体育单招历年真题排列组合二项式、概率(含答案)

体育单招历年真题排列组合二项式、概率(含答案)
体育单招历年真题排列组合二项式、概率(含答案)

体育单招历年真题排列组合二项式定理概率

1、(2011年第10题) 将3名教练员与6名运动员分为3组,每组一名教练员与2名运动员,不同的分法有

( )

A 90种

B 180种

C 270种

D 360种

2、(2011年第11题)261(2)x x +的展开式中常数项是 。

3、(2012年第5题)已知9()x a +的展开式中常数项是8-,则展开式中3x 的系数是( )

A. 168

B. 168-

C. 336

D. 336-

4、(2012年第8题)从10名教练员中选出主教练1人,分管教练2人,组成教练组,不同的选法有( )

A.120种

B. 240种

C.360 种

D. 720种

5、(2012年第14题)某选拔测试包含三个不同项目,至少两个科目为优秀才能通过测试.设某学员三个科目优秀的概率分别为544,,,666则该学员通过测试的概率是 。

6、(2013年第8题) 把4个人平均分成2组,不同的分组方法共有( )

(A )5种 (B )4种 (C )3种 (D )2种

7、(2013年第14题)有3男2女,随机挑选2人参加活动,其中恰好为1男1女的概率为 .

8、(2014年第5题)从5位男运动员和4位女运动员中任选3人接受记者采访,这3人中男、女运动员都有 的概率是( ) A. 125 B. 85 C. 43 D. 6

5 9、(2014年第6题) 244)1(x

x + 的展开式中,常数项为( ) A. 1224C B. 1024C C. 824C D. 624C

10、(2014年第12题)一个小型运动会有5个不同的项目要依次比赛,其中项目A 不排在第三,则不同的排

法共有 种。(用数字作答)

11、(2015年第8题)从5名新队员中选出2人,6名老队员中选出1人,组成训练小组,则不同的组成方案 共有( )

A.165种

B. 120种

C. 75种

D. 60种

12、(2015年第15题) 4

)12(-x 展开式中 3x 的系数是 。

13、(2016年第8题)从1,2,3,4,5,6中取出2个不同数字组成两位数,其中大于50的两位数的个数为( )

A.6种

B. 8种

C.9 种

D. 10种

14、(2016年第15题)(1+的展开式中,52x 的系数为 。(用数字作答)

15、(2017年第4题)从7名男运动员和3名女运动员中选出2人组队参加乒乓球混合双打比赛,则不同的 选法共有( )

A.12种

B. 18种

C.20 种

D. 21种

16、(2018年第11题)在6名男运动员与5名女运动员中选男、女各3名组成一个代表队,则不同的组队方

案共有 种。

17、(2018年第13题)若4)(x a x -的展开式中2x 的系数为-2,则a = 。

18、(2018年第16题)某篮球运动员进行定点投篮测验,共投篮3次,至少命中2次为测验合格。若该运动员每次投篮命中率均为0.7,且各次投篮结果互相独立,则该运动员测验合格的概率是 。

19、(2019年第7题) 从1,2,3,4,5,这5个数中,任取2个不同的数,其和为偶数的概率是( )

A. 43

B. 53

C. 21

D. 5

2 20、(2019年第11题) 7)21(x +的展开式中2x 的系数是 。(用数字作答)

21、(2020年第11题)从1,2,3,4,5中任取3个不同的数,这3个数字之和是偶数的概率为 。

22、(2020年第15题)5)3(y x -的展开式中3

2y x 的系数为 。(用数字作答)

23、(2011年第17题)(本题满分18 分)

甲、乙两名篮球运动员进行罚球比赛,设甲罚球命中率为0.6,乙罚球命中率为0.5。

(I )甲、乙各罚球3次,命中1次得1分,求甲、乙等分相等的概率;

(II)命中1次得1分,若不中则停止罚球,且至多罚球3次,求甲得分比乙多的概率。

24、(2015年第17题)、某校组织跳远达标测验,已知甲同学每次达标的概率是

4

3.他测验时跳了4次,设各次是否达标相互独立。

(1)求甲恰好有3次达标的概率;

(2)求甲至少有1次不达标的概率。(用分数作答)

25、(2017年第18题)在15件产品中,有10件是一级品,5件是二级品,从中一次任意抽取3件产品,求:

(1)抽取的3件产品全部是一级品的概率;

(2)抽取的3件产品中至多有一件二级品的概率。

参考答案:

1、A

2、60

3、C

4、C

5、2722

6、C

7、5

3 8、D 9、C 10、96 11、D 12、-32 13、D 14、192 15、D 16、200 17、

21 18、0.784 19、D 20、84 21、

53 22、-270

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

排列组合与二项式定理的综合练习题

排列组合与二项式定理的综合应用 1.已知(1+a x )(1+x)5的展开式中x 2 的系数为5,则a = (A )-4 (B )-3 (C )-2 (D )-1 2.若52345012345(23)x a a x a x a x a x a x -=+++++,则:等于() A .55 B .-l C .52 D .52- 3,则的值为 A . B .C 4.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有() A.36种 B.30种 C.24种 D.6种 5.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 6.()()8 x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 7.(x-2)6的展开式中3x 的系数为.(用数字作答) 8.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+a 3+…+a 8=________. 9.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数: (1)选其中5人排成一排; (2)排成前后两排,前排3人,后排4人; (3)全体排成一排,甲不站在排头也不站在排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻; (6)全体排成一排,甲、乙两人中间恰好有3人. 10.7个人排成一排,按下列要求各有多少种排法? (1)其中甲不站排头,乙不站排尾; (2)其中甲、乙、丙3人必须相邻; (3)其中甲、乙、丙3人两两不相邻; (4)其中甲、乙中间有且只有1人; (5)其中甲、乙、丙按从左到右的顺序排列. 2312420)()(a a a a a +-++16-16

排列组合与二项式定理精华总结

排列组合 知识点 一、两个原理. 1. 乘法原理、加法原理:分类相加,分步相乘。 二、排列:元素是有顺序的 (1):对排列定义.:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (2):排列数公式: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10==n n n C C (3): 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中有限重复数为n 1、n 2……n k ,且 n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 三、组合:元素没有顺序之分 (1):组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. (2):组合数公式:)! (!!! )1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ (3):两个性质:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ (4):常用的证明组合等式方法例. i. 裂项求和法. 如: )!1(11)!1(!43!32!21+-=++++n n n Λ(利用! 1 )!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法. v. 递推法(即用m n m n m n C C C 11+-=+递推)如:4 13353433+=+++n n C C C C C Λ. vi. 构造二项式. 如:n n n n n n C C C C 222120)()()(=+++Λ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为 2 2120022110) ()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=?++?+?+?--ΛΛ,而右边n n C 2= 四、排列、组合综合 (1)直接法 (2)间接法 (3)捆绑法 (4)插空法 (5)占位法 (6)调序法 (7)平均法 (8)隔板法 (9)定位问题 (10)指定元素排列组合问题 五、二项式定理. 1. ⑴二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+--ΛΛ. 展开式具有以下特点:

排列组合二项式定理知识点

第十六章 排列、组合、二项式定理 一、排列 )!(!)())((m n n m n n n n P m m n -= +---=4444434444421Λ个相乘 121 (如:)!(!3553453 5-=??=P ) 二、组合 !)!(!m m n n P P C m m m n m n -== (如:123345335533 353 5????= -==!)!(!P P C ) m n n m C C -=n ,m n m n m C C C 11+-=+n (如:253C C =5,36253C C C =+5) 三、二项式定理 1.二项式定理:000b a C b a n n n -=+)(111b a C n n ??+-n n n b a C ??+0Λ (1)展开式共有n+1项,其中第r+1项:r r n r n r b a C T ??=-+1 (2)其中r n C (0,1,2…)叫二项式系数 2.二项式系数的性质 (1)在二项展开式中与首末两端“等距离”的两项的二项式系数相等。(对称性) (2)展开式中二项式系数最大的项: 若n 是偶数,是中间一项即第12 +n 项,二次项系数为2n n C ; 若n 是奇数,是中间两项即第21+n 、2 1 +n +1项,二次项系数为21 -n n C 、21 +n n C ; 【区别】展开式中系数最大的项:?? ?≥≥+++的系数 的系数的系数 的系数r r T T T T r r 121?求出r (3)二项式系数的和为n 2,即n n n n C C C 210=+++Λn 【区别】所有系数的和:令字母为1 (4)偶数项二项式系数和等于奇数项二项式系数和,即1 31202-=++=++n n ΛΛn n n C C C C 3.二项式定理的主要应用 (1)赋值求职; (2)证明某些整除问题或求余数; (3)证明关于指数式与多项式的不等式; (4) 进行近似计算。

排列组合二项式定理知识点

排列组合项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以.有.重.复.元.素.的排列. 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以 从m个不同元素中,每次取出n个元素可重复排列数m- m?…m = m n..例

3! 1 . 3! 如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: m n 种) 二、排列. 1.(1)对排列定义的理解. 定义:从n 个不同的元素中任取 m (贰n )个元素,按照一定顺序 排成一列, 叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺 序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (mcn)个元素排成一列,称为从n 个不同元素中取 出 m 个元素的一个排列.从n 个不同元素中取出m 个元素的一个排列数,用 符号表 示. ⑷排列数公式: 注意:n n! (n 1)! n!规定 0! = 1 m m m m 1 m m 1 m m 1 On, A n 1 A n A m C n A n mA n A n nA n 1 /规^定 C n C n 1 2.含有可重元素的排列问题. 对含有相同元素求排列个数的方法是:设重集 S 有k 个不同元素a 1, a 2,……a n 其中限重复数为n 1、n ..... n k ,且n = n 计尊+ .. n k ,则S 的排列 例如:已知数字3、2、2,求其排列个数n 喈3又例如:数字5、5、5、 求其排列个数?其排列个数 个数等于n n! n !n 2!...n k

(完整版)排列组合二项式定理新课

20.1.1 排列的概念 【教学目标】 1.了解排列、排列数的定义;掌握排列数公式及推导方法; 2. 能用“树形图”写出一个排列问题的所有的排列,并能运用排列数公式进行计算。 3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。 【教学重难点】 教学重点:排列的定义、排列数公式及其应用 教学难点:排列数公式的推导 【教学课时】 二课时 【教学过程】 合作探究一:排列的定义 我们看下面的问题 (1)从红球、黄球、白球三个小球中任取两个,分别放入甲、乙盒子里 (2)从10名学生中选2名学生做正副班长; (3)从10名学生中选2名学生干部; 上述问题中哪个是排列问题?为什么? 概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n个不同元素中,任取m(m n ≤)个元素(这里的被取元素各不相同) 按照一定的顺序 .....排成一列,叫做从n个不同元素中取出m个元素的一个排列 ....。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二排列数的定义及公式 3、排列数:从n个不同元素中,任取m(m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m元素的排列数,用符号m n A表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导

探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n * ∈≤ 即学即练: 1.计算 (1)4 10A ;(2)25A ;(3)3355A A ÷ 2.已知101095m A =???L ,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----L 用排列数符号表示为( ) A .5079k k A --B .2979k A -C .3079k A -D .3050k A - 答案:1、5040、20、20;2、6;3、C 典型例题 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 解析:(1)利用好树状图,确保不重不漏;(2)注意最后列举。 解:略 点评:在写出所要求的排列时,可采用树状图或框图一一列出,一定保证不重不漏。 变式训练:由数字1,2,3,4可以组成多少个没有重复数字的三位数?并写出所有的 排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中,m =n 全排列数:(1)(2)21!n n A n n n n =--?=L (叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)4 4A (3))!1(-?n n 想一想:由前面联系中( 2 ) ( 3 )的结果我们看到,25A 和3 355A A ÷有怎样的关系? 那么,这个结果有没有一般性呢? 排列数公式的另一种形式:

排列组合 二项式定理知识点

排列组合二项定理考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有 ..重复 ..的排列. ..元素 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例

如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 例如:已知数字3、2、2,求其排列个数3! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1! 3!3==n .

排列组合和二项式定理教材分析

第十章排列组合和二项式定理教材分析 作为高中数学必修内容的一个部份,本章在整个高中数学中占有重要地位以计数问题为主要内容的排列与组合,属于现在发展很快且在计算机领域获得广泛应用的组合数学的最初步知识,它不仅有着许多直接应用,是学习概率理论的准备知识,而且由于其思维方法的新颖性与独特性,它也是培养学生思维能力的不可多得的好素材;作为初中一种多项式乘法公式推广二项式定理,不仅使前面组合等知识的学习得到强化,而且与后面概率中的二项分布有着密切联系 本章教学约需17课时,具体分配如下: 10.1加法原理和乘法原理约2课时 10.2排列约4课时 10.3组合约5课时 10.4二项式定理约4课时 小结与复习约2课时 一、内容分析 本章从学习加法原理和乘法原理开始,应该说,这两个基本原理在本章的学习中占有重要地位;其作用并不限于用来推导排列数、组合数公式,实际上其解决问题的思想方法贯穿在整个学习的始终:当将一个较复杂的问题通过分类进行分解时,用的是加法原理;当将它通过分步进行分解时,用的是乘法原理在此基础上,研究排列与组合,运用归纳法导出排列数公式与组合数公式,并提出组合数的两个性质,以简化组合数的计算和为推导二项式定理作好铺垫 的学习深化一步,而且为学习后面的独立重复试验,二项分布作了准备 本章还为部分学有余力的学生安排了阅读材料《从集合的角度看排列、组合和概率》,通过这篇材料,可以看到排列、组合与概率这两类看上去并无共同之处的概念间的内在联系例如,求组合数及其相应的等可能性事件的概率,可分别看成是在一个全集下的某个子集到数的集合的不同的映射,可见从集合的角度去认识这些概念,可加深对其本质和内在联系的认识,此外,由于集合及其关系可用图形表示,便于将一些较复杂的问题分析清楚,因此运用集合的方法可以较为顺利地求解一些较为复杂的应用题 二、教学要求 1.掌握加法原理与乘法原理,并能用它们分析和解决一些简单的应用问题 2.理解排列、组合的意义,掌握排列数、组合数计算公式,并能用它们解决一些简单的应用问题 3.掌握二项式定理和二项展开式的性质并能用它们计算和证明一些简单的问题 三、考点诠释 (1)两个原理(分类计数原理、分步计数原理) 分类和分步的区别,关键是看事件能否完成,事件完成了就是分类;必须要连续若干步才能完成的则是分步.分类要用加法原理将种数相加;分步要用乘法原理,分步后再将种数相乘. (2)两个概念(排列、组合) 排列与组合是既有联系又有区别的两类问题,它们都是从n个不同元素中任取m个不同元素.但是前者要求将元素排成一个顺序,后者对此不做要求.若不理解排列问题和组合问题的区别,在分析实际问题时就会犯错误. (3)两类基本公式

二项式排列组合

二项式定理与多项式 1.二项工定理∑=-∈= +n k k k n k n n n b a C b a 0 *)()(N 2.二项展开式的通项 )0(1n r b a C T r r n r n r ≤≤=-+它是展开式的第r+1项. 3.二项式系数 ).0(n r C r n ≤≤ 4.二项式系数的性质 (1)).0(n k C C k n n k n ≤≤=- (2)).10(111-≤≤+=---n k C C C k n k n k n (3).1121++++++=+++++n k n n k n n n n n n n C C C C C (4).2210n n n n n n C C C C =++++ (5).21531420-=+++=+++n n n n n n n C C C C C C (6).1 111----= =k n k n k n k n C k n C nC kC 或 (7)).(n k m C C C C C C m m k n m k n m k m n m n m k k n ≤≤=?=?+---- 例题:求7)11(x x + +的展开式中的常数项. 【解】常数项为.3933 6672747172707=+++C C C C C C C 例题:求6 2)321(x x -+的展开式里x 5 的系数. 【解】 .16813)(35 6516464-=?+-?+C C C 例题:已知实数βα,均不为0,多项ββαα++-=x x x x f 23)(的三根为321,,x x x ,求 )111)((3 2 1 321x x x x x x ++++的值. 例题:d cx bx ax x x f ++++=234)(,其中d c b a ,,,为常数,如果,3)3(,2)2(,1)1(===f f f 求)]0()4([4 1f f +的值 常见题型及解法 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x + 的展开式; 2. “n b a )(-”型的展开式 例2.求4)13(x x -的展开式 3.二项式展开式的“逆用” 例题:计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 解:原式= n n n n n n n n C C C C C )2()31()3(....)3()3()3(3 33 22 11 -=-=-++-+-+-+ 二、通项公式的应用 1.确定二项式中的有关元素

排列组合与二项式定理的综合练习题

排列组合与二项式定理的综合应用 1.()()5121x x -+的展开式中3x 的系数为( ) A .10 B .-30 C .-10 D .-20 2.若()()72801281212x x a a x a x a x +-=++++…,则0127a a a a ++++…的值为( ) A .2- B .3- C .253 D .126 3.()()512x x +-的展开式中2x 的系数为( ) . A .25 B .5 C .-15 D .-20 4.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种 5.从5名学生中选出4名分别参加A ,B ,C ,D 四科竞赛,其中甲不能参加C ,D 两科竞赛,则不同的参赛方案种数为( ) 6.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( ) A.828 9A A B.82810A A C.8287A A D.8286A A 7.小孔家有爷爷、奶奶、姥爷、姥姥、爸爸、妈妈,包括他共7人,一天爸爸从果园里摘了7个大小不同的梨,给家里每人一个.小孔拿了最小的一个,爷爷、奶奶、姥爷、姥姥4位老人之一拿最大的一个,则梨子的不同分法共有( ) A .96种 B .120种 种 D .720种 8.已知身穿红,黄两种颜色衣服的各两人,身穿蓝衣服的有1人,现将五人排成一列,要求穿相同颜色衣服的人不能相邻,则不同的排法有( ) 种 种 种 种 9.3n x ?+??的展开式中,各项系数之和为A ,各项的二项式系数之和为B ,且72A B +=,则展开式中常数项为( ) 10.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取两个数字,一共可以组成没有重复数字的五位偶数的个数为( ) A .2880 B .7200 C . 1440 D .60 11.某中学四名高二学生约定“五一”节到本地区三处旅游景点做公益活动,如果每个景点至少一名同学,且甲乙两名同学不在同一景点,则这四名同学的安排情况有( ) A .10种 B .20种 C .30种 D .40种 12.51 ()(21)ax x x +-的展开式中各项系数的和为2,则该展开式中常数项为( )

高中数学排列组合与二项式定理知识点总结

排列组合与二项式定理知识点 1.计数原理知识点 ①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m! Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 经常运用的数学思想是: ①分类讨论思想;②转化思想;③对称思想. 4.二项式定理知识点: ①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn 特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn ②主要性质和主要结论:对称性Cnm=Cnn-m 最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项) 所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1 ③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。 6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

排列组合二项式定理与概率统计

排列组合二项式定理与概率统计 重点知识回顾 1. 排列与组合 ⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关, 分类计数原理与分类有关 ⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合, ⑶排列与组合的主要公式 _ r — r+1 项是 T r+1 =C n a n r b r . ⑵二项展开式的通项公式 二项展开式的第r+1项T r+1=c n a n —r b r (r=0,1,…叫)做二项展开式的通项公式。 ⑶二项式系数的性质 ① 在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即 c n = c n r (r=0,1,2,…,n ). 项和第n 3项)的二项式系数相等,并且最大,其值为 2 A n = n! =n(n — 1)(n — 2) ....... 2 ? 1. ②组合数公式: c m n! n(n 1) (n m 1) (m < n) m!( n m)! m (m 1) 2 1 ③组合数性质: ①c m ㈡ m (m < n) ② c 0 c ; c n 2 c ; 2n ③ Cn Cn c 4 C n c 1 c 3 C n C n 2n 1 2.二项式定理 ⑴二项式定理 (a +b)n =C 0a n +c n a n — 1 r b+ …+C n a n r b r +… + c n b n ,其中各项系数就是组合数c n ,展开式共有n+1项,第 问题?区别排列问题与组合问题要看是否与顺序有关, 与顺序有关的属于排列问题, 与顺序无关的属于组合问题 求共有多少种方法的 ①排列数公式: A m n! (n m)! n(n 1) (n m 1) (m

高中数学-排列组合二项式定理知识点

排列组合二项式定理知识点 2、排列、组合

3、二项式定理 内容典型题 定义①二项式定理: (a+b)n=C 0n a n+C 1n a n-1b1+…+C r n a n-r b r+…+C n n b n =∑ = n r r n C a n-r b r(n∈N+) ②二项式展开式第r+1项通项公式: T r-1 =C r n a n-r b r 其中C r n(r=0,1,2,…,n)叫做二项式系数. 8.二项式8)1 (- x的展开式中的第5项是( ) A. 70x4 B. 70x2 C. 56x3 D. -562 3 x 9.二项式(x-2)12展开式中第3项的系数是( ) A.264 B.-264 C.66 D.-1760 10.(x-2)8 的展开式中, x6的系数是( ) A. 56 B. -56 C. 28 D. 224 11.(x2+)5展开式中的10x是( ) A.第2项 B.第3项 C.第4项 D.第5项 12.二项式x-1 x 6 的展开式中常数项是( ) A. 1 B. 6 C. 15 D. 20 13.设(3-x)n=n n x a x a x a a+???+ + +2 2 1 ,已知 n a a a a+???+ + + 2 1 =64,则n=. 14.设二项式(3x+5)10= 1 8 8 9 9 10 10 a x a x a x a x a+ +???+ + +,则 1 8 9 10 a a a a a+ -???- + -=. 15.二项式2x-1 x 6 的展开式中二项式系数最大的项是. 性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等. ②如果二项式的幂指数是偶数,则中间一项的二项系数最大;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大. ③二项式系数的和为n2,即 n C+1 n C+…+r n C+…+n n C=n2 ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即 n C+2 n C+…=1 n C+3 n C+…=1 2-n

(最新经营)排列组合二项式定理与概率及统计

主讲人:黄冈中学高级教师汤彩仙 一、复习策略 排列与组合是高中数学中从内容到方法均比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题均有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,且且结果数目较大,无法一一检验,因此给考生带来一定困难.解决问题的关键是加深对概念的理解,掌握知识的内于联系和区别,科学周全的思考、分析问题. 二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点. 概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律. 纵观近几年高考,排列、组合、二项式定理几乎每年必考,考题多以选择题、填空题出现,题小而灵活,涉及知识点均于两三个左右,综合运用排列组合知识,分类计数和分步计数原理;二项式定理及二项式系数的性质计算或论证一些较简单而有趣的小题也于高考题中常见,概率及概率统计的内容,从近几年新课程卷高考来看,每年均有一道解答题,占12分左右. 排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)

以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.(4)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;(5)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”; 于求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 二、典例剖析 题型一:排列组合应用题 解决此类问题的方法是:直接法,先考虑特殊元素(或特殊位置),再考虑其他元素(或位置);间接法,所有排法中减去不合要求的排法数;对于复杂的应用题,要合理设计解题步骤,一般是先分组,后分步,要求不重不漏,符合条件. 例1、(08安徽理12)12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.

排列组合二项式知识点及例题

排列组合 分类计数原理:完成一件事,有n 种不同的方法,在1类办法中有m 1种不同的办法,在第2类办法中有m 2种不同的方法······在第n 种办法中有m n 种不同的方法。那么完成这件事共有N= m 1 +m 2+······ m n 种不同的方法 分步计数原理:完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的打方法·····做第n 步有m n 种不同的方法,那么完成这件事共有N= m 1 ×m 2×······×m n 种不同的方法 1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示 3.排列数公式:(1)(2)(1)m n A n n n n m =---+L (,,m n N m n *∈≤) 4 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=. 5.排列数的另一个计算公式:m n A =!()!n n m - 6 组合概念:从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 7.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 8.组合数公式:(1)(2)(1)!m m n n m m A n n n n m C A m ---+==L 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且 9.组合数的性质1:m n n m n C C -=.规定:10=n C ; 10.组合数的性质2:m n C 1+=m n C +1-m n C C n 0+C n 1+…+C n n =2n 排列组合问题的解题策略 一、相临问题——捆绑法 一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 二、不相临问题——选空插入法 若 个人站成一排,其中 个人不相邻,可用“插空”法解决 例2. 7名学生站成一排,甲乙互不相邻有多少不同排法? 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.

立体几何排列组合二项式定理知识点(20166593511336)

立体几何排列组合二项式定理知识点 1.多面体 :.()()定义由若干个多边形组成的封闭体叫做多面体 定义:由两个平行全等的多边形,不在这两个面上的棱都平行. 直棱柱底面平行全等,侧面为矩形,侧棱平行相等垂直底面 分类正棱柱底面平行全等正多边形,侧面为矩形,侧棱平行相等垂直底面棱柱四棱柱(平行六面体,直四棱柱,长方体,正四棱柱,正方体) 多面体()()S c l l h V S h ???????????????=?=???=????侧底面周长底面积 直棱柱的侧面积计算 棱柱的体积 定义:由一个面为多边形,不在这个面上的棱有一个公共点. 正棱锥底面正多边形,侧面全等等腰三角形,侧棱相等交一点分类三棱锥(正三棱锥,正四面体) 棱锥''1213S c h h V S h ?? ? ? ? ? ?? ?? ? ? ?? ? ??????????????????? =???????? ???=?????? ???侧底面周长底面积 正棱锥的侧面积(为斜高)计算 棱柱的体积 1.祖暅原理(夫叠棊成立积,缘幂势既同,则积不容异), 2.斜二测画法. 2旋转体 2:(),.(),(),().:(,):2,22,ABCD AB AB CD AD CD S rl S r rl V S h πππ??????==+=?????侧全底 定义矩形及内部绕旋转一周所得的旋转体直线轴线段母线,侧面线段和的旋转面底面圆柱性质无数条母线平行轴垂直底面 计算体积 定义:Rt ABC(及内部)绕直角边AB 旋转一周,所得的旋转圆锥常 见旋转体201 ,,3:(),.:0----:----rl r rl V S h O AB OA πππ???????==+=??? 侧全底体.直线AB(轴),斜边AC(母线,侧面),直角边BC 的旋转面(底面).性质:(无数条母线交于顶点,与轴和底面成等角) 计算:S S 体积 定义半圆及内部绕直径旋转一周所得的旋转体经度经线半圆面与经线半圆面的二面角大小经度纬度与赤道圆面的线面角大小纬球 1123:(,,44,:3(,)O OO S R V R R AOB ππθθ?????????? ? ? ? ?? ???? ?? ???? ?? ???=???????==???? ????∠=????? 表度性质平面截球截面为圆 体积 计算 球面距离弧度

排列组合知识点总结

排列组合 二项式定理 1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法 2,排列 出的元素各不相同),按照一定的顺序排成一列,叫做从n 个不同 3,组合 组合定义 从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 组合数 从n 个不同元素中,任取m (m ≤n )个元素的所有组合个数 m n C m n C = ! !()! n m n m - 性质 m n C =n m n C - 1 1m m m n n n C C C -+=+

排列组合题型总结 一. 直接法 1 .特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择 25A ,其余 2位有四个可供选择 24A ,由乘法原理: 25A 24A =240 2.特殊位置法 (2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有1 4A 种,余下的 有 24A ,共有14A 1 4A 24A =192所以总共有192+60=252 二 间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法 2 435462A A A +-=252 Eg 有五张卡片,它的正反面分别写 0与1,2与3,4与5,6与7,8与9, 将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? 分析::任取三张卡片可以组成不同的三位数3 33352A C ??个,其中0在百 位的有22 4 2?C ?22A 个,这是不合题意的。故共可组成不同的三位数333352A C ??-22 4 2?C ?22A =432 Eg 三个女生和五个男生排成一排

排列组合与二项式定理知识点

高中数学第十章-排列组合二项定理 考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. §10. 排列组合二项定理 知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有..重复..元素.. 的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ?对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ?相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ?排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的 一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ?排列数公式: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--= 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11 --=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数

相关文档
最新文档