=九、分设可微,对于任意的有证明在上注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用! dragonflier 2006-1-16

《离散数学》期末考试试题

《离散数学》期末考试试题 一、 填空题(每空2分,合计20分) 1. 设个体域为{2,3,6}D =-, ():3F x x ≤,():0G x x >。则在此解释下公式 ()(()())x F x G x ?∧的真值为______。 2. 设:p 我是大学生,:q 我喜欢数学。命题“我是喜欢数学的大学生”为可符合化 为 。 3. 设{1,2,3,4}A =,{2,4,6}B =,则A B -=________,A B ⊕=________。 4. 合式公式()Q P P ?→∧是永______式。 5. 给定集合{1,2,3,4,5}A =,在集合A 上定义两种关系: {1,3,3,4,2,2}R =<><><>, {4,2,3,1,2,3}S =<><><>, 则_______________S R =ο,_______________R S =ο。 6. 设e 是群G 上的幺元,若a G ∈且2a e =,则1a -=____ , 2a -=__________。 7. 公式))(()(S Q P Q P ?∧?∨∧∨?的对偶公式为 。 8. 设{2,3,6,12}A =, p 是A 上的整除关系,则偏序集,A <>p 的最大元是________,极小元是_ _。 9. 一棵有6个叶结点的完全二叉树,有_____个内点;而若一棵树有2个结点度数为2,一 个结点度数为3,3个结点度数为4,其余是叶结点,则该树有_____个叶结点。 10. 设图,G V E =<>, 1234{v ,v ,v ,v }V =,若G 的邻接矩阵????????????=0001001111011010A ,则1()deg v -=________, 4()deg v +=____________。 二、选择题(每题2分,合计20分) 1.下列各式中哪个不成立( )。 A 、)()())()((x xQ x xP x Q x P x ?∨??∨? ; B 、)()())()((x xQ x xP x Q x P x ?∨??∨?; C 、)()())()((x xQ x xP x Q x P x ?∧??∧?; D 、Q x xP Q x P x ∧??∧?)())((。

离散数学英文试题A

西南大学课程考核 命题教师:教研室或系负责人:主管院长:年月日 第1 页共4页

《离散数学》课程试题 【A 】卷 第2页 共6页 2. Choose the corresponding letter of the best answer that best completes the statements or answers the questions among A, B, C, and D and fill the blanks (3 points each ,15 points in all). (1) Suppose A = {1, 2, 3}. The following statement ( ) is not true. A .? ? ?(A ) B .{?} ? ?(A ) C .{2, 3}∈ A ? A D .{{2}} ? ?(A ) (2) Suppose that R and S are transitive relations on a set A . Then ( ) is transitive. A . S R ? B .S R ? C . S R - D .S R (3) There are ( ) strongly connected components of the following graph G . A. 1 B. 2 C. 3 D. 4 (4) There are ( D ) nonisomorphic undirected trees with 5 vertices. A. 6 B. 5. C. 4 非同构的无向树 D. 3 (5) Suppose P (x , y ) is a predicate and the universe for the variables x and y is {1,2,3}. Suppose P (1,3), P (2,1), P (2,2), P (2,3), P (3,1), P (3,2) are true, and P (x , y ) is false otherwise. The following statement ( ) is true. A. ?y ?x (P (x , y ) → P (y , x )) B. ??x ?y (P (x , y ) ∧ ?P (y , x )) C. ?x ?y (x ≠ y → (P (x , y ) ∨ P (y , x )) D. ?y ?x (x ≤ y ∧ P (x , y ))

离散数学-期末考试卷-A卷

离散数学-期末考试卷-A卷

东莞理工学院城市学院(本科)试卷(A卷) 2013-2014学年第一学期 开课单位:计算机与信息科学系,考试形式:闭卷,允许带入场 科目:离散数学,班级:软工本2012-1、2、3 姓名:学号: 题序一二三四总分 得分 A评 卷人 一、单项选择题(每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,错选、多选或未选均无分。 1. 下述不是命题的是( ) A. 做人真难啊! B. 后天是阴天。 C. 2是偶数。 D. 地球是方的。 2. 命题公式P→(P∨Q∨R)是( ) A. 永假的 B. 永真的 C. 可满足的

D. 析取范式 3. 命题公式﹁B→﹁A等价于( ) A. ﹁A∨﹁ B B. ﹁(A∨B) C. ﹁A∧﹁ B D. A→B 4.设P:他聪明,Q:他用功,命题“他虽聪明但不用功”的符号化正确的是()A.?P∧Q B.P∧?Q C.P→?Q D.P∨?Q 5.设A(x):x是人,B(x):x犯错误,命题“没有不犯错误的人”符号化为()A.?x(A(x))∧B(x) B.??x( A(x)→?B(x) ) C.??x( A(x)∧B(X)) D.??x( A(x)∧?B(x) ) 6. 设有A={a,b,c}上的关系R={,,,},则R具有( ) A. 自反性 B. 反自反性 C. 传递性 D. 反对称性

7. 设A={1,2,3,4,5,6},B={a,b,c,d,e},以下哪一个关系是从A到B的满射函数( ) A. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>} B. f={<1,e>,<2,d>,<3,c>,<4,b>,<5,a>,<6,e>} C. f={<1,a>,<2,b>,<3,c>,<4,a>,<5,b>,<6,c>} D. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>,<1,b>} 8.设简单图G所有结点的度数之和为10,则G一定有() A.3条边B.4条边C.5条边 D.6条边 9.下列不.一定是树的是() A.每对结点之间都有通路的图 B.有n个结点,n-1条边的连通图 C.无回路的连通图D.连通但删去一条边则不连通的图 10.下列各图中既是欧拉图,又是哈密顿图的是()

最新离散数学试题库

15.设D的结点数大于1,D=是强连通图,当且仅当() A.D中至少有一条通路 B.D中至少有一条回路 C.D中有通过每个结点至少一次的通路 D.D中有通过每个结点至少一次的回路 1.设P:天下大雨,Q:他在室内运动,命题“除非天下大雨,否则他不.在室内运动”可符合化 为() A.?P∧Q B.?P→Q C.?P→?Q D.P→?Q 2.下列命题联结词集合中,是最小联结词组的是() A.{?,} B.{?,∨,∧} C.{?,∧} D.{∧,→} 3.下列命题为假.命题的是() A.如果2是偶数,那么一个公式的析取范式惟一 B.如果2是偶数,那么一个公式的析取范式不惟一 C.如果2是奇数,那么一个公式的析取范式惟一 D.如果2是奇数,那么一个公式的析取范式不惟一 4.谓词公式?x(P(x)∨?yR(y))→Q(x))中变元x是() A.自由变元 B.约束变元 C.既不是自由变元也不是约束变元 D.既是自由变元也是约束变元 5.若个体域为整数集,下列公式中值为真的是() A.?x?y(x+y=0) B.?y?x(x+y=0) C.?x?y(x+y=0) D.??x?y(x+y=0) 6.下列命题中不.正确的是() A.x∈{x}-{{x}} B.{x}?{x}-{{x}} C.A={x}∪x,则x∈A且x?A D.A-B=??A=B 7.设P={x|(x+1)2≤4},Q={x|x2+16≥5x},则下列选项正确的是() A.P?Q B.P?Q C.Q?P D.Q=P 8.下列表达式中不.成立的是() A.A∪(B⊕C)=(A∪B) ⊕ (A∪C) B.A∩(B⊕C)=(A∩B) ⊕ (A∩C) C.(A⊕B)×C=(A×C) ⊕ (B×C) D.(A-B) ×C=(A×C)-(B×C) 5.对于公式(?x) (?y)(P(x)∧Q(y))→(?x)R(x,y),下列说法正确的是() A.y是自由变元B.y是约束变元 C.(?x)的辖域是R(x, y) D.(?x)的辖域是(?y)(P(x)∧Q(y))→(?x)R(x,y)

最新2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

相关文档
最新文档