关于爆破地震效应影响因素的研究

关于爆破地震效应影响因素的研究
关于爆破地震效应影响因素的研究

水平地震作用计算

上海市工程建设规《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。 3.9.4 在施工中,当需要以强度等级较高的钢筋替代原设计中的纵向受力钢筋时,应按照钢筋受拉承载力设计值相等的原则换算,并应满足最小配筋率要求。

地震勘探爆破

地震勘探爆破 一般术语 01 费马原理Fermat’s principle 地震波在两点间传播的射线路径是其传播时间对其所有邻近路径的一阶变分为零的那条路径。即传播时间是最小时(在某些情况下是稳定值或最大值)的射线路径。 02 费马射线路径Fermat path 见费马原理(Fermat’s principle)。 03 震电效应seismic-electric effect 因地震波从地中两个电极间通过引起的在两电极间产生电压的效应。 04 地震勘探seismic exploration 利用地震技术包括反射法和折射法绘制地下地质构造图和地层特性图,目的是确定油气藏或矿床。 05 地震勘测seismic survey 属于地球物理勘探方法的一种,利用地震波在弹性不同的地层内传播规律研究地层构造和找油、气的方法。 06 地震地质条件seismic geologic condition 影响地震勘探工作的表层和深层的地质条件。表层条件一般是指有无良好的激发和接收条件;深层一般是指介质中能否形成良好的反射或折射界面、界面的连续性及其几何形态。 07 地震脉冲seismic pulse 也称子波。由脉冲地震震源所产生的信号(如炸药、重锤、空气枪、电火花等)。有时包括相关的可控震源信号。 08 地震记录seismic record 由一个炮点放炮记录的若的若干地震道组成的一组记录。 09 地震(记录)仪seismic recording instrument;seismograph 在野外记录检波器接收的地震信号的仪器。

10 地震噪声seismic noise 在地震反射法中,一般认为除一次反射的地震能量外的其它能量都是地震噪声,包括微震、激发引起的干扰、多次波、磁带调制噪声和谐波畸变等。 11 震源source 地震勘探中释放能量激发地震波的材料或装置,如空气枪、炸药等。 12 源致噪声source generated noise 地震勘探中震源产生的噪声,如地滚波、空气波等。 13 震源间距source interval 又称炮点间距,地震勘探中相邻震源点之间的距离。 14 震源线source line 又称炮点线,在其上布置炮点或震源点的线。震源点或炮点的间隔一般是规则的。 15 震源线间距source line interval,SLI 又称炮点线(间)距,垂直于震源线测量的震源线之间的距离。 16 震源点source point,SP 地震震源所处的位置,也称炮点。 17 地震反射法 reflection survey;seismic reflection method 震源产生的地震波(脉冲波)在地层中传播,并冲击具有不同物性的地层,一方面形成反射波传回地面,被地面检测仪器接收,然后根据测到的脉冲强度,旅行时间绘制地下地层的构造,推测是否存在油气资源,这种方法称为地震反射法。 18 地震波的产生creation of seismic waves 地震波的产生,一种是自然地震波,一种是人工地震波,它包括以炸药、机械撞击或连续振动为震源的地震波。 19 人工地震artificial earthquake 人工地震则属人为有意制造的地震,震源分为炸药震源和机械震源。

爆破地震高程效应的实验研究

爆破地震高程效应的实验研究 周同岭 杨秀甫 翁家杰 (中国矿业大学建筑工程学院,徐州,221008) 摘 要 通过对正负高差地形爆破地震效应的实验观测,得出正高差使地震效 应增大、负高差使之减小的结论,并对爆破地震波在有高差存在的岩石介质中的传播机理进行了探讨,提出了1个反映高程变化的振速公式。 关键词 爆破地震 波阻抗 高程效应 土岩爆破中,对均匀介质、平坦地形的爆破震动问题已进行了深入研究,并由弹性力学原理推导出了求解质点振速v 的半理论半经验的萨氏公式,即 v =K 〔Q 1 3 R 〕1 Α (1)式中:K 为与介质特性等有关的系数,取K =50~350;Q 为起爆药量,kg ;R 为距爆源中心距离,m ;Α为衰减指数,取Α=1.1~2.2。 对于局部地形对爆破震动的影响,曾有人做过观测,但得到的结果不一,一直存有争议〔1, 2〕。 局部地形不论有多么复杂,均可以由高程的变化来近似表达〔3〕。根据这一观点,对不同地形、不同爆破方式、不同岩性的爆破进行了实验观测,依据实验观测结果对地震波在典型高差地形中的传播机理进行了探讨,提出了1个反映高程效应的爆破振速公式。1 实验条件及结果 实验选择的测试系统是磁电式测振系统,其组成主要包括3部分:CD 21型传感器、GZ 22型测振仪和记录仪(SC 216光线示波 器)。根据经验,上述测试系统各部分工作频带均可满足不同爆破方式的测试需要。整个测试系统在实验前进行了标定。 按爆源与测点相对位置的关系,把实验分为两类:负高差地形(图1)和正高差地形(图2)。 图1 负高差地形示意 图2 正高差地形示意 首先在花岗岩中,对负高差地形进行了实验观测,其实验条件如表1。根据现场条 第1作者简介 张家康,64岁,教授。1960年毕业于北京大学数学力学系,一直从事矿山特殊结构教学与科研工作,现为煤矿提升井塔设计规范编制组负责人。著有《矿山 特殊结构设计》一书,在国内外刊物上发表论文10余篇。 (19970728) 1997年 12月 M I N E CON STRU CT I ON T ECHNOLO GY D ec . 1997 第18卷 增刊 建 井 技 术 V o l .18 Supp lem ent

-地震勘探实验报告

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB口连 接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

地震定位基本原理

1、Hypo2000定位方法的基本原理 1.1基本原理 Hypoinverse 算法是在Geiger 法的思想上发展起来的一种单事件绝对定位方法。设n 个台站的观测到时为t 1,t 2,…,t n 求震源位置 x o ,y o ,z o 及发震时刻t o ,使得目标函数最小。 ? t 0,x 0,y 0,z 0 = r i 2n i=1 1 其中r i 为到时残差 r i =t i ?t o ?T i x o ,y o ,z o (2) T i 为震源到第i 个台站的计算走时。 使目标函数取极小值,即 ?θ? θ =0 3 其中θ= t o ,x o ,y o ,z o T ,?θ= ? ?t o ,??x o ,??y o ,??z o T 。 g θ =?θ? θ 4 在真解θ附近任意试探解θ?及其校正矢量δθ满足 g θ? + ?θg θ? T T δθ=0 5 即 ?θg θ? T T δθ=? g θ? 6 由?的定义可得公式(6)的具体表达式 ?r i ?θj ?r i ?θk +r i ?2r i ?θj ?θk θ?δθj =? r i ?r i ?θk θ?n i=1n i=1 7 若θ?偏离真解θ不大,则r i θ? 和 ?2T i ?θ j ?θk θ?较小。可忽略二阶导数项,上式被简化为线性最小二乘解: ?r i ?θj ?r i ?θk n i=1δθj =? r i ?r i ?θk θ? n i=1 8 以矩阵形式表示,上式为 A T A δθ=A T r 其中 A = 1?T 1?x 0 ?T 1?y 0 ???1?T n ?x 0 ?T n ?y 0 ?T 1?z 0??T n ?z 0 θ? ,r = r 1 ?r n 9 若二阶导数项不可忽略。则式(7)给出的非线性最小二乘解 A T ?A ?θA T r δθ=A T r 10 通常各站台的到时数据具有不同的精度,若果不加以区别,则具有较低精度的数据将影响结果的精度,这一问题可以通过引入加权目标函数来解决。设各台站到时残差r i 的方差为σi 2,引入加权目标函数 ?r θ = r i 2n i=1 θ 1 σi 2 11 按照上述同样的步骤,得到如下加权线性最小二乘解 A T C r ?1A δθ=A T C r ?1r 12 其中C r 为加权方差矩阵:C r =diag σ12,…,σn 2 。 求得δθ后,以θ=θ?+δθ作为新的尝试点,再求解相应方程。如此反复迭代,直到?或?r 足够小,此时即得估计解θ 。[4]

水平地震作用计算

上海市工程建设规范《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;严重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多孔砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于 M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。

震源深度确定

张晁军等:近震震源深度测定精度的理论分析 摘要震源深度是地震学中最难准确测定的参数之一,各种方法对于震源深度的估计都具相当程度的不确定性,影响着人们对震源过程的认识。各种因素对震源深度的影响是非线性的,本文从近震走时公式入手,分析了震中距、到时残差和速度模型(地壳模型)对震源深度的影响。当地震波传播速度一定时,震源深度的误差与随着震中距或台站位置的增大和走时残差的增大而增大。走时残差一定时,震源深度误差随着震中距的增大和地震波速度的增大而增大。研究也表明,当速度已知,走时残差一定时,越浅的地震,定位误差可能越大。定位精度产生的水平误差随着震中距、到时误差和地震波速度的增大,震源深度误差也将增大。关键词震源深度h 测定精度误差 引言 震源深度是描述震源的最基本参数之一,它给出了地震发生在地球内部的具体位置,对了解地震孕育和发生的物理化学条件,以及地震能量集结、释放的活动构造背景都有重要的意义。地震学家用它来估计岩石圈板块的厚度,描绘板块边缘和内部岩石圈的变温结构和力学结构,以了解构造过程的详情,探索地震发生的力学机制和过程,震源深度的准确测定关系到对震源过程、断层构造、壳幔结构、应力场作用、板块运动等一系列的重要问题的正确认识(高原等,1997)。研究任何地震事件时,从地震宏观作用的研究到地震和核爆炸的识别,实际上都必须知道震源深度。

震源深度的精度仍是个棘手的问题,在现代地震目录中,它几乎已经成为最不准确的参数之一(高原等,1997)。因为地震定位受震相识别的观测误差和地壳模型与真实地球模型误差的双重影响,在实际工作中人们很难把它们分了开来(Billings,et al.,1994)。 许多学者用不同的方法来求取震源深度,如1)利用走时曲线的慢度变化极为灵敏的特点,从中可以提取震源深度的信息(赵珠,1992),尽管用细分的多层地壳模型和多路径P、S波到时资料综合定位可提高震源深度的测定精度(王周元,1989),但是慢度变化的过于灵敏会使结果偏离真实,其自身的准确程度也与地区的速度结构有关;2)应用动力学的方法改善测定震源深度的准确性,即用反演方法确定描述震源的矩张量及震源时间函数的同时,通过合成地震图和对观测地震图的拟合来改善震源深度的准确性(Robert, 1973; Beck and Christensen,1991;Sileny, 1992)。表面上看来这似乎更可靠更准确,但事实上,在这种情况下,震源深度的准确性又取决于计算格林函数时所采用的介质模型对实际介质的逼近程度(许力生,陈运泰,1997)。Velasco等(1993)认为,速度模型及假设的震源位置都会对矩心深度、震源持续时间和地震矩的估计造成影响。所以,即使借助于波形反演等动力学方法,震源深度仍是一个难以准确测定的参数。事实上,由于方法和资料的不同,特别是震源深度的精度同震源深度、剪切波速度、断层倾角和滑动角有关(Anderson,et al.,2009)故不同的测定者得到的震源深度也不同(许力生,陈运泰,1997);3)一些学者使用深部震相(面反射震相pP and sP)来提高测定震源深度的精度(Stroujkova, 2009),认为这有助于减小因地震波速的不确定性引起的对震源深度的计算误差,然而,深部震相的识别是个困难的问题。国际数据中心(IDC)也只有11%的地震事件的震源深度是

地震勘探实验报告记录

地震勘探实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB 口连接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

JOPENS系统地震分析定位模块MSDP常用功能简介

JOPENS系统交互分析定位模块MSDP常用功能简介 段刚 (福建省地震局监测中心) 摘要:介绍JOPENS系统中交互分析软件MSDP常用功能 关键词:JOPENS MSDP 常用功能 0.引言 JOPENS系统是广东省地震局开发的数字化地震观测系统,地震交互分析软件MSDP 是其系统中的重要组成部分。地震交互分析软件是地震记录从模拟向数字化转变的产物,是数字化地震观测系统的重要组成部分,它与数字测震摆、数据采集器、实时记录系统一起构成数字化地震观测体系。随着技术的不断改进,功能的不断完善,现在已到了较成熟的阶段,被广泛应用于全国地震台网的地震观测中,主要功能有文件处理、震相标识、地震定位和报告的生成管理。福建测震台网从2008年10月1日起正式使用JOPENS系统的人机交互分析软件MSDP进行日常地震速报、地震编目等工作。 1.MSDP简介 1.1 运行环境 MSDP是用Java语言开发的,Java具有平台无关性、多线程、可靠安全的特点,它能在不同的平台下运行。因此, MSDP能在Unix 、Linux 以及Windows下运行,对系统硬件要求不高,目前大部分计算机配置足以满足需求 1.2 数据存储 在采用文件存储方式的软件系统中,数据以特定的文件名存放于硬盘,MSDP采用数据库的存储方式,文件名为事件发生时刻的时间命名,利用Mysql数据库的强大管理功能,轻松处理检索、删除等操作,克服了文件存储方式的种种问题,尤其在文件数目剧增时可使得用户在处理数据时感到轻松便捷。 1.3 数据管理 快速查询地震事件,可通过日期、分析人员、震级、震中位置、经纬度方式查询,同时还拥有事务日志功能,查看日志可清楚数据存储过程。利用备份与恢复功能,可自动对数据进行复制,以防止数据丢失;利用导入功能可恢复数据的完整性。Mysql数据库提供了网络服务,支持数据共享,其他计算机可按权限进行访问,第三方软件或Web页面可直接按需求进行查询。 2. 常用功能 任何一款软件都十分重视操作界面的设计,它是面对用户的直接窗口,它的设计是否合理关系到用户的体验和应用效率。交互分析软件是地震行业专用,像这种专业化程度较高的软件,不需要华丽的界面,而应该把更直观、更快捷、更方便视为设计目标,MSDP很好的把握了这一理念,在主界面安排了文件处理、震相标识、地震定位等常用快捷键,整体简洁

爆破地震安全距离(标准版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 爆破地震安全距离(标准版)

爆破地震安全距离(标准版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 爆破地震,是指炸药爆炸的部分能量转化为弹性波,在岩土中传播引起的震动。爆破地震波,对爆区附近的地层、建筑物、构筑物,以及井巷和露天边坡产生破坏作用。爆破地震波强度的大小主要取决于使用炸药的性能、炸药量、爆源距离、岩石的性质、爆破方法以及地层地形条件。为了最大程度地减小地震波的危害,应采取如下有效措施: (1)爆破前应调查了解爆破区域范围内建筑物、构筑物的结构,露天边坡稳定状况,井巷围岩稳定及支护等情况。 (2)根据爆区的周边环境,采用减震爆破方法和控制炸药量,如微差爆破、缓冲爆破、预裂爆破等爆破方法。 (3)爆破地震安全距离计算公式如下: R=(K/V)1/α ×Qm 式中R——爆破安全距离(m);

附录H 单层厂房横向平面排架地震作用效应调整

附录H 单层厂房横向平面排架地震作用效应调整 H.1 基本自振周期的调整 H.1.1 按平面排架计算厂房的横向地震作用时,排架的基本自振周期应考虑纵墙及屋架与柱连接的固结作用,可按下列规定进行调整: 1 由钢筋混凝土屋架或钢屋架与钢筋混凝土柱组成的排架,有纵墙时取周期计算值的80%,无纵墙时取90%; 2 由钢筋混凝土屋架或钢屋架与砖柱组成的排架,取周期计算值的90%; 3 由木屋架、钢木屋架或轻钢屋架与砖柱组成排架,取周期计算值。 H.2 排架柱地震剪力和弯矩的调整系数 H.2.1 钢筋混凝土屋盖的单层钢筋混凝柱厂房,按H.1.1确定基本自振周期且按平面排架计算的排架柱地震剪力和弯矩,当符合下列要求时,可考虑空间工作和扭转影响,并按H.2.3的规定调整: 1 7度和8度; 2 厂房单元屋盖长度与总跨度之比小于8或厂房总跨度大于12m; 3 山墙的厚度不小于240mm,开洞所占的水平截面积不超过总面积50%,并与屋盖系统有良好的连接; 4 柱顶高度不大于15m。 注:1.屋盖长度指山墙到山墙的间距,仅一端有山墙时,应取所考虑排架至山墙的距离; 2.高低跨相差较大的不等高厂房,总跨度可不包括低跨。 H.2.2 钢筋混凝土屋盖和密铺望板瓦木屋盖的单层砖柱厂房,按H.1.1确定基本自振周期且按平面排架计算的排架柱地震剪力和弯矩,当符合下列要求时,可考虑空间工作,并按第H.2.3条的规定调整: 1 7度和8度; 2 两端均有承重山墙 3 山墙或承重(抗震)横墙的厚度不小于240mm,开洞所占的水平截面积不超过总面积50%,并与屋盖系统有良好的连接;

4 山墙或承重(抗震)横墙的长度不宜小于其高度; 5 单元屋盖长度与总跨度之比小于8或厂房总跨度大于12m。 注:屋盖长度指山墙到山墙或承重(抗震)横墙的间距。 H.2.3 排架柱的剪力和弯矩应分别乘以相应的调整系数除高低跨度交接处上柱以外的钢筋混凝土柱其值可按表H.2.3-1采用,两端均有山墙的砖柱,其值可按表H.2.3-2采用。 H.2.4 高低跨交接处的钢筋混凝土柱的支承低跨屋盖牛腿以上各截面,按底部剪力法求得的地震剪力和弯矩应乘以增大系数,其值可按下式采用: 式中η-地震剪力和弯矩的增大系数; ζ-不等高厂房低跨交接处的空间工作影响系数,可按表H.2.4采用; nh-高跨的跨数; n0-计算跨数,仅一侧有低跨时应取总跨数,两侧均有低跨时应取总跨数与高跨跨数之和; GEL-集中于交接处一侧各低跨屋盖标高处的总重力荷载代表值;

-地震勘探实验报告

中国地 质大学 (武汉) 地空学 院 地震实 验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师: 张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器与高速过采样技术达到了24位地震仪的精度。频带从1、75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4、1公斤,用12V的外接电池可以连续工作10个小时。(如下图) 2、主要操作功能键及快捷键

注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB口连接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的就是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须就是英语(美国)。 三、实验内容 1、浅层地震装备认识及地震波认识:第一周上午主要就是老师介绍检波器、地震仪以及实验装备,认识设备后进行采集装置的连接,全班同学轮流当做指挥员与爆破员; 2、浅层地震数据采集实验:隔一周之后的上午全体同学使用地震仪进行浅层地震数据的采集及简单的分析,并对干扰波进行识别。

爆破地震传播规律及其激励特性分析

第21卷第3期爆破V0121No32004年9月BLASTINGSep2004 文章编号:100l一487x(2004)03一0090一03 爆破地震传播规律及其激励特性分析 李孝林1,佟彦军2 (1北京科技大学,北京100083;2北京北方诺信科技有限公司,北京100045) 摘要:通过对实洲数据的分析.培出了爆破地震传播公式,并对爆破地震激励特性进行了分析.指出了露 天矿台阶爆破与井下中深孔爆破地震的差异。 关键词:爆破振动;爆破方式;频率特性 中图分类号:TD235.4文献标识码:A AnalysisOnBlastingVibrationTransimitionRegularity andPrOmOtingCharacteristics LJX拙D_“n1,TDNGynn0Mn2 (1.UniversityofscienceandTechn0109yBeUing,Beijing100083,china 2.BeqingNorthNorcinTech-C。Ltd,Beqing100045,China) Abstract:Thr叫ghanaIy西ngthektaIme鸪urementdata,bIa“ngvibration{o抽uIaeafeestablishedandbIast- ingvibratlonpron均tirlgcharacteristicsareanaI”ed,andthedifferencesbetweentheblaslillgvibrationinopenpit andinundergroundmedium-length_hoIearepointedinthispaper Keywords:bIastingv|bration.bIa3tingmett州;f‘equencycharacte^sti凹 1引言 影响爆破振动的因素很多,诸如距离、段药量以及超深等:通过对实测数据的分析,指出了起爆方式对爆破振动的影响。测试所用传感器为65型拾震器;采集分析系统为zcF-16A型震动参数采集分析仪【“。 2爆破振动峰值传播规律 2.1研究背景 2.11地质条件 歪头山铁矿矿体呈层状赋存于前震旦系鞍山群古老沉积变质岩中,共分为六层铁,呈单斜产出;走向近于南北,倾向西、倾角20。~50。,矿体总长2.4km。矿区矿石构造较为复杂,除褶曲处断层外,节 收稿日期:2004—03—20. 作者简介:李孝林。男;北京:北京科拄大学博士.剐教授理特别发育,与矿体走向斜交的正断层有4条,横断层有7条。节理裂隙主要有两组:一组走向北60。东,倾向北,倾角824;另一组走向近于南北,倾向西,倾角80。。 2.1.2爆破生产情况 歪头山铁矿年剥采总量2400×104t。铁矿石产量450x104t。以铁路运输为主。汽车运输为辅,主要开采水平在188~154。矿山生产爆破比较频繁,年爆破次数为150~180次,一般每次爆破孔数80~1107L左右,一次爆破量为(10~15)×104t。凿岩设备为45R、YE.35型牙轮钻,孑L径为250mm。孑L网参数为5m×10m。最小抵抗线6~11m左右。平均炸药单耗0.27kg/t。布fL方式为三角型,采用斜线或v型起爆,起爆方式为}L内非电雷管配地表导爆索,用火雷管起爆。使用的炸药有:wK一2型乳化炸药,密度1.2~1.3g/m3,爆速4500m/S左右,粒状硝酸铵炸药用于干孔。 万方数据

爆破地震波特性研究

爆破地震波特性研究3 张义平,吴桂义 (贵州大学矿业学院, 贵州贵阳 550003) 摘 要:结合现场爆破震动信号,从爆破地震波的传播形式、传播方式、波的特征、波的衰减吸收及传播介质的力学模型等方面分析了爆破地震波特性。结果表明:爆破地震波是一种与自然地震波相似但又相区别的非常复杂的随机过程,它是不同幅值、不同频率与不同相位的各种波型叠加而成的复合波。爆破地震波在传播过程中会发生多次反射、折射、绕射、衍射、波型转换甚至波导、层间波等复杂现象,传播过程中波的有关参数和时频特征常与爆源条件、传播介质的物理性质、场地特征及地形等因素紧密相关。地震波在发生几何衰减的同时,还因粘弹性介质的内摩擦和热传导导致能量耗散,使得波能不断衰减。 关键词:爆破地震波;波特性;衰减与吸收 中图分类号:T D235.1 文献标识码:A 文章编号:1005-2763(2007)06-0068-05 Study on Character isti cs of Bl a sti n g-Caused Se is m i c W ave Zhang Y iping,W u Guiyi (College ofM ining,Guizhou University,Guiyang, Guizhou550003,China) Abstract:Combined with the data collected fr om the in-site monit oring of blasting vibrati on,the characteristics of blasting-caused seis m ic wave are analyzed comp rehensively fr om its p r op2 agati on for m,p r opagati on mode,p r operties,attenuati on,ab2 s or p ti on and the mechanics model of p r opagati on mediu m s.The results show that blasting-caused seis m ic wave,which is a very comp lex random p r ocess rese mbling t o be diffence fr om seis m ic wave,is a composite wave composed of kinds of waves with dif2 ferent ranges,frequencies and phases.I n the p r opagati on p r ocesses of blasting-caused seis m ic wave,comp lex phenome2 na such as many ti m es of wave reflecti on,refracti on,diffracti on and wave type diversi on even wave-guide and layer wave will happen,and relati onal para meters and ti m e-frequency charac2 teristics of waves are cl osely related t o the conditi ons of exp l osi on s ource,physical p r operties of p r opagati on mediu m,field charac2 teristics and terrain.The dissi pati on of wave energy caused by the inner fricti on and heat exchange of viscous-elastic mediu m s accompanied with its geometry attenuati on induces the gradual attenuati on of wave energy. Key W ords:B lasting-caused seis m ic wave,Characteristics of wave,A ttenuati on and abs or p ti on 爆破是矿山开采中的一个重要环节。当炸药在岩体中爆炸时,一部分能量使炸药周围的介质引起扰动,并以波的形式向外传播。在爆破近区、中区传播的依次是冲击波、应力波,地震波由应力波在传播远区到达界面产生反射和折射叠加而形成[1],它是一种由爆源附近的应力波转换而来在岩土介质中传播的一种能量逐渐衰减的扰动,尽管只占爆炸所释放能量中的一小部分[2],但爆破地震波的特性对研究爆破地震波的传播机理、衰减规律及危害控制都具有重要意义。为此,人们从不同侧面对爆破地震波特性进行了大量研究[3~10]。 本文结合现场爆破震动监测信号,在查阅大量文献基础上,从爆破地震波的传播形式、传播方式、波的特征、波的衰减吸收及传播介质的力学模型等方面进行分析,探讨爆破地震波的特性。 1 爆破地震波的分类 爆破地震波包括在地层内部传播的体波和在地层表面或介质体表面传播的面波。体波可分为纵波(P波)、横波(S波);面波主要有Rayleigh波(R波)和Love波(L波)。 体波中的纵波指质点的振动方向与波的前进方向一致,使介质产生压缩和膨胀,因此又称为压缩波、疏密波、无旋转波或P(p re m ier)波。体波中的横波指质点振动方向与波的前进方向垂直,使介质被 I SS N1005-2763 CN43-1215/T D 矿业研究与开发第27卷第6期 M I N I N G R&D,Vol.27,No.6 2007年12月 Dec.2007 3收稿日期:2007-04-16 基金项目:国家自然科学基金(50764001);贵州省科技攻关项目(黔科合GY字(2007)3015);教育部“春晖计划”资助项目;贵州省优秀青年科技人才资助项目. 作者简介:张义平(1970-),男,湖南邵东人,博士,副教授,主要从事岩体力学、矿山开采及安全技术教学与科研工作,Email:c me. ypzhang@https://www.360docs.net/doc/5f18529693.html,。

爆破地震

爆破地震 地震学用震级和烈度来衡量地震的大小。 (1)震级 震级也称地震强度,用以说明某次地震本身的大小。它是直接根据地震释放出来的能量大小确定的。用一种特定类型的、放大率为2800倍的地震仪,在距震中100km处,记录图上量得最大振幅值(以1/1000mm计)的普通对数值,称为震级。例如,最大振幅为0.001mm时,震级为“0”级;最大振幅值为1mm时,震级为“3”级;最大振幅值为1m时,震级为“6”级。 地震震级的能量可用爆炸能量来说明。在坚硬岩石(如花岗岩)中,用2~3×106kg炸药爆炸,相当于一个4级地震。一个8级地震的功率大约相当于100万人口城市的发电厂在20~30年内所发出电力的总和。由此可见,虽然地震仅仅发生于瞬时的变化,但地震释放出来的能量却是巨大的。 (2)烈度 烈度是指某一地震在具体地点引起振动的强度标准,它标志着地震对当地的实际影响,作为工程建筑抗震设计的依据。烈度不是根据地震仪器测定的。判断烈度大小是根据人们的感觉、家具及物品振动情况、房屋及建筑物受破坏的情况,以及地面出现的崩陷、地裂等现象综合考虑后确定的。因此,地震烈度只能是一种定性的相对数量概念,且有一定的空间分布关系。 必须指出:地震震级与地震烈度是两个不同的概念,不可混淆。如把地震比作装药爆炸,那么,装药量就相当于地震震级,而装药在爆炸时的破坏作用则是地震烈度。一个地震只有一个震级,但在不同地区可以有不同的烈度,因为在一个地震区域内,不同部位的破坏程度是不同的。在地底下发生地震的地方,叫震源。地面上与震源相对处,叫震中。显然,震中区的烈度(叫震中烈度)就比其他地方的大。所以震中烈度就是最大烈度,用以表示该次地震的破坏程度。 天然地震烈度表

承载力抗震调整系数的正确应用

承载力抗震调整系数得正确应用 一、有关规范对承载力抗震调整系数γ RE 得规定 旧《建筑抗震设计规范》(QBJ 11—89)中第4.4.2条以及新《建筑抗震设计规范》(GB 50011—2001)中第5.4.2条中规定,结构构件得截面抗震验算应采用表达式S≤R /γ RE ,式中:S为地震作用效应与其她荷载作用效应得基本组合,R为结构构件得承载力设计值。 《混凝土结构设计规范》(QBJ 10—89)第8.1.3条、《钢筋混凝土高层建筑结构与施工规程》(GBJ 13—91)第5.5.1条进一步对钢筋混凝土结构具体规定为:考虑地 震作用组合得钢筋混凝土结构构件,其截面承载力应除以承载力抗震调整系数γ RE 。而偏心受压、受拉构件得正截面承载力在抗震与非抗震两种情况下取值相同。 二、在γ RE 使用中得常见错误 应该说,上述规范得规定已经明确规定了γ RE 得用法,即对非抗震得截面承载力, 通过引入γ RE ,对截面承载力加以提高,用作抗震设计时得截面承载力。然而,在实际 应用中,却常因为对γ RE 得理解不完全或不够重视,出现这样或那样得错误。最典型得一个例子就是《一级注册结构工程师专业考试应试题解》中第5页得[题1—2抗震偏 压柱得配筋计算]中与γ RE ,应用有关得内容有: (1)根据柱轴压比为0.12确定偏压柱γ RE 为0.75。 (2)利用γ RE 对柱内力进行调整:M=γ RE M 1 ,N=γ RE N 1 ,其中M 1 ,N 1 为有地震作用组合得 最不利内力设计值。 (3)求偏心距增大系数时,截面曲率得修正系数为ξ1=0.5fcA/N。 错误就出在第(3)步中ξ1=0.5fcA/N。此处N取为经过γ RE 调整后得轴向力

相关文档
最新文档