应用密码学DES实验报告

应用密码学DES实验报告
应用密码学DES实验报告

密码学DES实验报告

DES简介:

DES算法为密码体制中的对称密码体制,又被成为美国数据加密标准,是1972年美国IBM 公司研制的对称密码体制加密算法。明文按64位进行分组, 密匙4位,密钥事实上是56位参与DES运算(第8、16、24、32、40、48、56、64位是校验位,使得每个密钥都有奇数个1)分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。

DES基本原理:

其入口参数有三个:key、data、mode。key为加密解密使用的加密

解密的数据,mode为其工作模式。当模式为加密模式时,明文按照64位进行分组,形成明文组,key使用模式时,key于对数据解密。实际运用中,密钥只用到了64位中的56位,这样才具有高的安全性。

实验目的:

通过这次的实验,来了解和实验DES算法在加密中的应用,增强对DES算法的理解和运用,为以后进一步的密码学学习打好基础。

实验内容:

置换规则表

其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表:

58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4,

62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,

57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,

61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,

即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50 (8)

R0=D57D49 (7)

经过16次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置换的逆运算。例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:

40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,

38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,

36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,

34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,

子密钥Ki(48bit)的生成算法

Ki的生成算法描述图中我们可以看到:初始Key值为64位,其中6偶校验位,不参与DES运算。故Key 实际可用位数便只有56位。即:经过缩小选择换位表1的变换后,Key 的位数由64 位变成了56位,此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0(48位)。依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环左移对应的左移位数要依据下述规则进行等等,这里就不在赘述。。。

源代码:

#include "stdio.h"

#include "memory.h"

#include "time.h"

#include "stdlib.h"

#define PLAIN_FILE_OPEN_ERROR -1

#define KEY_FILE_OPEN_ERROR -2

#define CIPHER_FILE_OPEN_ERROR -3

#define OK 1   

typedef char ElemT ype;

//初始置换表IP

int IP_T able[64] = { 57,49,41,33,25,17,9,1,

59,51,43,35,27,19,11,3,

61,53,45,37,29,21,13,5,

63,55,47,39,31,23,15,7,

56,48,40,32,24,16,8,0,

58,50,42,34,26,18,10,2,

60,52,44,36,28,20,12,4,

62,54,46,38,30,22,14,6}; //逆初始置换表IP^-1

int IP_1_T able[64] = {39,7,47,15,55,23,63,31,

38,6,46,14,54,22,62,30,

37,5,45,13,53,21,61,29,

36,4,44,12,52,20,60,28,

35,3,43,11,51,19,59,27,

34,2,42,10,50,18,58,26,

33,1,41,9,49,17,57,25,

32,0,40,8,48,16,56,24};

//扩充置换表E

int E_T able[48] = {31, 0, 1, 2, 3, 4,

3, 4, 5, 6, 7, 8,

7, 8,9,10,11,12,

11,12,13,14,15,16,

15,16,17,18,19,20,

19,20,21,22,23,24,

23,24,25,26,27,28,

27,28,29,30,31, 0};

//置换函数P

int P_T able[32] = {15,6,19,20,28,11,27,16,

0,14,22,25,4,17,30,9,

1,7,23,13,31,26,2,8,

18,12,29,5,21,10,3,24};

//S盒

int S[8][4][16] =//S1

{{{14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7}, {0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8}, {4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0}, {15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13}},

//S2

{{15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10}, {3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5}, {0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15}, {13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9}},

//S3

{{10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8}, {13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1}, {13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7}, {1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12}},

//S4

{{7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15}, {13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9}, {10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4}, {3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14}},

//S5

{{2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9}, {14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6}, {4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14}, {11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3}},

//S6

{{12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11}, {10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8}, {9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6}, {4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13}},

//S7

{{4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1}, {13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6}, {1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2}, {6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12}},

//S8

{{13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7}, {1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2}, {7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8},

{2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11}}};

//置换选择1

int PC_1[56] = {56,48,40,32,24,16,8,

0,57,49,41,33,25,17,

9,1,58,50,42,34,26,

18,10,2,59,51,43,35,

62,54,46,38,30,22,14,

6,61,53,45,37,29,21,

13,5,60,52,44,36,28,

20,12,4,27,19,11,3};

//置换选择2

int PC_2[48] = {13,16,10,23,0,4,2,27,

14,5,20,9,22,18,11,3,

25,7,15,6,26,19,12,1,

40,51,30,36,46,54,29,39,

50,44,32,46,43,48,38,55,

33,52,45,41,49,35,28,31};

//对左移次数的规定

int MOVE_TIMES[16] = {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1};

int ByteT oBit(ElemT ype ch,ElemT ype bit[8]);

int BitT oByte(ElemT ype bit[8],ElemT ype *ch);

int Char8T oBit64(ElemT ype ch[8],ElemT ype bit[64]);

int Bit64T oChar8(ElemT ype bit[64],ElemT ype ch[8]);

int DES_MakeSubKeys(ElemT ype key[64],ElemT ype subKeys[16][48]);

int DES_PC1_T ransform(ElemT ype key[64], ElemT ype tempbts[56]);

int DES_PC2_T ransform(ElemT ype key[56], ElemT ype tempbts[48]);

int DES_ROL(ElemT ype data[56], int time);

int DES_IP_Transform(ElemT ype data[64]);

int DES_IP_1_Transform(ElemT ype data[64]);

int DES_E_Transform(ElemT ype data[48]);

int DES_P_T ransform(ElemT ype data[32]);

int DES_SBOX(ElemT ype data[48]);

int DES_XOR(ElemT ype R[48], ElemT ype L[48],int count);

int DES_Swap(ElemT ype left[32],ElemT ype right[32]);

int DES_EncryptBlock(ElemT ype plainBlock[8], ElemT ype subKeys[16][48], ElemT ype cipherBlock[8]);

int DES_DecryptBlock(ElemT ype cipherBlock[8], ElemT ype subKeys[16][48], ElemT ype plainBlock[8]);

int DES_Encrypt(char *plainFile, char *keyS tr,char *cipherFile);

int DES_Decrypt(char *cipherFile, char *keyS tr,char *plainFile);

//字节转换成二进制

int ByteT oBit(ElemT ype ch, ElemT ype bit[8]){

int cnt;

for(cnt = 0;cnt < 8; cnt++){

*(bit+cnt) = (ch>>cnt)&1;

}

return 0;

}

//二进制转换成字节

int BitT oByte(ElemT ype bit[8],ElemT ype *ch){

int cnt;

for(cnt = 0;cnt < 8; cnt++){

*ch |= *(bit + cnt)<

}

return 0;

}

//将长度为8的字符串转为二进制位串

int Char8T oBit64(ElemT ype ch[8],ElemT ype bit[64]){

int cnt;

for(cnt = 0; cnt < 8; cnt++){

ByteT oBit(*(ch+cnt),bit+(cnt<<3));

}

return 0;

}

//将二进制位串转为长度为8的字符串

int Bit64T oChar8(ElemT ype bit[64],ElemT ype ch[8]){

int cnt;

memset(ch,0,8);

for(cnt = 0; cnt < 8; cnt++){

BitT oByte(bit+(cnt<<3),ch+cnt);

}

return 0;

}

//生成子密钥

int DES_MakeSubKeys(ElemT ype key[64],ElemT ype subKeys[16][48]){ ElemT ype temp[56];

int cnt;

DES_PC1_T ransform(key,temp);//PC1置换

for(cnt = 0; cnt < 16; cnt++){//16轮跌代,产生16个子密钥DES_ROL(temp,MOVE_TIMES[cnt]);//循环左移

DES_PC2_T ransform(temp,subKeys[cnt]);//PC2置换,产生子密钥}

return 0;

}

//密钥置换1

int DES_PC1_T ransform(ElemT ype key[64], ElemT ype tempbts[56]){ int cnt;

for(cnt = 0; cnt < 56; cnt++){

tempbts[cnt] = key[PC_1[cnt]];

}

return 0;

}

//密钥置换2

int DES_PC2_T ransform(ElemT ype key[56], ElemT ype tempbts[48]){ int cnt;

for(cnt = 0; cnt < 48; cnt++){

tempbts[cnt] = key[PC_2[cnt]];

}

return 0;

}

//循环左移

int DES_ROL(ElemT ype data[56], int time){

ElemT ype temp[56];

//保存将要循环移动到右边的位

memcpy(temp,data,time);

memcpy(temp+time,data+28,time);

//前28位移动

memcpy(data,data+time,28-time);

memcpy(data+28-time,temp,time);

//后28位移动

memcpy(data+28,data+28+time,28-time);

memcpy(data+56-time,temp+time,time);

return 0;

}

//IP置换

int DES_IP_Transform(ElemT ype data[64]){

ElemT ype temp[64];

for(cnt = 0; cnt < 64; cnt++){

temp[cnt] = data[IP_T able[cnt]];

}

memcpy(data,temp,64);

return 0;

}

//IP逆置换

int DES_IP_1_Transform(ElemT ype data[64]){

int cnt;

ElemT ype temp[64];

for(cnt = 0; cnt < 64; cnt++){

temp[cnt] = data[IP_1_T able[cnt]];

}

memcpy(data,temp,64);

return 0;

}

//扩展置换

int DES_E_Transform(ElemT ype data[48]){

int cnt;

ElemT ype temp[48];

for(cnt = 0; cnt < 48; cnt++){

temp[cnt] = data[E_T able[cnt]];

}

memcpy(data,temp,48);

return 0;

}

//P置换

int DES_P_T ransform(ElemT ype data[32]){

int cnt;

ElemT ype temp[32];

for(cnt = 0; cnt < 32; cnt++){

temp[cnt] = data[P_T able[cnt]];

}

memcpy(data,temp,32);

return 0;

}

//异或

int DES_XOR(ElemT ype R[48], ElemT ype L[48] ,int count){

for(cnt = 0; cnt < count; cnt++){

R[cnt] ^= L[cnt];

}

return 0;

}

//S盒置换

int DES_SBOX(ElemT ype data[48]){

int cnt;

int line,row,output;

int cur1,cur2;

for(cnt = 0; cnt < 8; cnt++){

cur1 = cnt*6;

cur2 = cnt<<2;

//计算在S盒中的行与列

line = (data[cur1]<<1) + data[cur1+5];

row = (data[cur1+1]<<3) + (data[cur1+2]<<2)

+ (data[cur1+3]<<1) + data[cur1+4];

output = S[cnt][line][row];

//化为2进制

data[cur2] = (output&0X08)>>3;

data[cur2+1] = (output&0X04)>>2;

data[cur2+2] = (output&0X02)>>1;

data[cur2+3] = output&0x01;

}

return 0;

}

//交换

int DES_Swap(ElemT ype left[32], ElemT ype right[32]){

ElemT ype temp[32];

memcpy(temp,left,32);

memcpy(left,right,32);

memcpy(right,temp,32);

return 0;

}

//加密单个分组

int DES_EncryptBlock(ElemT ype plainBlock[8], ElemT ype subKeys[16][48], ElemT ype cipherBlock[8]){

ElemT ype plainBits[64];

ElemT ype copyRight[48];

int cnt;

Char8T oBit64(plainBlock,plainBits);

//初始置换(IP置换)

DES_IP_Transform(plainBits);

//16轮迭代

for(cnt = 0; cnt < 16; cnt++){

memcpy(copyRight,plainBits+32,32);

//将右半部分进行扩展置换,从32位扩展到48位

DES_E_T ransform(copyRight);

//将右半部分与子密钥进行异或操作

DES_XOR(copyRight,subKeys[cnt],48);

//异或结果进入S盒,输出32位结果

DES_SBOX(copyRight);

//P置换

DES_P_T ransform(copyRight);

//将明文左半部分与右半部分进行异或

DES_XOR(plainBits,copyRight,32);

if(cnt != 15){

//最终完成左右部的交换

DES_Swap(plainBits,plainBits+32);

}

}

//逆初始置换(IP^1置换)

DES_IP_1_Transform(plainBits);

Bit64T oChar8(plainBits,cipherBlock);

return 0;

}

//解密单个分组

int DES_DecryptBlock(ElemT ype cipherBlock[8], ElemT ype subKeys[16][48],ElemT ype plainBlock[8]){

ElemT ype cipherBits[64];

ElemT ype copyRight[48];

int cnt;

Char8T oBit64(cipherBlock,cipherBits);

//初始置换(IP置换)

DES_IP_Transform(cipherBits);

//16轮迭代

for(cnt = 15; cnt >= 0; cnt--){

memcpy(copyRight,cipherBits+32,32);

//将右半部分进行扩展置换,从32位扩展到48位

DES_E_T ransform(copyRight);

//将右半部分与子密钥进行异或操作

DES_XOR(copyRight,subKeys[cnt],48);

//异或结果进入S盒,输出32位结果

DES_SBOX(copyRight);

//P置换

DES_P_T ransform(copyRight);

//将明文左半部分与右半部分进行异或

DES_XOR(cipherBits,copyRight,32);

if(cnt != 0){

//最终完成左右部的交换

DES_Swap(cipherBits,cipherBits+32);

}

}

//逆初始置换(IP^1置换)

DES_IP_1_Transform(cipherBits);

Bit64T oChar8(cipherBits,plainBlock);

return 0;

}

//加密文件

int DES_Encrypt(char *plainFile, char *keyS tr,char *cipherFile){ FILE *plain,*cipher;

int count;

ElemT ype plainBlock[8],cipherBlock[8],keyBlock[8];

ElemT ype bKey[64];

ElemT ype subKeys[16][48];

if((plain = fopen(plainFile,"rb")) == NULL){

return PLAIN_FILE_OPEN_ERROR;

}

if((cipher = fopen(cipherFile,"wb")) == NULL){

return CIPHER_FILE_OPEN_ERROR;

}

//设置密钥

memcpy(keyBlock,keyStr,8);

//将密钥转换为二进制流

Char8T oBit64(keyBlock,bKey);

//生成子密钥

DES_MakeSubKeys(bKey,subKeys);

while(!feof(plain)){

//每次读8个字节,并返回成功读取的字节数

if((count = fread(plainBlock,sizeof(char),8,plain)) == 8){

DES_EncryptBlock(plainBlock,subKeys,cipherBlock);

fwrite(cipherBlock,sizeof(char),8,cipher);

}

}

if(count){

//填充

memset(plainBlock + count,'\0',7 - count);

//最后一个字符保存包括最后一个字符在内的所填充的字符数量

plainBlock[7] = 8 - count;

DES_EncryptBlock(plainBlock,subKeys,cipherBlock);

fwrite(cipherBlock,sizeof(char),8,cipher);

}

fclose(plain);

fclose(cipher);

// return OK;

}

//解密文件

int DES_Decrypt(char *cipherFile, char *keyS tr,char *plainFile){ FILE *plain, *cipher;

int count,times = 0;

long fileLen;

ElemT ype plainBlock[8],cipherBlock[8],keyBlock[8];

ElemT ype bKey[64];

ElemT ype subKeys[16][48];

if((cipher = fopen(cipherFile,"rb")) == NULL){

return CIPHER_FILE_OPEN_ERROR;

}

if((plain = fopen(plainFile,"wb")) == NULL){

return PLAIN_FILE_OPEN_ERROR;

}

//设置密钥

memcpy(keyBlock,keyStr,8);

//将密钥转换为二进制流

Char8T oBit64(keyBlock,bKey);

//生成子密钥

DES_MakeSubKeys(bKey,subKeys);

//取文件长度

fseek(cipher,0,SEEK_END); //将文件指针置尾

fileLen = ftell(cipher); //取文件指针当前位置

rewind(cipher); //将文件指针重指向文件头

while(1){

//密文的字节数一定是8的整数倍

fread(cipherBlock,sizeof(char),8,cipher);

DES_DecryptBlock(cipherBlock,subKeys,plainBlock);

times += 8;

if(times < fileLen){

fwrite(plainBlock,sizeof(char),8,plain);

}

else{

break;

}

}

//判断末尾是否被填充

if(plainBlock[7] < 8){

for(count = 8 - plainBlock[7]; count < 7; count++){

if(plainBlock[count] != '\0'){

break;

}

}

}

if(count == 7){//有填充

fwrite(plainBlock,sizeof(char),8 - plainBlock[7],plain);

}

else{//无填充

fwrite(plainBlock,sizeof(char),8,plain);

}

fclose(plain);

fclose(cipher);

// return OK;

//return OK;

}

int main()

{

clock_t a,b;

a = clock();

DES_Encrypt("1.txt","key.txt","2.txt");

b = clock();

printf("加密消耗%d毫秒\n",b-a);

system("pause");

a = clock();

DES_Decrypt("2.txt","key.txt","3.txt");

b = clock();

printf("解密消耗%d毫秒\n",b-a);

getchar();

return 0;

}

实验过程:

首先我们要再工程里面建立1.text(用在输入明文),2.text(用来得出密文),key.text (用来存储那个加密的密匙),3.text(用来输出解密后的明文),然后运行程序,将会得到一系列名字,并且会告知用来多少时间,既毫秒。。。因此也会由此得出你的程序的效率的是多少,再打开2.text后,会发现密文,和原来的明白完全不一样,

其中1.text(用在输入明文),2.text(用来得出密文),key.text(用来存储那个加密的密匙),3.text(用来输出解密后的明文)。

总结:

通过这的DES算法编程,再次了解到了自己的编程能力有待提高,如果单单的看书上的一些算法过程,也是很难自己编出来一个完整的DES算法程序的,所以只好看网上的一些算法,在看懂的基础上,自己加了一些改动,得到这个实验报告。也使自己更加认识到了这么学科的艰辛,如果不努力,可能就再难赶上。所以加紧对编程的练习,争取全在程序自己

学出来,并且也加强对课本的理解和灵活运用。

DES算法实验报告

DES算法实验报告 姓名:学号:班级: 一、实验环境 1.硬件配置:处理器(英特尔Pentium双核E5400 @ 2.70GHZ 内存:2G) 2.使用软件: ⑴操作系统:Windows XP 专业版32位SP3(DirectX 9.0C) ⑵软件工具:Microsoft Visual C++ 6.0 二、实验涉及的相关概念或基本原理 1、加密原理 DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算。 三、实验内容 1、关键代码 ⑴子密钥产生

⑵F函数以及加密16轮迭代 2、DES加密算法的描述及流程图 ⑴子密钥产生 在DES算法中,每一轮迭代都要使用一个子密钥,子密钥是从用户输入的初始密钥产生的。K是长度为64位的比特串,其中56位是密钥,8位是奇偶校验位,分布在8,16,24,32,40,48,56,64比特位上,可在8位中检查单个错误。在密钥编排计算中只用56位,不包括这8位。子密钥生成大致分为:置换选择1(PC-1)、循环左移、置换选择2(PC-2)等变换,分别产生16个子密钥。 DES解密算法与加密算法是相同的,只是子密钥的使用次序相反。 ⑵DES加密算法 DES密码算法采用Feistel密码的S-P网络结构,其特点是:加密和解密使用同一算法、

密码学实验报告

密码学实验报告 学院:计算机科学与技术 班级: 学号: 姓名: 指导老师:

密码学 实验日志 实验题目: DES (或AES )分组密码 实验目的: 熟悉分组密码加解密算法的基本原理,加深对所提供的部分源程序的理解; 分组密码将明文分成一组一组,在密钥的控制下,经过加密变换生成一组一组的密文。具体而言,分组密码就是将明文消息序列 ,,,,21i m m m 划分成等长的消息组 ),,,,(),,,,(22121n n n n m m m m m m ++在密钥t k k k k ,,,21 =的控制下按固定的加密算法一组一 组进行加密,输出一组一组密文 ),,,,(),,,,(22121l l l l c c c c c c ++。 下面的实验以DES 算法为例,DES 算法明文分组长为64bit ,加密后得到64bit 的密文,输入初始种子密钥为64bit ,第8、16、24、32、40、48、56、64为奇偶校验位,实际的密钥长为56bit 。DES 加密过程由三个阶段来完成: (1) 初始置换IP ,用于重排明文分组的64bit 数据; (2) 相同结构的16轮迭代,每轮中都有置换和代换运算,第16轮变换的输出分为左右两半,并交换次序。 (3) 逆初始置换IP -1 (为IP 的逆)后,产生64bit 的密文。 实验要求: (1) Windows 系列操作系统; (2) VC6.0编程环境。 (3) 提交完整的程序代码清单和详细的注释; (4) 要求有程序运行结果显示。当加密成功时,得到密文;输入相同的密钥,能将密文恢复成明文。 实验主要步骤: (1) 熟悉分组密码加解密算法的基本原理,加深对所提供的部分源程序的理解; (2) 分析源程序中密码算法的加解密和子密钥生成等典型模块的主要功能,并对源程序加上注释; (3) 在已提供的部分源程序的基础上,添加源程序省缺的部分; (4) 对给定的消息分组进行加解密运算和验证。 源代码: #include #include #include typedef bool (*PSubKey)[16][48]; enum {ENCRYPT,DECRYPT}; //选择:加密;解密 static bool SubKey[2][16][48]; // 16圈子密钥 static bool Is3DES; // 3次DES 标志 static char Tmp[256], deskey[16]; //暂存字符串,密钥串

现代密码学实验报告

现代密码学 实验报告 学生姓名 学号 专业班级计算机科学与技术指导教师段桂华 学院信息科学与工程学院完成时间2016年4月

实验一密码算法实验 [实验目的] 1.掌握密码学中经典的对称密码算法AES、RC4的算法原理。 2.掌握AES、RC4的算法流程和实现方法。 [实验预备] 1.AES算法的基本原理和特点。 2.流密码RC4的密钥流生成以及S盒初始化过程。 [实验内容] 1. 分析AES、RC4的实现过程。 2. 用程序设计语言将算法过程编程实现。 3. 完成字符串数据的加密运算和解密运算 输入十六进制明文:11223344556677889900AABBCCDDEEFF 输入十六进制密钥:13579BDF02468ACE1234567890ABCDEF [实验步骤] 1. 预习AES、RC4算法。 2. 写出算法流程,用程序设计语言将算法过程编程实现。 3. 输入指定的明文、密钥进行实验,验证结果。 4. 自己选择不同的输入,记录输出结果。 写出所编写程序的流程图和运行界面、运行结果。 一、AES算法 1、AES算法简介 AES 是一种可用来保护电子数据的新型加密算法。特别是,AES 是可以使用128、192 和 256 位密钥的迭代式对称密钥块密码,并且可以对 128 位(16 个字节)的数据块进行加密和解密。与使用密钥对的公钥密码不同的是,对称密钥密码使用同一个密钥来对数据进行加密和解密。由块密码返回的加密数据与输入数据具有相同的位数。迭代式密码使用循环结构来针对输入数据反复执行排列和置换运算。 2、算法实现及流程 以加密函数为例,如下所示,首先对密钥进行预处理密钥扩展,然后明文进行Nr(Nr与密钥长度有关)次迭代运算,包括字节替换SubBytes、移位行运算ShiftRows、混合列运算MixColumns、以及轮秘钥加密AddRoundKey。

实验报告_密码学

信息安全实验报告 学号: 学生姓名: 班级:

实验三密码学实验 一、古典密码算法实验 一、实验目的 通过编程实现替代密码算法和置换密码算法,加深对古典密码体制的了解,为深入学习密码学奠定基础。 二、编译环境 运行windows 或linux 操作系统的PC 机,具有gcc(linux)、VC (windows)等C语言编译环境。 三、实验原理 古典密码算法历史上曾被广泛应用,大都比较简单,使用手工和机械操作来实现加密和解密。它的主要应用对象是文字信息,利用密码算法实现文字信息的加密和解密。下面介绍两种常见的具有代表性的古典密码算法,以帮助读者对密码算法建立一个初步的印象。 1.替代密码 替代密码算法的原理是使用替代法进行加密,就是将明文中的字符用其它字符替代后形成密文。例如:明文字母a、b、c、d ,用D、E、F、G做对应替换后形成密文。 替代密码包括多种类型,如单表替代密码、多明码替代密码、多字母替代密码、多表替代密码等。下面我们介绍一种典型的单表替代密码,恺撒(caesar)密码,又叫循环移位密码。它的加密方法,就是将明文中的每个字母用此字符在字母表中后面第k个字母替代。它的加密过程可以表示为下面的函数:E(m)=(m+k) mod n 其中:m 为明文字母在字母表中的位置数;n 为字母表中的字母个数;k 为密钥;E(m)为密文字母在字母表中对应的位置数。例如,对于明文字母H,其在字母表中的位置数为8,设k=4,则按照上式计算出来的密文为L:E(8) = (m+k) mod n = (8+4) mod 26 = 12 = L

2.置换密码 置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改 变,从而实现明文信息的加密。置换密码有时又称为换位密码。 矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给的 顺序安排在一个矩阵中,然后用根据密钥提供的顺序重新组合矩阵中字母,从而 形成密文。例如,明文为attack begins at five,密钥为cipher,将明文按照每行 6 列的形式排在矩阵中,形成如下形式: a t t a c k b e g i n s a t f i v e 根据密钥cipher中各字母在字母表中出现的先后顺序,给定一个置换: 1 2 3 4 5 6 f = 1 4 5 3 2 6 根据上面的置换,将原有矩阵中的字母按照第 1 列,第 4 列,第 5 列,第 3 列, 第2列,第 6 列的顺序排列,则有下面形式: a a c t t k b i n g e s a I v f t e 从而得到密文:abatgftetcnvaiikse 其解密的过程是根据密钥的字母数作为列数,将密文按照列、行的顺序写出,再根据由密钥给出的矩阵置换产生新的矩阵,从而恢复明文。 四、实验内容和步骤 1、根据实验原理部分对替代密码算法的介绍,自己创建明文信息,并选择 一个密钥k,编写替代密码算法的实现程序,实现加密和解密操作。 2、根据实验原理部分对置换密码算法的介绍,自己创建明文信息,并选择一个密钥,编写置换密码算法的实现程序,实现加密和解密操作。 五、总结与思考 记录程序调试过程中出现的问题,分析其原因并找出解决方法。记录最终实现的程序执行结果。

数据加密实验报告

实验报告 课程:计算机保密_ _ 实验名称:数据的加密与解密_ _ 院系(部):计科院_ _ 专业班级:计科11001班_ _ 学号: 201003647_ _ 实验日期: 2013-4-25_ _ 姓名: _刘雄 _ 报告日期: _2013-5-1 _ 报告评分:教师签字:

一. 实验名称 数据加密与解密 二.运行环境 Windows XP系统 IE浏览器 三.实验目的 熟悉加密解密的处理过程,了解基本的加密解密算法。尝试编制基本的加密解密程序。掌握信息认证技术。 四.实验内容及步骤 1、安装运行常用的加解密软件。 2、掌握加解密软件的实际运用。 *3、编写凯撒密码实现、维吉尼亚表加密等置换和替换加解密程序。 4、掌握信息认证的方法及完整性认证。 (1)安装运行常用的加解密软件,掌握加解密软件的实际运用 任务一:通过安装运行加密解密软件(Apocalypso.exe;RSATool.exe;SWriter.exe等(参见:实验一指导))的实际运用,了解并掌握对称密码体系DES、IDEA、AES等算法,及非对称密码体制RSA等算法实施加密加密的原理及技术。 ?DES:加密解密是一种分组加密算法,输入的明文为64位,密钥为56位,生成的密文为64位。 ?BlowFish:算法用来加密64Bit长度的字符串或文件和文件夹加密软件。 ?Gost(Gosudarstvennyi Standard):算法是一种由前苏联设计的类似DES算法的分组密码算法。它是一个64位分组及256位密钥的采用32轮简单迭代型加密算法. ?IDEA:国际数据加密算法:使用128 位密钥提供非常强的安全性; ?Rijndael:是带有可变块长和可变密钥长度的迭代块密码(AES 算法)。块长和密钥长度可以分别指定成128、192 或256 位。 ?MISTY1:它用128位密钥对64位数据进行不确定轮回的加密。文档分为两部分:密钥产生部分和数据随机化部分。 ?Twofish:同Blowfish一样,Twofish使用分组加密机制。它使用任何长度为256比特的单个密钥,对如智能卡的微处理器和嵌入在硬件中运行的软件很有效。它允许使用者调节加密速度,密钥安装时间,和编码大小来平衡性能。 ?Cast-256:AES 算法的一种。 (同学们也可自己下载相应的加解密软件,应用并分析加解密过程) 任务二:下载带MD5验证码的软件(如:https://www.360docs.net/doc/5f13345171.html,/downloads/installer/下载(MySQL):Windows (x86, 32-bit), MSI Installer 5.6.11、1.5M;MD5码: 20f788b009a7af437ff4abce8fb3a7d1),使用MD5Verify工具对刚下载的软件生成信息摘要,并与原来的MD5码比较以确定所下载软件的完整性。或用两款不同的MD5软件对同一文件提取信息摘要,而后比较是否一致,由此可进行文件的完整性认证。

密码学实验报告模板总结模板计划模板.doc

密码学应用与实践课程实验报告 实验 1:实现 DES密码体制 一、实验目的 1.编写程序实现 DES的加、解 密:1)编程构造 DES的密钥; 2)应用上述获得的密钥将一段英文或文件进行加、解密。 2.用 DES算法实现口令的安全 二、实验内容 1.DES原理 DES综合运用了置换,代换,移位多种密码技术,是一种乘积密码。在算法结构上采用迭代 结构,从而使其结构清晰,调理清楚,算法为对合运算,便于实现,运行速度快。DES使用了初始置换IP 和 IP-1 各一次(相应的置换看算法描述图表)置换P16 次,安排使用这 3 个置换的目的是把数据彻底打乱重排。选择置换 E 一方面把数据打乱重排,另一方面把32 位输入扩展为48 位,算法中除了S- 盒是非线性变换外,其余变换均为显示变换,所以保密 的关键是选择S- 盒。符合以下 3 条准则: (1)对任何一个 S- 盒而言,没有任何线性方程式等价于此S-盒的输出输入关系,即是S- 盒是非线性函数。 (2)改变 s- 盒的任何一位输入,都会导致两位以上的输出改变,即满足" 雪崩效应 " 。(3)当固定某一个位的输入时,S- 盒的 4 个出位之间,其中0 和 1 的个数之差小。这个准 则的本质是数据压缩,把四位输入压缩为 4 位输出。选择 S-盒函数的输入中任意改变数位, 其输出至少变化两位。因为算法中使用了16 次迭代,大大提高了保密性。 2.DES算法由加密、解密和子密钥的生成三部分组成 1)加密 DES算法处理的数据对象是一组64 比特的明文串。设该明文串为m=m1m2m64 (mi=0 或 1) 。明文串经过64 比特的密钥K 来加密,最后生成长度为64 比特的密文E。其加密过程图示如下:

1密码学-DES实验报告

南京信息工程大学实验(实习)报告实验(实习)名称对称密码实验(实习)日期得分指导教师 系计软院专业网络工程年2011 班次 1 姓名学号20111346026 一.实验目的 1.理解对称加密算法的原理和特点 2.理解DES算法的加密原理 二.实验内容 第一阶段:初始置换IP。在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP 的作用,对输入分组实施置换。最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。 第二阶段:16次迭代变换。DES采用了典型的Feistel结构,是一个乘积结构的迭代密码算法。其算法的核心是算法所规定的16次迭代变换。DES算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥Ki作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的有半部分,原来的有半部分变成了新的左半部分。用下面的规则来表示这一过程(假设第i次迭代所得到的结果为LiRi): Li = Ri-1; Ri = Li-1⊕f(Ri-1,Ki);在最后一轮左与右半部分并未变换,而是直接将R16 L16并在一起作为未置换的输入。 第三阶段:逆(初始)置换。他是初始置换IP的逆置换,记为IP-1。在对16次迭代的结果(R16 L16)再使用逆置换IP-1后,得到的结果即可作为DES加密的密文Y输出,即Y = IP-1 (R16 L16) 三.流程图&原理图

流程图

DES原理图

AES加密算法实验报告

四川大学计算机学院、软件学院实验报告 学号::专业:班级:第10 周

在程序运行读取需要加密的图片时,需要进行图片的选取,本次实验中使用在弹窗中选取文件的方式,使用头文件commdlg.h来实现在文件夹中选择需要的文件的选取。 三、加密算法流程 AES加密算法流程如下 字节代替:用一个S盒完成分组的字节到字节的代替; 行移位:进行一次行上的置换; 列混合:利用有限域GF(28)上的运算特性的一个代替; 轮密钥加:当前分组和扩展密钥的一部分进行按位异或。

四、代码实现 cryptograph.h #include #include class plaintext { public: plaintext(); static void createplaintext(unsigned char a[]); static void SubBytes(unsigned char p[16]); static void inSubBytes(unsigned char p[16]); static void ShiftRows(unsigned char e[]); static void inShiftRows(unsigned char e[]); static void MatrixToByte(unsigned char e[]); static void inMatrixToByte(unsigned char e[]); static unsigned char FFmul(unsigned char a, unsigned char b); static void KeyAdding(unsigned char state[16], unsigned char k[][4]); static void KeyExpansion(unsigned char* key, unsigned char w[][4][4]); ~plaintext(); private: }; cryptograph.cpp #include"cryptography.h" using namespace std; static unsigned char sBox[] = {};/定义加密S盒/ unsigned char insBox[256] ={};//定义解密S盒 plaintext::plaintext() {

DES加密算法实验报告

苏州科技学院 实验报告 学生姓名:杨刘涛学号:1220126117 指导教师:陶滔 刘学书1220126114 实验地点:计算机学院大楼东309 实验时间:2015-04-20 一、实验室名称:软件实验室 二、实验项目名称:DES加解密算法实现 三、实验学时:4学时 四、实验原理: DES算法由加密、子密钥和解密的生成三部分组成。现将DES算法介绍如下。1.加密 DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64 (mi=0或1)。明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:

图2-1:DES算法加密过程 对DES算法加密过程图示的说明如下: 待加密的64比特明文串m,经过IP置换(初始置换)后,得到的比特串的下标列表如下: 表2-1:得到的比特串的下标列表

该比特串被分为32位的L0和32位的R0两部分。R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串 f1,f1与L0做不进位的二进制加法运算。运算规则为: f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2……一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。 R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1(终结置换)后所得比特串的下标列表如下: 表2-2:置换后所得比特串的下标列表 经过置换IP-1后生成的比特串就是密文e。 变换f(Ri-1,Ki): 它的功能是将32比特的输入再转化为32比特的输出。其过程如图2-2所示:

密码学实验报告(AES,RSA)

华北电力大学 实验报告| | 实验名称现代密码学课程设计 课程名称现代密码学 | | 专业班级:学生姓名: 学号:成绩: 指导教师:实验日期:

[综合实验一] AES-128加密算法实现 一、实验目的及要求 (1)用C++实现; (2)具有16字节的加密演示; (3)完成4种工作模式下的文件加密与解密:ECB, CBC, CFB,OFB. 二、所用仪器、设备 计算机、Visual C++软件。 三. 实验原理 3.1、设计综述 AES 中的操作均是以字节作为基础的,用到的变量也都是以字节为基础。State 可以用4×4的矩阵表示。AES 算法结构对加密和解密的操作,算法由轮密钥开始,并用Nr 表示对一个数据分组加密的轮数(加密轮数与密钥长度的关系如表2所示)。AES 算法的主循环State 矩阵执行1 r N 轮迭代运算,每轮都包括所有 4个阶段的代换,分别是在规范中被称为 SubBytes(字节替换)、ShiftRows(行位移变换)、MixColumns(列混合变换) 和AddRoundKey ,(由于外部输入的加密密钥K 长度有限,所以在算法中要用一个密钥扩展程序(Keyexpansion)把外部密钥 K 扩展成更长的比特串,以生成各轮的加密和解密密钥。最后执行只包括 3个阶段 (省略 MixColumns 变换)的最后一轮运算。 表2 AES 参数 比特。

3.2、字节代替(SubBytes ) AES 定义了一个S 盒,State 中每个字节按照如下方式映射为一个新的字节:把该字节的高4位作为行值,低4位作为列值,然后取出S 盒中对应行和列的元素作为输出。例如,十六进制数{84}。对应S 盒的行是8列是4,S 盒中该位置对应的值是{5F}。 S 盒是一个由16x16字节组成的矩阵,包含了8位值所能表达的256种可能的变换。S 盒按照以下方式构造: (1) 逐行按照升序排列的字节值初始化S 盒。第一行是{00},{01},{02},…,{OF}; 第二行是{10},{l1},…,{1F}等。在行X 和列Y 的字节值是{xy}。 (2) 把S 盒中的每个字节映射为它在有限域GF(k 2)中的逆。GF 代表伽罗瓦域,GF(82) 由一组从0x00到0xff 的256个值组成,加上加法和乘法。 ) 1(] [2)2(3488++++= x x x x X Z GF 。{00}被映射为它自身{00}。 (3) 把S 盒中的每个字节记成),,,,,,,,(012345678b b b b b b b b b 。对S 盒中每个字节的每位 做如下变换: i i i i i i c b b b b b i b ⊕⊕⊕⊕⊕='++++8mod )7(8mod )6(8mod )5(8mod )4( 上式中i c 是指值为{63}字节C 第i 位,即)01100011(),,,,,,,,(012345678=c c c c c c c c c 。符号(')表示更新后的变量的值。AES 用以下的矩阵方式描述了这个变换: ?? ? ?? ? ? ? ? ? ??? ? ????????????+???????????????????????????????????????? ????????????=??????????????????????????0110001111111000011111000011111000011111100011111100011111100011111100017654321076543210b b b b b b b b b b b b b b b b 最后完成的效果如图:

AES加密算法实验报告

实验报告 学号:姓名:专业:班级:第10周

简介 #in elude vstri ng> #in elude class pla in text { public : plai ntext(); static void createplaintext( unsigned char a[]); 实验内容(算法、 程 序、 步骤 和方 法)

static void SubBytes( unsigned char p[16]); static void inSubBytes( unsigned char p[16]); static void ShiftRows( unsigned char e[]); static void inShiftRows( unsigned char e[]); static void MatrixToByte( unsigned char e[]); static void inMatrixToByte( unsigned char e[]); static unsigned char FFmul( unsigned char a, unsigned char b); static void KeyAdding( unsigned char state[16], unsigned char k[][4]); static void KeyExpansion( unsigned char* key, unsigned char w[][4][4]); ~plai ntext(); private : }; #in elude "" using namespacestd; static unsigned char sBox[] = {}; /定义加密S盒/ unsigned char insBox[256] ={}; //定义解密S盒 pla in text ::plai ntext() { unsigned int p[16]; for (int j = 0; j<200; j++) { p[i] = a[i]; a[i] = a[i + 16]; } void pla in text ::createpla in text( un sig ned char a[]) // 仓U建明文 int i = 0; if ( a[j] == 0) for (; i<16; i++)

DES实验报告

DES加密算法 一、实验目的 1、理解对称加密算法的原理和特点 2、理解DES算法的加密原理 二、实验步骤 第一阶段:64位明文进行初始置换IP(initial permutation) 第二阶段:在密钥控制下16轮迭代 第三阶段:交换左右32比特 IP 第四阶段:初识逆置换1 三、实验原理 对称密钥机制即对称密钥体系,也称为单钥密码体系和传统密码体系。对称密码体系通常分为两大类,一类是分组密码(如DES、AES算法),另一类是序列密码(如RC4算法)。对称密码体系加密和解密时所用的密钥是相同的或者是类似的,即由加密密钥可以很容易地推导出解密密钥,反之亦然。同时在一个密码系统中,我们不能假定加密算法和解密算法是保密的,因此密钥必须保密。发送信息的通道往往是不可靠的或者不安全的,所以在对称密码系统中,必须用不同于发送信息的另外一个安全信道来发送密钥。 四、实验内容 第一阶段:置换规则如下矩阵,即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是 输出的左32位,R0 是右32位,例:设置换前的输入值為D1D2D3 (64) 则经过初始置换后的结果為:L0=D550...D8;R0=D57D49 (7) 第二阶段: 1、变换密钥 取得64位的密钥,每个第8位作为奇偶校验位,舍弃64位密钥中的奇偶校验位,根据下表PC-1进行密钥变换得到56位的密钥。将变换后的密钥分为两个部分,开始的28位称为C0,最后的28位成为D0。然后同时将C0、D0循环左移1位形成C1、D1。C1D1经过PC-2从56位中选出48位输出,即为K1。循环左移LSi(i=1,2,……,16)分别是: 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1C1、D1分别循环左移LS2位,再合并,经过PC-2,生成子密钥K2。依次类推直至K16形成。 2、加密数据 将32位的RI-1按下表(E)扩展为48位的EI-1: 异或Ei-1和Ki,即E[i-1] XOR K[i],将异或后的结果分为8个6位长的部分,第1

DES算法实验报告

DES算法实验报告 导读:就爱阅读网友为您分享以下“DES算法实验报告”的资讯,希望对您有所帮助,感谢您对https://www.360docs.net/doc/5f13345171.html,的支持! 实验报告 姓名:xxxx 学号:0XXXXX 班级:XXXXXXX 日期:2013/11/* 题目:DES算法实验 一、实验环境 1.硬件配置: 处理器:Inter(R) Core(TM) i5-2430M CPU @ 2.40GHz (4

CPUs) ,~2.4GHz 内存:2048MB RAM 2.使用软件: (1) 操作系统:win7 旗舰版 (2) 软件工具: Microsoft Visual c++ 6.0 二、实验涉及的相关概念或基本原理 DES是一个分组密码算法,使用64位密钥(除去8位奇偶校验,实际密钥长度为56位)对64比特的数据分组(二进制数据)加密,产生64位密文数据。DES是一个对称密码体制,加密和解密使用同意密钥,解密和加密使用同一算法(这样,在硬件与软件设计时有利于加密单元的重用)。DES 的所有的保密性均依赖于密钥。 DES的加密过程可分为加密处理,加密变换和子密钥生成几个部分组成。 1.加密处理过程(1)初始置换IP。加密处理首先要对64位的明文按表1所示的初始换位表IP进行变换。表中的数值表示输入位被置换后的新位置。

(2)加密处理。上述换位处理的输出,中间要经过16轮加密变换。初始置换的64位的输出作为下一次的输入,将64位分为左、右两个32位,分别记为L0和R0,从L0、R0到L16、R16,共进行16轮加密变换。其中,经过i轮处理后的点左右32位分别为Li和Ri则可做如下定义: Li=Ri-1 Ri=Li-1 ⊕F(Ri-1,K) 其中,F为F变换 (3)最后换位。进行16轮的加密变换之后,将L16和R16合成64位的数据,再按照表2所示的最后换位表进行IP-1的换位,得到64位的密文,这就是DES算法加密的结果。 2.加密变换过程 64位的密钥先由置换选择1减少至56六位,进行循环左移,然后通过置换选择2减少至48位。而通过扩展运算将32位按表3扩展换位表扩展为48位的右半部分通过异或操作和48位的密钥结合,并分成6位的8个分组,通过8个S-盒

密码学实验报告总结

密码学实验报告(本文档为Word版本,下载后可自由编辑) 项目名称:××××××××× 项目负责人:××× 联系电话:××××× 编制日期:×××××

密码学实验报告 实验目的:掌握Caesar密码加密解密原理,并利用VC++编程实现。 实验内容:Caesar密码的加密原理是对明文加上一个密钥(偏移值)而得到密文。假设密钥为3,那么字母“a”对应的ASCII码为97,加上3得100正好是字母“d”的ASCII码值, 实验说明:加密实现的两种方式,只限定英文字母(区分大小写),加密时,根据明文字符是小(大)写字母,采用加密运算: 密文字符=“a”或“A”+(明文字符-“a”或“A”+password%26+26)%26 如果输入其他字符,则直接原样输出,不作处理 可以是任意字符 加密时,我们不做任何区分,直接利用Caesar密码算法 密文字符=明文字符+password 解密反之。 实验结果: void CCaesarDlg::OnButton1() //加密按钮 { UpdateData(TRUE); //从界面上的输入的值传入成员变量 m_crypt=m_plaintxt; //密文进行初始化,它与明文的长度是相同的 for(int i=0;i=48&&m_plaintxt.GetAt(i)<=57) //如果输入的字符是数字 { m_crypt.SetAt(i,'0'+(m_plaintxt.GetAt(i)-'0'+m_password%10 +10)%10);

计算机网络安全实验报告--非对称密码算法RSA

实验二非对称密码算法RSA 一、实验目的 通过实际编程了解非对称密码算法RSA的加密和解密过程,加深对非对称密码算法的认识。 二、实验环境 运行Windows或Linux操作系统的PC机,具有gcc(Linux)、VC(Windows)等C语言编译环境。 三、实验内容和步骤 1)编写一个程序,随机选择3个较大的数x、e、n,然后计算xe mod n, 记录程序运行时间。实际中应用的素数为512位,n也就为1024位。 这样的大数在计算机上如何表示、如何进行运算,查阅资料给出简单说明。 RSA依赖大数运算,目前主流RSA算法都建立在512位到1024位的大数运算之上,所以我们在现阶段首先需要掌握1024位的大数运算原理。 大多数的编译器只能支持到64位的整数运算,即我们在运算中所使用的整数必须小于等于64位,即:0xffffffffffffffff也就是 18446744073709551615,这远远达不到RSA的需要,于是需要专门建立大数运算库来解决这一问题。 最简单的办法是将大数当作字符串进行处理,也就是将大数用10进制字

符数组进行表示,然后模拟人们手工进行“竖式计算”的过程编写其加减乘除函数。但是这样做效率很低,因为1024位的大数其10进制数字个数就有数百个,对于任何一种运算,都需要在两个有数百个元素的数组空间上做多重循环,还需要许多额外的空间存放计算的进位退位标志及中间结果。当然其优点是算法符合人们的日常习惯,易于理解。 另一种思路是将大数当作一个二进制流进行处理,使用各种移位和逻辑操作来进行加减乘除运算,但是这样做代码设计非常复杂,可读性很低,难以理解也难以调试。 (2)计算机在生成一个随机数时,并不一定就是素数,因此要进行素性检测。 是否有确定的方法判定一个大数是素数,要查阅资料,找出目前实际可行的素数判定法则,并且比较各自的优缺点。 所谓素数,是指除了能被1和它本身整除而不能被其他任何数整除的数。 根据素数的定义,只需用2到N-1去除N,如果都除不尽则N是素数,结束知其循环。由此得算法1。 (1)flay=0,i=2. /*flay为标志,其初值为0,只要有一个数除尽,其值变为1. (2)If n mod i=0 then flay=l else i=i+1/* n mod i是n除以i的余数. (3)If flay=0 and I<=n-1 then(2) else go (4) (4)If flay=0 then write“n是素数。”else write“不是素数” 最坏的情形下,即N是素数时,算法1需要执行N-2次除法,时间复杂

AES加密算法实验报告

实验报告 姓名:陈清扬学号:2051313 班级:信息安全日期:2011-04-23 AES加密算法 一、实验环境 1.硬件配置:酷睿i3cpu ,2G内存 2.使用软件: (1) 操作系统:windows7旗舰版 (2) 软件工具:visualc++6.0 二、AES涉及的相关概念或基本原理 简介: 密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。 密码说明: 严格地说,AES和Rijndael加密法并不完全一样(虽然在实际应用中二者可以互换),因为Rijndael加密法可以支援更大范围的区块和密钥长度:AES的区块长度固定为128 位元,密钥长度则可以是

128,192或256位元;而Rijndael使用的密钥和区块长度可以是32位元的整数倍,以128位元为下限,256位元为上限。加密过程中使用的密钥是由Rijndael密钥生成方案产生。大多数AES计算是在一个特别的有限域完成的。AES加密过程是在一个4×4的字节矩阵上运作,这个矩阵又称为“体(state)”,其初值就是一个明文区块(矩阵中一个元素大小就是明文区块中的一个Byte)。(Rijndael加密法因支援更大的区块,其矩阵行数可视情况增加)加密时,各轮AES加密循环(除最后一轮外)均包含4个步骤: 1AddRoundKey—矩阵中的每一个字节都与该次回合金钥(round key)做XOR运算;每个子密钥由密钥生成方案产生。 2SubBytes—透过一个非线性的替换函数,用查找表的方式把每个字节替换成对应的字节。 3ShiftRows—将矩阵中的每个横列进行循环式移位。 4MixColumns—为了充分混合矩阵中各个直行的操作。这个步骤使用线性转换来混合每行内的四个字节。 最后一个加密循环中省略MixColumns步骤,而以另一个AddRoundKey取代。 安全性: 截至2006年,针对AES唯一的成功攻击是旁道攻击。旁道攻击不是攻击密码本身,而是攻击那些实作于不安全系统上的加密系统。

现代密码学-古典密码实验报告

现代密码学 实 验 报 告 院系:理学院 班级:信安二班 姓名: 学号:

前言 密码学(Cryptology)是研究秘密通信的原理和破译秘密信息的方法的一门学科。密码学的基本技术就是对数据进行一组可逆的数学变换,使未授权者不能理解它的真实含义。密码学包括密码编码学(Cryptography)和密码分析学(Cryptanalyst)两个既对立又统一的主要分支学科。研究密码变化的规律并用之于编制密码以保护信息安全的科学,称为密码编码学。研究密码变化的规律并用之于密码以获取信息情报的科学,称为密码分析学,也叫密码破译学。 密码学在信息安全中占有非常重要的地位,能够为信息安全提供关键理论与技术。密码学是一门古老而深奥的学问,按其发展进程,经历了古典密码和现代密码学两个阶段。现代密码学(Modern Cryptology)通常被归类为理论数学的一个分支学科,主要以可靠的数学方法和理论为基础,为保证信息的机密性、完整性、可认证性、可控性、不可抵赖性等提供关键理论与技术。

古典密码算法实验 在密码编码体制中有两种基本也是古老的编码体制一直沿用至今,它们是代替密码和置换密码,其历史悠久并且是现代密码体制的基本组成部分,在密码学中占有重要地位。古典密码是密码学发展的一个阶段,也是近代密码学产生的渊源,一般把Shannon 在1949 年发表“保密系统的通信理论”之前的时期称为古典密码时期。尽管古典密码大多比较简单,一般可用手工或机械方式实现,且都可用统计分析方法破译,目前已很少采用。但是,古典密码所采用的代替技术和置换技术仍然是现代分组密码算法设计的基础,了解它们的设计原理,有助于理解、设计和分析现代密码。 一、实验目的 通过编程实现经典的代替密码算法和置换密码,包括移位密码、维吉尼亚密码、周期置换密码、列置换密码,加深对代替技术的了解,为现代分组密码实验奠定基础。 二、实验原理 代替(Substitution)是古典密码中基本的处理技巧,就是将明文字母由其他字母表中

加密解密程序实验报告

程序设计实践 加密解密程序实验报告 课题概述 1.1课题目标和主要内容: 利用MFC类或者win32编写windows程序,实现加密解密的功能。 1.2系统的主要功能: 1.实现用户界面友好的操作。 2.具有对称编码体制,可以实现: i.凯撒密码:能够自定义密钥,自由输入明文,进行加密、解密,在对话框中返回加密和 解密后的内容。

ii.置换密码:能够自定义密钥,自由输入明文,经矩阵变换进行加密、解密,在对话框中返回加密和解密后的内容 iii.对称加密DES:用MFC调用WIN32编写的程序,在用户友好界面操作的同时显示程序加密,解密结果。 3.具有非对称编码体制: i. RSA加密解密:随机产生p,q,经检验是否互质,若不互质接着产生两个随机数,直 到二者互质为止。自动生成p,q,N及加密解密的密钥,可以自由输入明文,返回加密、 解密的内容。 ii. MD5消息摘要计算:用MFC调用WIN32编写的程序,在用户友好界面操作的同时显示程序的加密结果。 4.信息隐藏技术: 用LSB在图片(bmp格式,任意位置的图片)中写入信息,读取信息并显示出来,可 以擦除信息。可以自定义密钥。 5. AES加密解密:用MFC调用WIN32编写的程序,在用户友好界面操作的同时显示程序 加密,解密结果。 6. 以上的所有对文字加密解密的方法(除LSB以外其余所有方法),都可以用于文件加 密,解密,并能够及时保存加密,解密的信息到一个TXT文档,可以存在用户想存放 的地方。 7.更多: 链接了一个可加密解密,功能更为齐全的网站,若是上述方法不能满足用户需求, 可以在程序运行的窗口中点击相应按钮,在联网的条件下进行在线加密解密。 一、系统设计 2.1系统总体框架: 2.2主要的层次逻辑为:

加密技术及密码破解实验报告

第九章、实验报告 实验一、设置Windows启动密码 一、实验目的:利用Windows启动密码保存重要文件。 二、实验步骤: 1、在Windows XP系统中选择开始——运行,在打开输入框中“syskey.exe”,点击确定,打开“保证Windows XP账户数据库的安全”对话框。 2、单击【更新】,打开【启动密码】对话框,然后输入密码,在【确认】文本框中再次输入密码,单击【确定】

实验二、为word文档加密解密 一、实验目的:保护数据的安全 二、实验步骤: 1、打开一个需要加密的文档,选择【工具】——【选项】——【安全性】然后输入想要设置打开文件时所需的密码 2、单击【高级(A)】打开加密类型对话框,选中【加密文档属性】复选框,单击【确定】。 3、打开文件的【确认密码】对话框,输入打开文件时需要的密码,单击【确定】,随即打开【确认密码】对话框,输入密码。 4、保存文件后,重新打开Word文档,打开【密码】,输入打开文件所需的密码,单击【确定】输入修改的密码,单击【确定】

破解word密码 (1)安装Advanced Office Password Recovery软件,安装完成后打开需要破解的word文档,进行暴力破解,结果如图所示: 实验三、使用WinRAR加密解密文件 一.实验目的:加密文件,保证文件的安全性。 二.实验步骤: 1、在需要加密的文件夹上右击,选中【添加到压缩文件】打开【压缩文件名和参数】 2、选中【压缩文件格式】组合框中的【RAR】并在【压缩选项】中选中【压缩后删除源文件】然后切换到【高级】,输入密码,确认密码。

3、关闭对话框,单击确定,压缩完成后,双击压缩文件,系统打开【输入密码对话框】 破解WinRAR加密的文件 (1)安装Advanced RAR Password Recovery软件,打开WinRAR加密文件,进行暴力破解,获得密码。结果如图: 实验四:使用文件夹加密精灵加密文件夹 一、实验目的:对文件进行加密,保证其安全性 二、实验步骤: 1、安装文件夹加密精灵软件,设置登录密码。重新选择【文件加密精灵】,出现登录框。如图

相关文档
最新文档