九年级数学黄金分割

九年级数学黄金分割
九年级数学黄金分割

第4课时黄金分割

1.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm,则它的宽约为( A )

(A)12.36 cm (B)13.6 cm

(C)32.36 cm (D)7.64 cm

2.如图,已知点C是线段AB的黄金分割点,且BC>AC,若S1表示以BC 为边的正方形面积,S2表示长为AB,宽为AC的矩形面积,则S1与S2的大小关系为( B )

(A)S1>S2(B)S1=S2

(C)S1

3.如果三条线段的长a,b,c满足==,那么(a,b,c)叫做“黄金线段组”,黄金线段组中的三条线段( D )

(A)必构成锐角三角形(B)必构成直角三角形

(C)必构成钝角三角形(D)不能构成三角形

4.如图,在五角星中,AD=BC,且C,D两点都是AB的黄金分割点,CD=1,

则AB的长是+2 .

5.一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20 m,这名主持人现在站在A处(如图所示),则她应再走几m才能到达最理想位置?

解:设黄金分割点为点P.

(1)当AP>BP时,因为AB=20 m,

所以AP=AB=×20=(10-10)(m).

(2)当AP

所以BP=AB=×20=(10-10)(m).

所以AP=AB-BP=20-(10-10)=(30-10)(m).

所以她应再走(10-10)m或(30-10)m才能到达最理想位置.

6.已知如图,△ABC中,AC=BC,在边AB上截取AD=AC,连接CD,若点D 恰好是线段AB的一个黄金分割点(AD>BD),则∠A的度数是( C )

(A)22.5°(B)30°(C)36°(D)45°

7.如图所示,以长为2 cm的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M落在AD上.

(1)试求AM,DM的长;

(2)点M是线段AD的黄金分割点吗?请说明理由.

解:(1)在Rt△APD中,AP=1 cm,AD=2 cm,

由勾股定理知PD===(cm),

所以AM=AF=PF-AP=PD-AP=(-1)( cm),

DM=AD-AM=(3-)( cm).

(2)因为AM2=(-1)2=6-2,

AD·DM=2×(3-)=6-2,

所以AM2=AD·DM,

所以点M是线段AD的黄金分割点.

8.(拓展探究题)如图一个矩形ABCD(AB

证明:设BC=a,AB=b,则=.

所以==-1=-1=.

所以矩形ABFE是黄金矩形.

大自然中的黄金分割

初中数学综合实践课题设计—— 大自然中的黄金分割 龙翔学校 周福兰 ◆ 黄金分割的由来 一天,毕达哥拉斯从一家铁匠铺路过,被铺子中那有节奏的叮叮当当的打铁声所吸引,他走进作坊,拿出一把尺量了一下铁锤和铁砧的寸,发现它们之间存在着一种十分和谐的关系。回到家里,毕达哥拉斯拿出一根线,想将它分为两段。经过反复比较,他最后确定了 0.618:1的比例截断最优美。后来古希腊美学家柏拉图将这比例称为黄金分割律。中世纪的数学家开普勒对黄金分割作了很高的评价。他说:几何学有两大宝藏:一个是勾股定理,另一个是黄金分割。 那么,什么是黄金分割? ◆ 黄金分割自述 点C 把线段AB 分成两条线段AC 和CB ,如果AB AC AC CB =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。 那么,黄金比又是多少呢?如何计算呢? 分析:设线段AB 的长度为1个单位,AC 的长度为x 个单位,则CB 为 ()x -1个单位,根据题意列出方程: 11x x x =- 由比例的基本性质得: 21x x =- 即 012=-+x x 解这个方程求得:AC= 21 5- 所以,求出黄金比为 ≈-=215AB AC 618.0

◆你知道为什么女性爱穿高跟鞋吗? 中世纪意大利的数学家菲波那契测定了大量的人体后得知,人体肚脐以下的长度与身高之比接近0.618,其中少数人的比值等于0.618的被称为:“标准美人”。因此,艺术家们在创作艺术人体时,都以黄金比为标准进行创作。 周老师的身高为162cm,肚脐眼以上的长度为70cm,你能帮周老师挑一双最适合她身高的鞋子吗?试试吧! ◆趣味问答 (问题一):报幕员应站在舞台的什么地方报幕最佳? (问题二):人的正常体温是37℃,对大多数人来说,体感最舒适的温度是22 ℃~23 ℃。你能解释吗? ◆动动脑,画一画 你能利用黄金分割的数学知识设计一幅图案,送给老师吗?动动脑,画一画

苏科版数学九年级下册教案-6.2 黄金分割

《黄金分割》教学设计 一、教材分析: 本节课是初中数学九年级下册的内容,一方面,这是在学习了线段的比的基础上,对比例性质的的进一步深入和拓展;另一方面,又为学习相似三角形等知识奠定了基础,是进一步研究相似图形及其性质的工具性内容。鉴于这种认识,本节课在此本书中有重要的地位,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。 黄金分割是现实生活中存在的一种现象,广泛的应用在设计、艺术等领域中,比如黄金矩形,就是黄金分割在设计中的一个主要应用:在设计建筑物、工艺品、日常用品涉及矩形时,如果设计成黄金矩形,看起来更具有美感.学生体会到数学与自然及人类社会的密切关系,丰富了学生的数学活动经验,促进了学生观察、分析、归纳、概括的能力和审美意识的发展。 通过学习“黄金分割”这样的题材,进一步体会数学的文化价值.有效的激发学生学习数学的兴趣,发展学生的动脑、动手能力,培养学生思维能力,增强学生学习数学自信心。有助于增强学生的创新意识和实践能力,为学生提供了实践和探索的机会。 这节课也有数学实验的味道,学生在具体活动中体验数学知识,并在现实情境中和已有知识的基础上体验和理解数学知识,是学生自己建构、探索数学知识的活动. 二、学情分析: 1、学生已有基础:学生对于真实情境以及现实生活中的数学问题具有极大的学习兴趣.而且,在前面的学习中,学生经历过探索概念的形成过程,获得了初步的数学活动经验和体验.学生对黄金分割的定义理解不存困难.也学过无理数、比例线段和一元二次方程的解法,,所以对于黄金比既能求出准确值也能算出近似值。 2、学生面临问题:学生思维能力处于发展阶段,动手能力较弱。 本节课引导学生从数学的角度思考问题,引导学生一步步的走入要解决的问题中心去,让学生自主、积极思维的同时,运用自己已有的知识去探索发现,感受数学的人文价值和与生活间的联系。

初中数学例题:黄金分割

初中数学例题:黄金分割 5. 如图所示,矩形ABCD 是黄金矩形(即=≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形? 【思路点拨】(1)矩形的宽与长之比值为 ,则这种矩形叫做黄金矩形. (2)要说明ABFE 是不是黄金矩形只要证明 =即可. 【答案与解析】矩形ABFE 是黄金矩形. 理由如下:因为 = = 所以矩形ABFE 也是黄金矩形. 【总结升华】判断四边形是否是黄金矩形,要根据实际条件灵活选择判断方法. 举一反三: 【变式】以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图所示, BC AB 2 15-2 15-AB AE 215-AB AE AB ED AB AD AB ED AD -=-2 1512151)15)(15() 15(21152 -=-+=-+-+=--

(1)求AM ,DM 的长, (2)试说明AM 2 =AD ·DM (3)根据(2)的结论,你能找出图中的黄金分割点吗? 【答案】(1)∵正方形ABCD 的边长是2,P 是AB 中点, ∴AD =AB =2,AP =1,∠BAD =90°, ∴PD =。 ∵PF =PD , ∴AF = ,在正方形ABCD 中,AM =AF =,MD =AD -AM =3- (2)由(1)得AD ×DM =2(3-)=6-2, ∴AM 2 =AD ·DM . (3)如图中的M 点是线段AD 的黄金分割点. 6.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高165cm ,下半身长与身高的比值是0.60,为了尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ). A.4cm B.6cm C.8cm D.10cm 【答案】C. 522=+AD AP 15-15-555526)15(22-=-=AM x l

高中数学史集黄金分割素材

黄金分割 (浙江省宁波市镇海区外语实验学校 315200)余满龙 在初中数学的相似形这一章中有“黄金分割”的简单介绍:把一条线段(PQ )分成两条线段,使其 中较大的线段(PC )是原线段(PQ )与较小线段(CQ )的比例中项,这种分法用途广泛,且美观,所以人们把它称为黄金分割也称“中外比”或“中末比”。(如图1) 世界上最早接触黄金分割的是古希腊的毕达哥拉斯学派。公元前4世纪(二千多年前),古希腊数学家欧多克斯(约公元前408~公元前355)第一个系统研究了这一问题,并建立起比例理论。他发现: 在这个几何问题里,若CQ 与PC 之比等于PC 与PQ 之比, 那么这一比值就等于…,用式子表示就是: 618.0215=-==PQ PC PC CQ 这个神奇的数字已经让我们着迷了几千年但实际上,这个黄金分割很早就存在了,我们 从 Andros 神庙(公元前10000年)就可以看出,而Kheops (公元前2800年)金字塔(如右图)表现的尤为明显。几何学家,哲学家和建筑师都认为黄金分割是一组非常奇特的比例,是一种空间的和谐,能够组成精确的比例。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克斯的工作,系统论述了黄金分割,成为最早的有证论着。欧多克斯就是从整个比例论的角度考虑黄金分割,他还把上述的C 点分PQ 所成的比PC:CQ 叫做“中外比”。欧多克斯发现这种线段之间的中外比关系存在于许多图形中。如正五边形中, Kheops (公元前Q C P 图1

莱奥纳多·达·芬奇 相邻顶角的两条对角线互相将对方分成中外比,而较长的一段等于正五边形的边。如果将有理线段分成中外比,那末被分成的两个线段长是无理数。 文艺复兴时期的欧洲,由于绘画艺术的发展,促进了对黄金分割的研究。当时,出现了好几个身兼几何学家的画家,着名的有帕奇欧里、丢勒、达芬奇等人。他们反几何学上图形的定量分析用到一般绘画艺术,从而给绘画艺术确立了科学的理论基础。 1228年,意大利数学家斐波那契在《算盘书》的修订本中提出“兔子问题”,导致斐波那契数列:1,1 ,2,3,5,8,13,21,34,55,89,……,它的每一项与后一项比值的极限就是黄金分割数,即黄金分割形成的线段与全线段的比值。(即设F 1 =1,F 2 =1,F n = F n-2 + F n-1,n ≥3,则) 1525年丢勒制定了充分吸收黄金分割几何意义的比例法则,揭示了黄金分割在绘画中的重要地位。丢勒以为,在所有矩形中,黄金分割的矩形,即短边与长边之比为2 15 的矩形最美观。因为这样的矩形,“以短边为边,在这个矩形中分出一个 正方形后,余下的矩形与原来的矩形相似,仍是 一个黄金分割形的矩形”,这使人们产生一种 “和谐”的感觉。 后来意大利伟大画家达·芬奇(1452-1519)(如右图)把欣赏的重点转到使线段构成中外比的分割,而不是中外比本身,提出了“黄金分割”这一名称。这一命名一直延用至今。 欧洲中世纪的物理学家和天文学家开普勒(J .Kepler1571—1630),曾经说过:“几何学里有二个宝库:一个是毕达哥拉斯定理(我们称为“商

九年级数学上册第4课时 黄金分割

作品编号:4862354798562348112533 学校:兽古上山市名扬镇装载小学* 教师:葛蝇给* 班级:朱雀捌班* 第4课时黄金分割 【知识与技能】 1.理解黄金分割的定义;会找一条线段的黄金分割点. 2.会判断一点是否是线段的黄金分割点. 【过程与方法】 通过找一条线段的黄金分割点,培养学生理解能力和动手能力. 【情感态度】 理解黄金分割点的现实意义,动手制作相关图形,感受黄金分割的美,体会教学的应用价值. 【教学重点】 找一条线段的黄金分割点. 【教学难点】 黄金分割比的应用. 一、情境导入,初步认识 现实生活中存在许多优美的图画和建筑,例如古埃及金字塔、古希腊巴台农神庙,这些建筑的边长之间的比都接近某一个数,你知道这个数是多少吗? 【教学说明】利用来源于生活中的美丽图象或建筑吸引学生的注意力,营造一个感受美、关注美、探究美的氛围,唤醒学生对美的感受. 二、思考探究,获取新知 动手量一量,五角星图案中,线段AC、BC的长度,然后计算AC AB 与 BC AC , 它们的值相等吗?

【教学说明】学生亲自动手操作,得到黄金比并加深对黄金分割的理解. 【归纳结论】在线段AB上,点C把线段AB分成两条线段AC和BC,如 果AC AB = BC AC ,那么称线段AB被点C黄金分割, 点C叫做线段AB的黄金分割点, AC与AB的比叫做黄金比. 三、运用新知,深化理解 1.已知C是线段AB的一个黄金分割点,则AC∶AB为(D) 2.把2米的线段进行黄金分割,则分成的较短的线段长为0.764 米. 3.如图,在平行四边形ABCD中,点E是边BC上的黄金分割点,且BE> CE,AE与BD相交于点F.那么BF∶FD的值为51 - . 4.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士的身高为1.68米,身体躯干(脚底到肚脐的高度)为1.02米,那么她应选择约多高的高跟鞋看起来更美.(精确到十分位) 解:设她应选择高跟鞋的高度是xcm, 则102 168 x x + + =0.618, 解得:x≈4.8cm.故答案为:4.8cm. 5.已知线段AB,求作线段AB的黄金分割点C,使AC>BC. 解:作法如下: (1)延长线段AB至F,使AB=BF,分别以A、F为圆心,以大于线段AB的长为半径作弧,两弧相交于点G,连接BG,则BG⊥AB,在BG上取点D,

数学之美——黄金分割(图形相似)汇总

数学之美——黄金分割 前 言 数学可以说是各学科的灵魂,数学中蕴涵着文化价值、美学价值、以及经济价值,而这些价值究竟是如何体现的?随着我国教育水平的逐步提高,我们对数学这门科学的学习更加透彻,我们就以数学中的两大宝藏之一“黄金分割”为例,黄金分割是我们最常见的一种和谐比例关系,即是毕达哥拉斯学派提出的“黄金分割”又称“黄金段”或“黄金率”。在初中教学中对黄金分割的了解还不是很深,只是对黄金分割的定义做了简单的说明和简单的练习。随着我们数学能力水平的提升,我们了解到了许多重要的与黄金分割相关联的数学知识,本节主要解决杨辉三角形等数学量与黄金分割的关系,以及与黄金分割有关的一些概念,最后,将进一步阐述黄金分割的实际应用,可见黄金分割用途之广泛,影响之深远。 另外,我真诚的希望通过本节学习,能够让学生更多的了解黄金分割的实质和内涵,对以后的学习有进一步的帮助。 一、黄金分割的起源与发展 1.1 黄金分割的定义 古希腊雅典学派的第三大数学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L 的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。证明方法为: 设有一根长为1的线段AB 在靠近B 端的地方取点C ,)(CB AC >使AC AB CB AC ::= 则点C 为AB 的黄金分割点。 设x AC =,则x BC -=1 代入定义式AC AB CB AC ::= 可得 x x x :1)1(:=- 即 012 =-+x x 解该二次方程:2151--= x 2 152-=x 其中1x 为负值舍掉。 所以 2 15-=AC 约为618.0.

黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美。 1.2黄金分割的发展史 据记载黄金分割是在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。 其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边 形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《帕乔利》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 其实,黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多

浙教版初中数学九年级比例线段及黄金分割(基础) 知识讲解

比例线段及黄金分割(基础) 知识讲解 【学习目标】 1、了解两条线段的比和比例线段的概念并能根据条件写出比例线段; 2、会运用比例线段解决简单的实际问题; 3、掌握黄金分割的定义并能确定一条线段的黄金分割点. 【要点梳理】 要点一、比例线段 【: 394495 图形的相似 预备知识】 1.成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段. 2.比例的性质: (1)基本性质:如果 a c b d =,那么ad bc =. (2)合比性质:如果++==.a c a b c d b d b d ,那么 如果--==.a c a b c d b d b d ,那么 要点诠释: (1)两条线段的长度必须用同一长度单位表示,若单位长度不同,先化成同一单位,再求它们的比; (2)两条线段的比,没有长度单位,它与所采用的长度单位无关; (3)两条线段的长度都是正数,所以两条线段的比值总是正数. 要点二、黄金分割 1.定义: 点C 把线段AB 分割成AC 和CB 两段,如果AC BC AB AC =,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 要点诠释: AC AB =≈叫做黄金分割值). 2.作一条线段的黄金分割点: 图4-7 如图,已知线段AB ,按照如下方法作图: (1)经过点B 作BD ⊥AB ,使BD = 2 1AB . (2)连接AD ,在DA 上截取DE =DB .

(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点. 要点诠释: 一条线段的黄金分割点有两个. 【典型例题】 类型一、比例线段 1. (2016?兰州模拟)若a :b=2:3,则下列各式中正确的式子是( ) A .2a=3b B .3a=2b C . D . 【思路点拨】根据比例的性质,对选项一一分析,选择正确答案. 【答案】B . 【解析】A 、2a=3b ?a :b=3:2,故选项错误; B 、3a=2b ?a :b=2:3,故选项正确; C 、=?b :a=2:3,故选项错误; D 、=?a :b=3:2,故选项错误. 故选B . 【总结升华】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积. 举一反三: 【变式】(2015?崇明县一模)已知=,那么下列等式中,不一定正确的是( ). A .2a=5b B. a b 52= C. a+b=7 D.a b b 72 += 【答案】C . 2. 设432z y x ==,求2222232z xy x z yz x --+-的值. 【思路点拨】由已知条件利用解方程的思想不能求出x ,y ,z 的值,因此用设参数法代入化简. 【答案与解析】设4 32z y x ===k 则x =2k ,y =3k ,z =4k 原式=2222)4(322)2()4(433)2(2k k k k k k k k -??-+??-?=222412k k --=2 1 【总结升华】解此类题学生容易误认为设k 后,未知数越多更不易解出,实际上分子、分母能产生公因式约去. 类型二、黄金分割

九年级数学学案: 第4课时 黄金分割

天才是百分之一的天分,再加上百分之 九十九的努力 第4课时黄金分割 学习目标: 1、认识线段的黄金分割,理解黄金分割的概念. 2、会运用黄金分割进行相关计算和证明. 学习重点:比例性质的应用和黄金分割的概念. 学习难点:运用黄金分割解决实际问题. 【预习案】 一、链接 请写出比例的基本性质. 二、导读 阅读课本P95-96,回答下列问题: (1)叫做黄金分割.(2)黄金分割点是如何确定的?一条线段有几个黄金分割点? 叫做线段的黄金分割点,叫做黄金比. 【探究案】 ㈠、黄金分割的定义:

1、动手操作,然后算一算,完成下面的填空: 度量线段AC 、BC 的长度,线段AC= ,BC= , 计算AB AC = 、AC BC = , AB AC 与AC BC 的值 A B C 相等吗? ※在线段AB 上,点C 把线段AB 分成两条线段 和 ,如果 = , 那么称线段AB 被点C ,点C 叫做线段AB 的 ,AC 与AB 的比叫做 。其中AB AC = ≈ ※⑴、黄金分割是一种分割线段的方法,一条线段的黄金分割点有 个。 ⑵、黄金比是两条线段的比,没有单位,它的比值为 ,精确到0.001为 。 2、想一想:点C 是线段AB 的黄金分割点,则AB AC = 。 ㈡、确定黄金分割点: 如图,已知线段AB ,按照如下方法作图: (1)经过点B 作BD ⊥AB ,使BD= 21AB. (2)连接AD ,在DA 上截取DE=DB. (3)在AB 上截取AC=AE.点C 就是线段AB 的黄金分割点。 ㈢、黄金矩形: 宽与长的比是:的矩形叫做黄金矩形。 【训练案】 1、若点C 是线段AB 的黄金分割点,且AC >CB ,则AB :AC= ;BC :AB= . 2、若在四边形ABCD 和四边形A 1B 1C 1D 1中, =11B A AB =11C B BC 1111CD DA C D D A ==58且四边形A 1B 1C 1D 1的周长为80cm ,求四边形ABCD 的周长. 3、已知,如图在 △ABC 中 EC AE DB AD = E D A A B 5?12

黄金分割中的数学文化

黄金分割中的数学文化 姓名:邱秀林班级:工业工程121 学号:5404312093 摘要:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学中蕴涵的文化价值是客观存在的,数学的本质是一种文化,数学不仅闪烁着理性智慧的光芒,更有艺术审美的享受以及厚重的文化意向。“黄金分割”被誉为数学的两大宝藏之一,它来源于实际生活,并在实际生活中得到应用,只要留心,到处都可发现这位美的“使者”的足迹。黄金分割对我们的审美、思维方式、价值观念以及世界观等方面将产生重要的影响。 关键词:文化价值黄金分割数学美思想方法 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美。 一、黄金分割的起源 人们认为,黄金分割作图与正五边形、正十边形和五角星形的作图有关——特别是由五角星形作图的需要引起的。五角星形是一种很耐人寻味的图案,世界许多国家国旗上的“星”都画成五角形。现今有将近40个国家(如中国、美国、朝鲜、土耳其、古巴等等)的国旗上有五角星。为什么是五角而不是其他数目的角?也许是古代留下来的习惯。 五角星形的起源甚早,现在发现最早的五角星形图案是在幼发拉底河下游马鲁克地方(现属伊拉克)发现的一块公元前3200年左右制成的泥板上。 古希腊的毕达哥拉斯学派用五角星形作为他们的徽章或标志,称之为“健康”。可以认为毕达哥拉斯已熟知五角星形的作法,由此可知他已掌握了黄金分

初二数学知识点归纳:黄金分割数1

初二数学知识点归纳:黄金分割数1 初二数学知识点归纳:黄金分割数1 黄金分割数: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。 黄金分割: 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0618或1618∶1,即长段为全段的0618。0618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金分割线: 黄金分割线是一种古老的数学方法。黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条下大胆断言: 一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0618,那么,这样比例会给人一种美感。

后,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。黄金分割线的神奇和魔力,在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。 黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点: (1)数列中任一数字都是由前两个数字之和构成。 (2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。(3)后一数字与前一数字之比例,趋近于1.618。 (4)1.618与0.618互为倒数,其乘积则约等于1。 ()任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。 理顺下,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。 即:(1)0.191、0.382、0.、0.618、0.809 (2)1、1.382、1.、1.618、2、2.382、2.618 黄金分割点: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√-1)/2,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(gldensetinrati通常用φ表示)这是一个十分有趣的数字,我们以0618近似表示,通过简单的计算就可以发现:(1-0618)/0618=06一条线段

九年级数学黄金分割

第4课时黄金分割 1.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm,则它的宽约为( A ) (A)12.36 cm (B)13.6 cm (C)32.36 cm (D)7.64 cm 2.如图,已知点C是线段AB的黄金分割点,且BC>AC,若S1表示以BC 为边的正方形面积,S2表示长为AB,宽为AC的矩形面积,则S1与S2的大小关系为( B ) (A)S1>S2(B)S1=S2 (C)S1

5.一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20 m,这名主持人现在站在A处(如图所示),则她应再走几m才能到达最理想位置? 解:设黄金分割点为点P. (1)当AP>BP时,因为AB=20 m, 所以AP=AB=×20=(10-10)(m). (2)当APBD),则∠A的度数是( C ) (A)22.5°(B)30°(C)36°(D)45°

初二数学知识点归纳:黄金分割数1

初二数学知识点归纳:黄金分割数1 黄金分割数: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。 黄金分割: 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0618或1618∶1,即长段为全段的0618。0618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金分割线: 黄金分割线是一种古老的数学方法。黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条下大胆断言: 一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0618,那么,这样比例会给人一种美感。 后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。黄金分割线的神奇和魔力,

在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。 黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点: (1)数列中任一数字都是由前两个数字之和构成。 (2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。 (3)后一数字与前一数字之比例,趋近于1.618。 (4)1.618与0.618互为倒数,其乘积则约等于1。 ()任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。 理顺下来,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。 即:(1)0.191、0.382、0.、0.618、0.809(2)1、1.382、1.、1.618、2、2.382、2.618 黄金分割点: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为/2,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(gldensetinrati通常用φ表示)这是一个十分有趣的数字,我们以0618来近似表示,通过

九年级数学上册第4课时 黄金分割

编号:34445768428937925654158542 学校:摩歆市五镇淮子学校* 教师:高至发* 班级:天鹅参班* 第4课时黄金分割 【知识与技能】 1.理解黄金分割的定义;会找一条线段的黄金分割点. 2.会判断一点是否是线段的黄金分割点. 【过程与方法】 通过找一条线段的黄金分割点,培养学生理解能力和动手能力. 【情感态度】 理解黄金分割点的现实意义,动手制作相关图形,感受黄金分割的美,体会教学的应用价值. 【教学重点】 找一条线段的黄金分割点. 【教学难点】 黄金分割比的应用. 一、情境导入,初步认识 现实生活中存在许多优美的图画和建筑,例如古埃及金字塔、古希腊巴台农神庙,这些建筑的边长之间的比都接近某一个数,你知道这个数是多少吗? 【教学说明】利用来源于生活中的美丽图象或建筑吸引学生的注意力,营造一个感受美、关注美、探究美的氛围,唤醒学生对美的感受. 二、思考探究,获取新知 动手量一量,五角星图案中,线段AC、BC的长度,然后计算AC AB 与 BC AC ,

它们的值相等吗? 【教学说明】学生亲自动手操作,得到黄金比并加深对黄金分割的理解. 【归纳结论】在线段AB上,点C把线段AB分成两条线段AC和BC,如 果AC AB = BC AC ,那么称线段AB被点C黄金分割, 点C叫做线段AB的黄金分割点, AC与AB的比叫做黄金比. 三、运用新知,深化理解 1.已知C是线段AB的一个黄金分割点,则AC∶AB为(D) 2.把2米的线段进行黄金分割,则分成的较短的线段长为0.764 米. 3.如图,在平行四边形ABCD中,点E是边BC上的黄金分割点,且BE> CE,AE与BD相交于点F.那么BF∶FD的值为51 - . 4.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士的身高为1.68米,身体躯干(脚底到肚脐的高度)为1.02米,那么她应选择约多高的高跟鞋看起来更美.(精确到十分位) 解:设她应选择高跟鞋的高度是xcm, 则102 168 x x + + =0.618, 解得:x≈4.8cm.故答案为:4.8cm. 5.已知线段AB,求作线段AB的黄金分割点C,使AC>BC. 解:作法如下: (1)延长线段AB至F,使AB=BF,分别以A、F为圆心,以大于线段

简论中国古代数学中的“黄金分割率”

简论中国古代数学中的“黄金分割率” 黄金分割,被誉为数学上的“黄金”与“宝石”。 古代希腊毕达哥拉斯学派以及大几何学家欧几里德 等都曾深入研究过黄金分割问题。中世纪时,这一 数学命题又与著名的斐波那契数列联系起来,从而 获得许多新的性质。在西方数学传入中国之前,中 国人不曾直接论述黄金分割问题。但是,中国古代 数学中实际上也蕴含着黄金分割问题,只是其表达 方式有所不同。中国古代数学中的黄金分割率不像 欧几里德几何那样演绎得清楚明白,需要我们去发现。我们无法确证中国古代数学家是否明确意识到“黄金分割率”,但仍可以从许多中国古代数学问题 中推导和演绎出“黄金分割率”,这有助于充分认识 中国古代数学的价值。 1 勾股术与黄金分割率 明末清初西方数学传入中国,中国数学家知道 了黄金分割率,开始有人试图论证黄金分割率在中 国是“古已有之”。例如,清代数学家梅文鼎(公元 1633 - 1721 年) 曾在《几何通解》自序中说:“惟理分中末线(即黄金分割率———引者注) 似与勾股异源,. . . . . . 而仍出于勾股。信古九章之义包举无方。”他是这样推导的:假如一直角三角形的股长是 其勾长的二倍,则这个直角三角形的勾弦之和等于 勾弦之差再加上股,其勾弦之和就被勾弦之差和股 分成中末比。他还说:“《几何原本》理分中末线,但 求作之法而莫知所用。今依法求得十二等面体及二 十等面体之体积,因得其各体中棱线及轴心、对角诸线之比例,又两体互相容及两体与立方、立圆诸体相容各比例, 并以理分中末为法, 乃知此线原非徒设。”〔1〕 按照梅文鼎的观点,中西数学虽然形式上有所 不同,理论上是可以会通的;西方的几何学,无非是 中国的勾股术,中末线也可以从勾股术中导出。应 当说,梅文鼎在中西数学比较中看出了两者的异中 之同,以及黄金分割率与勾股术的联系(现在中学教 科书通常用代数法解作图题,其中运用勾股定理) , 但中国古代数学毕竟没有明确作出“中末线”,梅文 鼎还是夸大了中西数学的异中之同,他没有看到欧 几里德给黄金分割率严格而清晰的证明的独特价 值。欧几里德在其《几何原本》卷Ⅱ第11 题中表述: “分已知线段为两部分,使全线段与一小线段构成的

黄金分割比例

黄金分割比例—— 相信学过数学的同学一定对不陌生,自从我们学习了后,就会发现其实这在我们实际生活中有很多的应用。所谓的是指事物各部分间的一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶或∶1,即长段为全段的。被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金分割是公元前六世纪古希腊数学家毕达哥拉斯所发现,后来古希腊美学家柏拉图将此称为黄金分割。后来成为一种重要的审美法则.世界上着名的金字塔之所以能屹立数千年不倒,与其高度和基座长度的比例有很大关系,这个比例就是5:8,与0.618极其相似。,以严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。为什么人们对这样的比例,会本能地感到美的存在?其实这与人类的演化和人体正常发育密切相关。人体的好多部位的比例如果达到黄金分割就会给人以非常完美的视觉效果。例如最漂亮的脸庞:眉毛到脖子的距离/头顶到脖子的距离=;最完美的人体:肚脐到脚底的距离/头顶到脚底的距离=,等等。 在生活中无处不在。医学与也有着千丝万缕的联系,它可解释人为什么在环境22至24℃时感觉最舒适。因为人的体温为37℃与的乘积为22.8℃,而且这一温度中肌体的新陈代谢、生理节奏和生理功能均处于最佳状态。科学家们还发现,当外界环境温度为人体温度的倍时,人会感到最舒服。高雅的艺术殿堂里,自然也留下了黄金数的足迹。画家们发现,按:1来设计腿长与身高的比例,画出的人体身材最优美,而现今的女性,腰身以下的长度平均只占身高的,因此古希腊 维纳斯女神塑像及太阳神阿波罗的形象都通过故意延长双腿,使之与 身高的比值为,从而创造艺术美。世界上着名的画像蒙娜丽莎之所以 给人留下难以忘怀的印象与其画像给人的美感分不开。

2019版九年级数学下册 6.2 黄金分割导学案(新版)苏科版

2019版九年级数学下册 6.2 黄金分割导学案(新版)苏科版 3.提高分析问题、解决问题的能力,增强用数学的意识,提高审美意识和能力. 学习重点和难点: 了解黄金分割、黄金矩形、黄金三角形的意义 问题导学: (一)情景 1.据有关实验测定,当气温处于人体正常体温(37o C )的黄金比值时,人体感到最舒适.这个气温大 约是多少o C 呢(精确到1 o C)? 2.为什么翩翩起舞的芭蕾舞演员要掂起脚尖? 为什么身材苗条的时装模特还要穿高跟鞋?为什么她们 会给人感到和谐、平衡、舒适,美的感觉?请利用“黄金分割”的知识加以解释. (二)新知探索 1.课本P44三个引例、交流. 2.课本P45操作 黄金分割的意义:点C 把线段AB 分成两条线段AC 和BC ,如果AC BC AB AC =,那么称线段被点C 黄 金分割(golden section ),点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做 黄金比,AC∶AB=2 15-∶1≈0.681∶1. 3. 课本P46尝试、思考. 学习目标:1.了解黄金分割、黄金矩形、黄金三角形的意义. 2.会找一条线段的黄金分割点.

(三)典例分析 例1:若线段AB=4cm,点C是线段AB的一个黄金分割点,则AC的长为多少? 例2:如图的五角星中,AD=BC,且C、D两点都是AB的黄金分割点,AB=1, 求CD的长. 例3:科学研究表明,当人的下肢与身高比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最佳高度约C B A 为 cm(精确到0.1cm)

C B A C B A C B A 欢迎您的下载,资料仅供参考! 当堂检测: 1.如图,点C 把线段AB 分成两条线段AC 和BC,如果AC BC AB AC =,那么下列说法错误的是 ( ) A.线段AB 被点C 黄金分割 B.点C 叫做线段AB 的黄金分割点 C.AB 与AC 的比叫做黄金比 D.AC 与AB 的比叫做黄金比 2.黄金分割比是 ( ) 修正栏: A.51 2+ B.512- C.51 2± D.0.618 3.如图,点C 是AB 的黄金分割点,那么AC AB 与AC BC 的值分别是( ) A.51+,51- B.51-,51 + C.512-,512- D.512+,51 2+ 4.如图,点C 是AB 的黄金分割点,AB=4,则AC 2=________. (结果保留根号) 5.我们知道古希腊时期的巴台农神庙(Parthenom Temple )的正面是一个黄金矩形。若已知黄金 矩形的长等于6,则这个黄金矩形的宽等于_________.(结果保留根号) 6.如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB 长为 20m ,试计算主持人应走到离A 点至少多少m 处是比较得体的位置?(结果精确到0.1m )

黄金分割

《黄金分割》教案 李鹏辉 一、教材分析 《黄金分割》是北师大版数学八年级下册的一节内容。在以往的教学中,大都将“黄金分割”作为比例线段的应用来处理,学生学过以后,丝毫感受不到“黄金分割”的实用价值,体会不到“黄金分割”所带来的美的享受。因此,本节课除了讲授黄金分割的定义及其作图方法之外,让学生阅读有关资料,从日常生活中找出一些黄金分割的例子,使学生亲身感到数学知识的作用,从而更促进对知识的理解,体会黄金分割的文化价值以及在人类历史上的作用和影响。 二、教学目标 1.知识与技能 (1)了解黄金分割的有关概念。 (2)在应用中进一步理解线段的比、成比例线段等相关内容。 2.过程与方法 (1)通过自主探究学习,体验黄金分割的尺规作图的方法。 (2)通过本课知识的学习,体验问题解决的过程与方法。 3.情感态度与价值观 (1)通过发现学习,树立学习的自信心。 (2)通过学习,体会黄金分割的文化价值以及在人类历史上的作用和影响。 三、教学重点、难点分析 1.教学重点:黄金分割的定义以及应用。 2.教学难点:黄金分割的引入以及学生对黄金分割的价值的理解。 四、教学策略选择 主要采用自主学习、自我探究的学习策略。 五、教学过程 1.问题引入,引发思考 教师:利用Flash将有关图片以滚动的形式出现,教师根据图片的内容提出问题: (1)五星红旗为什么做成这种形状,不是正方形或其他形状? (2)为什么翩翩起舞的芭蕾舞演员要踮起脚尖? (3)为什么世界上许多人都对维纳斯着迷? (4)两幅相片中你觉得那幅构图美观? 学生:对问题进行思考、猜想并进行回答。 设计意图:问题的提出,激发学生学习本节课的兴趣,为本节课的内容进行了铺垫。 2.投票选举,激发兴趣 教师:让学生进行投票——在给出的一组矩形选出一个自己心目中觉得漂亮的矩形(如图2)。 学生:进行投票 设计意图:从投票中引入黄金矩形的一个典故,从中引入新课。 3.动手操作,发现新知 教师:布置任务——测量黄金矩形的长与宽,五角星中的对角线所分成的线段的比 (1)学生从操作中归纳概念。 (2)介绍黄金分割的有关概念。 学生:动手操作,并互相交流,发现黄金比,并用自己的语言说出黄金分割的概念。 设计意图:让学生主动参与学习活动,经历发现黄金比,让学生感受发现知识的乐趣,增强学习的自信心。 4.运用新知,练习训练 设计意图:通过巩固练习加深学生对黄金分割的理解(进行巡视,及时发现问题)。 5.介绍作图,验证作图

人教版九年级数学下册黄金分割同步练习

人教版九年级数学下册黄金分割同 步练习 基础训练 知识点1 比例中项 1.若x是2,18的比例中项,则x=___________. 2.若线段a=6 cm,b=3 cm,且c是a,b的比例中项,则线段c的长度为( ) A.3 cm B.±3 cm C.±18 cm D.18 cm 3.如果a∶b=3∶2,且b是a,c的比例中项,那么b∶c等于( ) A.4∶3 B.3∶2 C.2∶3 D.3∶4 4.如图,有三个直角三角形,其中OA=AB=BC=CD=1,则线段OA,OD 的比例中项线段的长度为( ) A. B. C.± D.

知识点2 黄金分割 5.如果点C是线段AB的黄金分割点(AC>BC),则下列比例式正确的是( ) A.AB∶AC=AC∶BC B.AB∶BC=BC∶AC C.AC∶BC=BC∶AB D.AC∶AB=AB∶BC 6.若点C为线段AB的黄金分割点,且AC>BC,则 ①AB=AC;②AC=AB;③AB∶AC=AC∶CB;④AC≈0.618AB.其中正确的有( ) A.1个 B.2个 C.3个 D.4个 7.从美学角度来说,人的上身长与下身长之比为黄金比例,可以给人一种协调的美感.某女老师上身长约61.80 cm,下身长约93.00 cm,她要穿约___________cm的高跟鞋才能达到黄金比的美感效果(精确到1 cm). 提升训练 考查角度1 利用比例性质求解比例中项问题 8.已知线段a,b,c满足==,且a+2b+c=26. (1)求a,b,c的值; (2)若线段x是线段a,b的比例中项,求x.

考查角度2 利用黄金分割的定义找黄金分割点(计算法﹨定义法) 9.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上. (1)求MA,DM的长; (2)求证:AM2=AD·DM. (3)根据(2)的结论你能找出图中的一个黄金分割点吗? 考查角度3 利用黄金分割的定义证明黄金矩形(计算法﹨定义法) 10.宽与长的比是的矩形叫黄金矩形,心理学测试表明,黄金矩形令人赏心悦目,它给我们以协调﹨匀称的美感,现将同学们在教学活动中折叠黄金矩形的方法归纳得出以下作图步骤(如图所示:) 第一步:任作一个正方形ABCD; 第二步:分别取AD,BC的中点M,N,连接MN;

相关文档
最新文档