变压器油中8种气体在线监测

变压器油中8种气体在线监测
变压器油中8种气体在线监测

变压器油中8种气体在线监测

1.前言:

在现代电力工业的设备运行和维护中,要求在电厂或电站运行的关键变压器特别是发现有异常的变压器上经常进行故障气体,微水含量,局部放电,绕组变形等多种项目的测量。从这些结果中得到的科学信息是电力部门预计并控制安全服务和运行成本的诸多因素。

随着现代科技的快速发展以及微处理器的引入,在线监测仪器的发展速度正在稳步提高。在线监测仪器的功能不断改善而价格在逐步下降,使智能化在线检测仪器的广泛应用成为可能。由于通讯技术的发展使得在线监测的结果能够快速传递到远距的分析和控制中心,在出现故障时不但能及时自动报警并可从多气体比值判断故障性质及类型,采取必要措施,更显示出了他的重要作用。近年来在国外各大电力部门的应用已经证明,在线监测技术对电力设备的充分利用,提高效益,延长使用寿命以及降低运行维护费用方面都有极大的作用。

自1960年以来,世界电力工业广泛使用变压器油中多种故障气体的色谱分析及多比值,TD 图等判断方法为电力部门的安全高效运行提供重要依据。但其测量周期较长,脱气误差较大以及耗时较多等问题,尚难满足安全生产和状态检修的要求。因此,变压器油中多种故障气体的在线监测就成为迫切的需要。

由国家质量监督局颁布的最新国家标准“变压器油中溶解气体分析和判断导则”中指出了变压

器绝缘油的产气原理是由于绝缘油和固体绝缘材料在电及热作用下的分解。低能量放电故障促使最弱的C-H键断裂,主要重新化合成氢气,乙烯在高于甲烷和乙烷的温度下生成。大量的乙炔是在电弧的弧道中产生。

标准定义了“对判断充油电器设备内部故障有价值的特征气体:即氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2),并说明氧气(O2)和氮气(N2),可作为辅助判断指标。因此对包含氧气(O2)在内的8种故障气体进行在线监测才能符合中国国家标准的要求,进一步监测氮气(N2)是国际新发展方向。

英国Kelman公司成功实现了光声光谱(PAS)技术应用予溶解气体分析,在此基础上研制成功了Transfix?型在线式油中溶解气体分析仪。Transfix?使用欧洲先进技术和部件、克服了环境变化、仪器恒温、信号干扰、机械振动等各种难题,成功地实现在线监测变压器油中的8种故障气体及微水。它可以直接安装在变压器现场,连续自动采样,自动监测油中气体及微水。并且主控室终端电脑可以通过有线或无线的方式与其通信,获取油中气体及溶解水的实时数据信息。

Transfix?不仅仅能够监测变压器油中的8种故障气体,而且能够监测变压器油中的微水含量。和传统的变压器色谱分析仪相比,Transfix?不仅仅性能大为提高,而且它还能替换变压器微水测试仪。

到2004年,Transfix?已经广泛的应用在美国、加拿大、墨西哥、丹麦、德国、挪威、奥地利、瑞士、瑞典、英国、韩国、马来西亚、新加坡、澳大利亚等国家的电力系统中。

2.系统原理

和传统的气相色谱分析仪比较,Transfix?采用了领先的“动态顶空平衡”法进行油气分离;专利光声光谱技术进行气体监测。

2.1 油气分离

图1 脱气模块

图1是Transfix?的油气分离模块,即脱气模块。其采用的是“动态顶空平衡”进行脱气。在脱

气的过程中,采样瓶内的磁力搅拌子不停的旋转,搅动油样脱气;析出的气体经过监测装置后返回采样瓶的油样中。在这个过程中,光声光谱模块间隔测量气样的浓度,当前后测量的值一致时,认为脱气完毕。该脱气方式满足ASTM 3612标准及IEC相关标准。

2.2 气体检测

Transfix?是利用光声光谱技术实现变压器油中故障气体的监测。光声光谱是基于光声效应的一种光谱技术。光声效应是由分子吸收电磁辐射(如红外线等)而造成。气体吸收一定量电磁辐射后其温度也相应升高,但随即以释放热能的方式退激,释放出的热量则使气体及周围介质产生压力波动。若将气体密封于容器内,气体温度升高则产生成比例的压力波。监测压力波的强度可以测量密闭容器内气体的浓度。

一个简单的灯丝光源可提供包括红外谱带在内的宽带辐射光,采用抛物面反射镜聚焦后进入光声光谱测量模块。光线经过以恒定速率转动的调制盘将光源调制为闪烁的交变性号。由一组滤光片实现分光,每一个滤光片允许透过一个窄带光谱,其中心频率分别与预选的各气体特征吸收频率相对应。

图2 光声光谱原理图

如果在预选各气体的特征频率时可以排除各气体的交叉干扰,则通过对安装滤光片的圆盘进行步进控制,就可以依次测量不同的气体。经过调制后的各气体特征频率处的光线以调制频率反复激发样品池中相的气体分子,被激发的气体分子会通过辐射或非辐射两种方式回到基态。对于非辐射驰豫过程,体系的能量最终转化为分子的平动能,引起气体局部加热,从而在气池中产生压力波(声波)。使用微音器可以检测这种压力变化。声光技术就是利用光吸收和声激发之间的对应关系,通过对声音信号的探测从而了解吸收过程。由于光吸收激发的声波的频率由调制频率决定;而其强度则只与可吸收该窄带光谱的特征气体的体积分数有关。因此,建立气体体积分数与声波强度的定量关系,就可以准确计量气池中各气体的体积分数。

由于光声光谱测量的是样品吸收光能的大小,因而反射,散射光等对测量干扰很小;尤其在对弱吸收样品以及低体积分数样品的测量中,尽管吸收很弱,但不需要与入射光强进行比较,因而仍然可以获得很高的灵敏度。

图3 光声光谱模块图

通过观查变压器故障气体的分子红外吸收光谱发现,其中存在不同化合物分子特征谱线交叠重合的现象。通过进一步研究,可寻找到合适的独立特征频谱区域以满足监测各种气体化合物的要求,从而也从根本上消除了监测过程中不同气体间发生干扰的问题。

3.系统优点

Transfix?采用了先进的“动态顶空平衡”法进行脱气以及光声光谱法进行气样监测。因此和传统的变压器油中故障气体监测仪器相比较有以下一些优点:

3.1 由光声光谱测量部件特性而知,较传统的气相色谱(GC)分析仪器而言,光声光谱分析仪所需的校验工作将大为减少;

3.2 光声光谱检测技术无需气相色谱分析仪器中所需的消耗品,如载气等;

3.3 采用光声光谱技术的仪器内光声室(一般仅2-3mL)容积较小,意味着仅需少量样品即可进行测试,且便于迅速清理光声室以满足快速、连续测量的要求。通常光声室的清理时间仅为1-2分钟,而多数实验室气相色谱仪器则需要几十分钟的清理时间。

3.4 Transfix?不仅仅能够监测变压器油中8种故障气体,而且还能够监测油中的微水含量。因此Transfix?不仅仅能够同时替换传统的色谱分析仪和微水测试仪,而且还能够使操作简单,不易产生污染。

3.5 由于系统采用光声光谱技术测量气体含量,因此没有传统的色谱柱以及色谱柱老化、污染、饱和等缺点。并且系统没有固态半导体传感器,不受CO或其他气体污染。

3.6 系统能够提供历史数据,能够在主机中纵向比较变压器的历史数据,给出变压器油中气体以及微水的走势图。

3.7 系统在运行过程中,不需要频繁校准。

3.8 系统的重复性能好,Transfix?有相当高的测量一致性。

3.9 系统在设计过程中充分考虑变压器现场的恶劣工作环境,因此系统具有较好的抗振性,较高的防护等级。由于内部具有温度补偿功能,因此其受环境温度影响小,在-40℃ ~ +55℃都能正常的工作。4.系统结构:

图4 Transfix?内部模块图

图4是Transfix?系统的模块图。油样泵入脱气模块,经过脱气得到的气样进入光声光谱模块。光声光谱模块处理后将得到的电信号传送给高精度ADC,CPU控制其工作并且得到相应的数字信号随后根据温度补偿模块的信号,对数据进行修正,修正后的数据存放于数据存储模块。当主机通信时,将数据传送给主机。

5.规格以及参数

5.1技术指标:

温度:环境温度: -40℃ ~ +55℃(-10℃ ~ +55℃启动时);

仪器进样处油温: -10℃ ~ +110℃;

湿度:10 ~ 100%RH;

防护等级:IP56;

净重: 80kg;

油压:油样进样处:运行时0~3bar(0~45psi);

非运行时-1~6bar(-15~87psi);

外壳: 750×840×350mm(高×宽×深)(参看附件);

安装支架:参看附件

管材规格:参看附件

2测量范围:

3校准范围:

) 6~2,000ppm

氢气(H

2

其他 ~50,000ppm

5.4相关技术指标:

-交流电源: 110Vac~240Vac、46-63Hz,单相8A max ;

-仪器内置存储器可存储至10,000个记录,按每小时一次的采样周期计算可存储一年的监测数据;

-数据现场处理及分析;

-仪器面板配有红色、黄色用户设置报警、注意值指示灯;

-仪器配有三个继电器输出接点,用户可根据气体含量、微水值、产气速率、变化趋势或气体比值等判别标准设置该接点的工作状态;

-Modem、RS-485、USB及串口通讯方式便于数据下载;

-校验周期,2年(可由用户自行校验或由英国Kelman公司技术服务部门进行校验);

-采样周期:最小采样周期是1小时一次,用户可以在上位机,根据实际情况自己设定。

-

6.系统框图

图5 控制系统模块图

上图是整个控制系统的模块图。对于需要连续监控两台主变的要求,本方案中采用两台Transfix?分别监控两台变压器。位于控制室的主机运行监控软件,在监控软件上可以设置Transfix?的运行状态,获取Transfix?的监测数据并且可以分析这些数据得出变压器油中气体的变化趋势。Transfix?固定在金属架上,放置于变压器旁,监测变压器油中气体。采用交换机和Modem实现主机和两台Transfix?间的通讯连接,利用它们传送主机的命令及Transfix?的监测数据。

7.油路连接:

图6 油路连接示意图

图6显示了变压器的取油和回油示意图。一般推荐在变压器中部取油,因为从变压器中部可以取得油路主回路的油样,这样的油样具有代表性。回油口一般位于变压器底部。

8.取油阀组件:

图7 取油阀结构图图8 取油阀现场安装图片9.回油阀组件:

图9 回油阀结构图1 图10 回油阀结构图2

图11 回油阀安装图

Kelman精心设计了取油阀和回油阀部相关组件,这些都保证了Transfix?和变压器联机运行的过程中不会漏油,而且外部的空气不会进入变压器油中。

10.系统安装图

图12 Transfix?现场安装图图13 Transfix?管道安装图

11.应用软件(TransCom?)

随仪器提供的TransCom?专用软件,以最全面和直观的图形和表格显示出与变压器内部状态直接关联的监测结果。由用户设定可分别绘制全部8种或任何选定气体的PPM浓度,注意值%,报警值%随时间的变化曲线。能够明显看出8种气体随时间的变化趋势。所有数据和图表均可长期存储,作为变压器状态跟踪分析及维修计划合理安排的依据。

图14 历史数据

测量气体浓度的变化趋向,对于变压器内部运行情况的了解是非常重要的。TransCom?的重要优点就是能精确测定不同时刻的气体浓度变化,而只有观察到这些变化,才能确切地知道变压器内部正在发生的情况,从而确定是否需要进一步分析或对变压器进行检查。通过数据的图表化分析可以给出一种“视觉”和直观判断而快速地了解到变压器内部的问题。

15 故障气体及微水趋势图

变压器故障气体的图形显示采用了一种半对数表的形式。纵坐标采用了对数标度,而横坐标则以线形方式代表时间。

观察变压器中任何时刻所有的可燃气体(TDCG)也是有帮助的。Transfix?仪器中TCG确定为下面气体浓度的总量——将每种气体按照100%真实测量浓度的分量相加。氢气,二氧化碳,乙炔,乙烯,乙烷,甲烷。

从监测器下载的8种气体浓度值除可以曲线形式表示外,还可以表格形式列出。用户可以自由选择需要下载列表数据的时间段及表格形式。当某次测量过程中有非正常情况出现时,微处理器将记录下来,并立即在屏幕上给出提示。在用户继续点击后,屏幕显示各种说明及应采取的应变措施。

报警菜单选项用以设置每种气体的注意值及报警值。对于8种油中气体中的每一种均显示为PPM浓度值,“注意值百分比”就是这样一种图表。通过这种方法可以快速知道变压器中故障气体浓度水平。每种气体都有各自的浓度注意值。可以在TransCom?软件中设定这些值。这个图表是每种气体与其各自详细的注意值浓度进行比较绘制成的(详细信息请参考“TransCom?软件使用手册”)

变压器的在线监测

教程来源:中国论文下载作者:未知点击:119 更新时间:2009-11-26 11:33:29 论文摘要:文章论述了国内外变压器在线监测的基础研究领域近期的发展现状,介绍了变压器在线监测涉及的基本概念,以及两种基本的检测方法、局部放电法和变压器油色谱分析法,讨论了这两种方法的机理及性质,同时论述了局部放电模式识别的过程、所采用的各种方法的优缺点,以及变压器油色谱分析法的现状及发展状况。

随着国民经济的发展,电力事业迅速增长,装机容量和电网规模日益增大,人们对电力系统中设备的运行可靠性的要求不断提高,在现代电力设备的运行和维护中,电力变压器不仅属于电力系统中最重要的和最昂贵的设备之列,而且是导致电力系统事故最多的设备之一,它的故障可能对电力系统和用户造成重大的危害和影响。因此国内外一直把电力变压器在线检测与诊断技术作为重要的科研攻关项目,现今大多数运用的技术有局部放电法,和变压器油色譜分析法等。

一、变压器在线监测研究现状

(一)变压器局部放电(PD)在线监测

1.原理:变压器故障的主要原因是绝缘损坏,在故障前有局部放电产生,且伴随下列信号:电流脉冲,电波、超声波,C2H2,C2H4,C2H6,CH4,H2,CO等气体,光信号,超高频电磁波。对上述五种信号进行测量,可以确定变压器内部局部放电的严重程度。因此五种信号的监测都有人研究。在这些检测方法中,电流脉冲法是最灵敏的。但是变电站现场电信号的干扰也是比较大的,因此采用常规的电流脉冲法,很难进行测量。超声波法及油中气体分析法现场干扰较少,但超声波法灵敏度低,对于那些深藏在绝缘内部的放电往往检测不到。同时超声波信号的传播时延大多是用电流脉冲信号触发计时器来获得。在现场使用时,局部放电产生的脉冲电流信号,往往淹没于高的干扰脉冲之中而无法分辨,难以触发计时器工作,从而导致监测系统作出错误的判断。

2.方法:(1)差动平衡法:比较进入测量系统的两个信号,一个来自中性点传感器,另一个来自变压器铁芯接地传感器。当变压器内部产生局部放电信号,它在变压器中性点及铁芯接地传感器上,产生两个方向相反的电流脉冲。而当变压器外部存在干扰信号时,他在这两个传感器上产生的电流脉冲方向相同,适当选择频率,对这两个电信号进行比较,就可以对电晕干扰加以抑制。(2)超声波检测法:利用超声波传感器,在变压器外壳上检测局部放电产生的声信号。一方面当变压器内部发生局部放电时,所产生的电流脉冲信号就被检测到,另一方面分布在油箱壁上的几个超声波传感器也会检测到声波信号。但它要比电脉冲延迟某个时间,根据这个延迟时间,就能确定传感器和放电发生点之间的距离,从而确定放电点的位置。(3)电气定位法:利用超声波传播的方向和时间以及放电脉冲在绕组中的传输过程来确定放电位置的定位方法。

(二)变压器油中溶解气体(DGA)在线监测

用油中溶解气体气相色谱分析判断变压器内部故障:

1.原理:油浸电力变压器中主要绝缘材料是变压器油和绝缘油纸。这两种材料在放电和热作用下,会分解产生各种气体。而变压器内部故障都伴随着局部过热和局部放电的现象,使油或纸或油和纸分解产生C2H2,C2H4,C2H6,CH4,H2,CO和CO2等气体。当故障不太严重,产气量较少时,所产生的气体大部分溶解于绝缘油中。此外,发热和放电的严重程度不同,所产生的气体种类、油中溶解气体的浓度、各种气体的比例关系也不相同。因此,对油中溶解的气体进行气相色谱分析便可发现变压器内部的发热和放电性故障。

2.方法及其发展

(1)一般采用常规气相色谱仪进行变压器油率溶解气体的定期检侧,即试验人员到变电站抽取部分脱出气体注入气相色谱仪的进样口,用气相色谱仪检测,输出结果,最后将结果与标准进行比较判断。

(2)为了克服常规油色谱分析法的繁琐而复杂的作业程序,人们研制出了油中气体自动分析装置,即将常规色谱分析仪的脱气和气体浓度检测两部分置于变压器安装现场,在技术上实现自动化分析,显然,这种油色谱自动化分析装置的功能与常规色谱分析法相仿,结构上未发生根本变革,仅是作业程序上实现了自动,从技术经济上限制了它的推广应用前景。

(3)人们不得不研究在原理结构上有所变革创新的在线监测装置。在变压器油中溶解气体在线监测装置的研究中,人们首先想到的是在油气分离上作变革,为此采用由仅使气体分子通过的高分子透气膜组成油气分离单元,从而不仅大大简化了油中气体自动分析装置的结构,而且实现了在线监测。

(4)气体检测单元上作出变革,不用复杂的色谱仪,而用气敏传感器对分离气体检测。由于气敏传感器的敏感度与所添加的贵重金属有关,工艺上还很难做到一种气敏传感器对多种气体都具有相同的敏感度,因此,人们最先研究成功的在线监测装置是监测变压器油中的氢气量。由于不论变压器内部故障种类如何,氢气是故障产生气体的主要成份之一,在线监测油中的氢气量就能判断变压器有无异常,然后通过常规色谱分析法来进一步判断故障种类和程度,因此,虽然这种只能判定有无异常而不能诊断故障种类的在线监测装置功能有限,但因其比常规色谱法进了一步而得到了广泛应用。

二、变压器在线监测研究发展趋势及研究方向

1.仪器上:发展了光学器件如分红气体分析器,红外气体分析器的特点是能测量多种气体含量。测量范围宽,灵敏度高精度高,响应快,选择性良好可靠性

高,寿命长,可以实现连续分析和自动控制。红外气体分析器的工作原理基于吸光度定律(I.amhert-Beer定律),从物理特征上可以划分为不分光型、分光型、傅立叶红外(FTIR,Fourier Transform InfraRed)型以及基于微机电系统(MEMS Micro-Electro-Mechanical System)技术的微型红外气体分析器。分光型红外气体分析器是利用分光系统从光源发出的连续红外谱中分出单色光,使通过介质层的红外线波长与被测组分的特征吸收光谱相吻合而进行测定的。不分光型红外气体分析器(NDIR)指光源发出的连续红外谱全部通过固定厚度的含有被测混合气体的气体层。由于被测气体的含量不同,吸收固定红外线的能量就不同。

2.理论工具上:模糊理论,人工神经网络,专家系统及灰色理论在DGA的分析中都有应用。

三、结语

变压器作为发变电系统中重要设备,安装在线监测系统的必要性已渐渐成为电力行业的共识,电力变压器的工作效率代表了电力部门的财政收益,变压器的在线监测提高了运行的可靠性,延缓了维护费用的投入,延长了检修周期和变压器寿命,由此带来的经济效益是非常可观的。电力设备的在线监测技术是今后的发展方向,具有广阔的前景。

变压器油色谱分析报告

运行中变压器油色谱分析 异常与解决对策 王海军 (河北大唐国际王滩发电有限责任公司) 摘要:对运行变压器油中氢气含量超标出现的原因进行了详细分析,并提出了氢气含量超标的滤油工艺及防止二次污染的源头控制、过程控制及关键点控制。 关键词:变压器油;色谱分析;热油循环;二次污染 1前言 运行中的变压器油气相色谱分析,以检测变压器油中气体的组成和含量,是早期发现变压器内部故障征兆和掌握故障发展情况的一种科学方法。特征气体的出现与变压器运行中的实际状况及在处理中的工艺有关,处理工艺粗糙可能造成变压器油的二次污染。 本文根据实际运行变压器中出现氢气含量超标的具体情况,分析了产生气体的原因并提出了变压器热油循环的处理工艺,防止变压器油二次污染的要点。 2变压器油中氢气含量超标、二次污染实例 我公司#1高压厂用公用变压器(以下简称#1高公变)于2005年10月1日并网运行,在运行中,根据预防性试验规程对各变压器进行了油色谱跟踪分析,发现#1高公变的氢气值出现过含量超过注意值:H2≤150μL/ L ,具体测量数值见表一: 对#1高公变进行热油循环后的色谱分析中,虽然氢气含量达到标准但在油中又检测到痕量乙炔,见表二

再次热油循环后氢气、乙炔均在标准之内。 3#1高公变油中氢气超标及二次污染原因分析 当变压器油中氢气含量超过注意时,人们根据多年的运行经验及文献[1]中指出: (1)当变压器出现局部过热时,随着温度的升高,氢气(H2)和总烃气体明显增加,但乙炔(C2H2)含量极少。 (2)变压器内部出现放电故障也会出现氢气(H2)。局部放电(能量密度一般很低),产生的特征气体主要是氢气氢气(H2),其次是甲烷(CH4),并有少量乙炔(C2H2),但总烃值并不高;火花放电(是一种间歇性放电,其能量密度一般比局部放电高些,属低能量放电)时,乙炔(C2H2)明显增加,气体主要成分时氢气(H2)、乙炔(C2H2);电弧放电(高能放电)时,氢气(H2)大量产生,乙炔(C2H2)亦显著增多,其次是大量的乙烯、甲烷和乙烷。 对于文献[1]中的阐述具有很强的理论性,变压器油是由烷烃、环烷烃和芳香烃等组成[3]的结构复杂的液态烃类混合物。当变压器内发生放电现象,油中的烷烃、环烷烃和芳香烃等烃类混合物发生分解,不同能量的放电产生的特征气体并伴有其他气体产生,根据产生的特征气体可以判断变压器内部发生的具体故障。 三比值法[1]是利用气象色谱分析结果中五种特征气体的三个比值(C2H2/C2H4、CH4/H2、C2H4/C2H6)来判断变压器内部故障性质。根据三比值法的编码规则,三比值法计算结果见表三 从表中特征值0、1、0判定氢气超标的原因为高湿度引起孔穴中的放电,而引起高湿度的原因在变压器生产过程中绝缘材料干燥彻底的情况下只有变压器运行中水分的进入。 所以根据我厂#1高公变在安装、运行过程中的具体情况对变压器油中氢气含量超标、乙炔二次污染分析如下: (1)#1高公变在电建安装过程中曾出现过气体继电器伸缩节法栏处渗油情况,于2005年10月10日更换新伸缩节后,渗油情况解决。在气体继电器伸缩节渗油期间水分、空气从渗油处进入变压器内,导致高公变在运行过程中油中氢气含量超出注意值。2006年2月5日对高公变进行热油循环48小时后,再检测氢气含量为9.99μL/ L,氢气含量超标问题解决。 (2)而乙炔的产生是由于使用的滤油机在滤油之前未对滤油机内部用合格变压器油进行冲洗,而且之前滤油机滤过其他油质。带内部残油进行滤油后的色谱分析里又出现3.23μL/ L的乙炔。重新滤油后再次做色谱分析,油内氢气、乙炔含量合格:氢气4.57μL/ L,乙炔0.00μL/ L。

变压器油中溶解气体在线监测概要

变压器油中溶解气体在线监测方法研究

摘要 (3) 1. 导言 (4) 2. 国内外发展现状及发展趋势 (6) 3. 变压器油中溶解气体在线监测方法的基本原理 (9) 3.1.变压器常见故障类型 (9) 3.2.变压器内部故障类型与油中溶解特征气体含量的关系 (10) 4. 基于油中特征气体组分的故障诊断方法 (14) 4.1.特征气体法 (14) 4.2.三比值法 (15) 4.3.与三比值法配合使用的其它方法 (17)

摘要 电力变压器是电力系统中最主要的设备,同时也是电力系统中发生事故最多的设备之一,对其运行状况实时监测,保证其安全可靠运行,具有十分重要的意义。变压器油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映设备异常的特征量。如何以变压器油中溶解气体在线监测为手段,实现对运行变压器潜伏性故障的诊断和预测,是本文的出发点。 本文的目标是研究基于油中溶解气体分析(DGA)的电力变压器状态监测与故障分析方法,通过气体色谱分析方法实现对变压器油中溶解的七种特征气体(氢气H2、甲烷CH4、乙炔C2H2、乙烯C2H4、乙烷C2H6、一氧化碳CO、二氧化碳CO2)组分含量在线实时监测,从而达到对电力变压器工作状态的诊断分析。

1.导言 现代社会对能源的巨大需求促进了电力工业的飞速发展。一方面是单台电力的容量越来越大;另一方面是电力网向着超高压的方向发展,并正组织成庞大的区域性甚至跨区域的大电网。然而,随着电力设备容量的增大和电力网规模的扩大,电力设备故障给人们的生产和现代生活所带来的影响也就越来越大。这就要求供电部门在不断提高供电质量的同时,要切实采取措施来保证电力设备的正常运行,以此来提高供电的可靠性。长期以来形成的定期检修已不能满足供电企业生产目标。激烈的市场竞争迫使电力企业面临着多种棘手的问题,例如如何提高设备运行可靠性、如何有效控制检修成本、合理延长设备使用寿命等。因此,状态检修已成为必然。而状态检修的实现,必须建立在对主要电气设备有效地进行在线监测的基础上,通过实时监测高压设备的实际运行情况,提高电气设备的诊断水平,做到有针对性的检修维护,才能达到早期预报故障、避免恶性事故发生的目的。由此可见,以变压器状态监测为手段,随时对其潜伏性故障进行诊断和预测以及跟踪发展趋势是十分必要的。 对于大型电力变压器,目前几乎大多是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成气泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体量随故障的严重程度而异。由此可见,油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备电气异常的特征量。 溶解气体分析(Dissolved Gas Analysis简称DGA)是诊断变压器内部故障的最主要技术手段之一。根据GB/T7252-2001《变压器油中溶解气体分析和判断导则》,可以通过分析油中7种分析组分H2、C2H2、C2H4、C2H6、CH4、CO和CO2的含量来判断并分析故障。通过从油样中分离出这些溶解气体,并利用色谱技术对其进行定量分析。变压器油中溶解的各种气体成分的相对数量和形成速度主要取决于故障点能量的释放形式及故障的严重程度,所以根据色谱分析结果可以进

变压器油中溶解气体的成分和含量

变压器油中溶解气体的成分和含量 与充油电力设备绝缘故障诊断的关系 摘要:介绍了通过分析变压器油中溶解气体的成分和含量以判断充油电力设备故障的机理和方法。 关键词:变压器;变压器油;气相色谱法;比值法 1 前言 气相色谱法一直是国内外许多电力设备制造厂作为检验质量、开发新产品的有力工具。实践证明,用气相色谱法能有效地发现充油电力设备内部的潜伏性故障及其发展程度,而利用其他电气试验方法很难发现某些局部发热和局部放电等缺陷。故在1999年颁布执行的电力设备预防性试验规程中,把油中气体色谱分析放在“电力变压器及电抗器”试验的首位。某些变压器厂家在其产品中还装设了DGA(dissolved gas analysis,即溶解气体分析)自动检测报警系统。 2 故障分析的机理 充油的电力设备(如变压器、电抗器、电流互感器、充油套管和充油电缆等)的绝缘主要是由矿物绝缘油和浸在油中的有机绝缘材料(如电缆纸、绝缘纸板等)所组成。其中 矿物绝缘油即变压器油,是石油的一种分镏产物,其主要成分是烷烃(C n H 2n+2 )、环烷族饱 和烃(C n H 2n )、芳香族不饱和烃(C n H 2n-2 )等化合物。有机绝缘材料主要是由纤维素(C 6 H 10 O 5 ) n 构成。在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,会分解出极少量的气 体(主要有氢H 2、甲烷CH 4 、乙烷C 2 H 6 、乙烯C 2 H 4 、乙炔C 2 H 2 、一氧化碳CO、二氧化碳CO 2 等7种)。当电力设备内部发生过热性故障、放电性故障或受潮情况时,这些气体的产

量会迅速增加。表1列出气体的种类与外施能量的关系。 这些气体大部分溶解在绝缘油中,少部分上升在绝缘油的面上,例如变压器有一部分气体从油中逸出进入气体继电器(瓦斯继电器)。经验证明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。因此在设备运行过程中,定期测量溶解于油中的气体组织成分和含量,对于及早发现充油电力设备内部存在的潜伏性故障有非常重要的意义。 表1 气体种类与外施能量的关系 气体CO CO2H2CH4C2H6C2H4C2H2 能量/J 3特征气体色谱的分析和判断 判断有无故障的两种方法 与油中溶解气体的正常值作比较判定有无故障 若氢和烃类气体不超过表2所列的含量,则认为电力设备运行正常。 表2 油中溶解气体的正常值 气体成分H2CH4C2H6C2H4C2H2总烃(C1+C2) 正常极限值/μ1004535555100 根据总烃产气速率判定有无故障 当总烃含量超过正常值时,应考虑采用产气速率判断有无故障。绝对产气速率V:

油色谱在线监测系统专用技术规范(范本)

油色谱在线监测系统专用技术规范(范本) 目次 1 标准技术参数 (1) 2 项目需求部分 (2) 2.1 货物需求及供货范围一览表 (2) 2.2 必备的备品备件、专用工具和仪器仪表供货表 (2) 2.3 图纸资料提交单位及其接收单位 (3) 2.4 工程概况 (3) 2.5 项目单位技术差异表 (3) 2.6 使用条件 (3) 3 投标人响应部分 (4) 3.1 投标人技术偏差表 (4) 3.2 销售及运行业绩表 (4) 3.3 推荐的备品备件、专用工具和仪器仪表供货 (4) 3.4 最终用户的使用情况证明 (4) 3.5 投标人提供的试验检测报告表 (4) 3.6 投标人提供的鉴定证书表 (4) 1 标准技术参数 投标人应认真逐项填写标准技术参数表(见表1)中投标人保证值,不能空格,也不能以“响应”两字代替,不允许改动招标人要求值。如有差异,请填写表7 投标人技术偏差表。表 1 系统标准技术参数表

中给出,投标人应对该差异表响应。差异表与标准技术参数表中参数不同时,以差异表给出的参数为准。 2 项目需求部分 2.1 货物需求及供货范围一览表 表 2 货物需求及供货范围一览表 2.2 必备的备品备件、专用工具和仪器仪表供货表 表 3 必备的备品备件、专用工具和仪器仪表供货表

2.3 图纸资料提交单位及其接收单位 经确认的图纸资料应由卖方提交表 4 所列单位。 2.4.1 项目名称: 2.4.2 项目单位: 2.4.3 工程规模: 2.4.4 工程地址: 2.4.5 交通、运输: 2.5 项目单位技术差异表 项目单位原则上不能改动通用部分条款及专用部分固化的参数。根据工程实际情况,使用条件及相关技术参数有差异时,应逐项在“表5 项目单位技术差异表”中列出。本表是对技术规范的补充和修改,如有冲突,应以本表为准。

变压器油中气体分析

变压器油中气体分析 通过培训掌握绝缘油中气体含量分析,气相色谱技术是近年来兴起的一项新技术,能够对运行中的变压器进行实时监测,通过采集变压器箱体内的少量油样,分析油中气体的组分及其含量,就可以判断变压器是否存在故障、故障的性质以及故障的大致部位。 油浸式变压器一旦出现故障,将造成影响现场生产,甚至造成机组停机,损失巨大。及时了解油浸变压器内部运行情况并发现故障苗头,对保证变压器安全、可靠、优质运行有十分重要的意义。 一、气相色谱法的原理和意义 色谱法它是一种物理分离技术。它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相,另一相则是推动混合物流过此固定相的流体,叫做流动相。当流动相中所含的混合物经过固定相时,就会与固定相发生相互作用。由于各组分在性质与结构上的不同,相互作用的大小强弱也有差异。因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后秩序从固定相中流出,这种借在两相分配原理而使混合物中各组分获得分离的技术,称为色谱法。当用液体作为流动相时,称为液相色谱,当用气体作为流动相时,称为气相色谱。 气相色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。 当载气携带着不同物质的混合样品通过色谱柱时,气相中的物质一部分就要溶解或吸附到固定相内,随着固定相中物质分子的增加,从固定相挥发到气相中的试样物质分子也逐渐增加,也就是说,试样中各物质分子在两相中进行分

配,最后达到平衡。这种物质在两相之间发生的溶解和挥发的过程,称分配过程。分配达到平衡时,物质在两相中的浓度比称分配系数,也叫平衡常数,以K表示,K=物质在固定相中的浓度/物质在流动相中的浓度,在恒定的温度下,分配系数K是个常数。 由此可见,气相色谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。然后再进入检测器对各组分进行鉴定。 不同的故障会产生不同的主要特征气体和次要特征气体,这些故障气体的组成和含量与故障类型及严重程度有密切关系。分析溶解于油中的气体,就能尽早发现设备内部存在的潜伏性故障,并可随时监视故障的发展状况。因此,国家规程对于变压器油中各种气体的含量有着明确而严格的要求。特别是对于乙炔,它是反映故障放电的主要指标,一旦出现,就可能是变压器内部严重故障的反应。因此对于变压器油中乙炔的含量应严格要求和追踪。对于出现含乙炔的变压器油的变压器,应严格按规定进行追踪分析判断,并结合电气试验,对变压器内部运行做出正确的分析判断。当变压器油中的油气组分超标时,我们可以认为其设备内部就可能存在故障。气相色谱技术的运用充分解决了这一难题。变压器油气的色谱分析及色谱追踪试验,能够真实有效的反映设备的运行情况,对于尽早发现设备内部过热或放电性故障,及早预防保证设备的正常运行,有着重要的作用。 二、绝缘油气体在线装置工作原理 变压器在发生故障前,在电、热效应的作用下,其内部会析出以H2为主的

设油色谱在线监测装置

设油色谱在线监测装置 变压器需装设油色谱在线监测装置 安装方式:现场机柜安装在变压器现场,后台控制系统主机安装在控制室(具体方式设计联络时确定)。 适应变压器油温:10℃~100℃; 载气:使用时间不小于1年 工作电源:交流220V±10%,50HZ; ●油色谱在线监测装置由安装在变压器现场的现场机柜、油色谱在线监测屏(含数据处理服务器、分析软件等)、色谱数据采集器等组成,每台变压器含油色谱在线监测装置一套。油色谱在线监测屏的尺寸和颜色在设计联络时确定。 ●在线监测系统数据采用有线传输,实现网络远程功能,并能在数据处理服务器上显示监测界面、数据查询、参数设置等功能。 ●应能同时监测变压器油中溶解的氢气(H2)、一氧化碳(CO)、甲烷(CH4)、乙烯(C2H4)、乙炔(C2H2)、乙烷(C2H6)等六种气体组分及总烃的含量、各组 判断所监测设备的状态,对设备初期故障进行预测; ●油气分离装置:采用真空脱气原理,油气分离装置应满足不消耗油、不污染油、循环取油以及免维护等前提条件,确保监测系统的取样方式不影响主设备的安全运行。 ●取样方式须采用循环取油方式,取样后的变压器油必须回到变压器本体内,不能直接排放,不能造成变压器油损耗。取样油必须能代表变压器中油的真实情况。 ●装置具有原始谱图查询功能; ●装置不能使用可燃性气体,实验时不能有火焰; ●装置应通过国家或省级权威机构的产品性能测试和电磁兼容测试,并提供测试报告和测试方法;

●系统设备的安装、使用不影响主设备的正常、安全可靠运行,可以带电安装调试。 ●采用高纯氮气作为载气。 ●载气应为两瓶,一主一备。确保在载气更换过程中不影响监测设备正常运行。 ●监测系统包括在线检测油中溶解气体含量和色谱分析诊断两部分。能自动实现数据采集、智能谱峰识别、三比值分析、立方图分析、大卫三角形分析、相对产气速率和绝对产气速率计算、趋势图分析、色谱谱图分析、原始谱图查询及故障诊断等功能; ●测量周期 监测装置的最小监测周期≤2小时。 监测周期可以通过现场和远程方式自行设定。 ●色谱分离模块须采用单一色谱柱进行气体组份分离,分离模块具备恒温控制系统,恒温精度≤±0.1℃; ●监测系统工程可由用户根据需要设置不同间隔的采样周期.; ●通讯接口:RS485(支持TCP/IP网络协议),具体接口设计联络时确定; ●同一样品多次分析误差不大于其平均值±5%;与试验室分析数据的平行试验结果相差不应大于平均值的±30%。(投标方必须提供至少省级电力试验研究院或实验室出具的产品稳定性、重复性以及最小检测限检测证明); ●后台处理器抗干扰性能符合对变电站综合自动化系统主控室计算机要求的相关标准; ●历史监测数据和原始谱图能够保存10年。能够对历史数据和原始谱图进行查询; ●可设定变压器色谱数据的越限报警值。一旦系统判断设备状态参数超标,系统能够自动报警;报警功能具有二级,为声/光报警。 ●系统应具备谱图控制功能,用户能够根据自己的需要对数据的图形显示结果进行局部放大、缩小以及定制显示效果等多种控制; ●系统具有完善的安全防护措施,采用基于权限的用户管理; ●系统须提供手动启动检测方式,用户可以在任意时间通过软件启动一次检测,并能观察到整个系统的运行控制流程,可以视现场装置运行情况,自行决定何时进样、何时结束检测。 ●油色谱信息上传至供电段,远方后台进复示终端。

变压器油中溶解气体分析与诊断

变压器油中溶解气体分析与诊断 摘要 变压器在线监测及故障诊断技术,对提高电力系统的安全稳定性具有十分重要的意义。其中基于油中溶解气体分析的在线监测技术是变压器在线监测中最普遍,也是最重要的技术。目前己投入使用的油中溶解气体在线监测系统普遍存在一些不足,如检测气体种类少、准确度及精确度不高、体积大、成本高等。 本文对变压器油色谱在线监测及故障诊断系统进行了研究,分析了其它色谱在线监测方法的种种不足,对其进行了改进,设计了一套变压器油在线监测系统,能够及时、准确地监测变压器油中溶解的各种特征气体,实时地反映设备的运行状态,并对故障诊断算法进行了仿真。在获得真实可靠的监测数据的基础上,建立了一个诊断模型,并对该模型进行了仿真,仿真结果表明三比值法、四比值法等故障诊断方法有一定的优越性,能够比较准确地定性和定量地对故障做出判断,为电力运营部门提供有用的决策依据。 分析了变压器油中溶解气体的发展变化规律,研究了变压器油中溶解气体和故障类型之间的关系。对常用的三比值模型进行深入研究,总结了各种模型的特点和适用范围。论述了用三比值进行变压器油中溶解气体分析,诊断和预测变压器故障的有效性和可行性。 关键词:变压器油中溶解气体在线监测故障诊断

目录 第一章绪论 (4) 1.1变压器 (4) 1.1.1变压器的分类 (4) 1.1.2电力变压器的选型原则 (6) 1.1.3变压器的作用及其意义 (13) 1.2变压器油 (14) 1.2.1变压器油简介 (14) 1.2.2变压器油国内外发展现状 (15) 第二章.变压器油中溶解气体分析与诊断 (17) 2.1.利用CO、CO2浓度及CO2/CO比值诊断固体绝缘老化 (17) 2.2.利用mL(CO2+CO)/g(纸)诊断变压器绝缘寿命 (19) 2.3利用油中糠醛分析诊断变压器绝缘老化 (20) 2.3.1概述 (20) 2.3.2.油中糠醛含量测试方法 (21) 2.3.4利用油中糠醛诊断变压器绝缘寿命 (23) 2.4固体绝缘老化的综合诊断 (29) 3 变压器油的运行维护 (30) 3.1变压器油的选择 (30) 3.1.1变压器油的质量标准 (30) 3.1.2变压器油在低温下的特性 (31) 3.2 混油、补油和换油 (33) 3.2.1 混油和补油 (33) 3.2.2换油 (34) 3.3 运行变压器油的防劣措施 (36) 3.3.1 隔膜密封装置 (36) 3.3.2 净油器 (37) 3.4 变压器油的金属减活(钝化)剂 (42)

油色谱在线监测系统

ES-2010变压器油色谱在线监测系统 福州亿森电力设备有限公司 安装准备方案 (变压器制造商、电力设计院) “ES-2010变压器油色谱在线监测系统”是一种高可靠性的在线监测设备,可连续、实时、在线、自动分析变压器油中溶解气体的含量和增长率,通过故障诊断专家系统,对变压器故障进行自动诊断。 “ES-2010变压器油色谱在线监测系统”安装的最佳方案是在变压器出厂前即预留好油路安装接口,为便于与变压器制造商更好配合,特编制了以下准备方案,供变压器生产商参考。 一、ES-2010变压器油色谱在线监测系统现场安装示意图 ES-2010系统的现场主机安装在变压器油池边,现场主机与变压器预留接口通过4mm不锈钢管连接,ES-2010数据处理器安装在变电站(电厂)主控室内,与现场主机通过通讯电缆连接,安装示意图如图1 图1:室外安装示意图

二、ES-2010变压器色谱在线监测系统的组成 ES-2010系统包含配置:(图纸附后) 1.色谱在线监测现场主机:型号:ES-2010,1台; 2.数据处理服务器:型号:品牌服务器1台(安装于变电站主控室,建议组屏);3.分析软件: 1套; 4.不锈钢连接管:长度根据现场距离而定(连接变压器上接口与油色谱现场主机);5.配件:通讯电缆(连接油色谱现场主机与数据处理服务器)。 三、ES-2010变压器油色谱在线监测系统安装条件准备: 1.变压器油路接口(变压器厂提供) 由变压器厂在每台变压器本体上开2个接口,并加装阀门,上部接口位置最好在变压器2/3高度,并与下部接口在同一条直线上。 建议两个阀门采用常用的球阀或者闸阀,若采用其他尺寸阀门,变压器厂将接口法兰尺寸告知福州亿森,由福州亿森加工相对应油路接口。 2.现场电源(设计院设计) ES-2010油色谱现场主机电源要求:220V不间断交流电源;由变压器周围配电箱提供,现场设备功耗1000W。 3.油色谱现场主机基础(附图)(设计院设计) ES-2010油色谱在线监测现场主机基础要求用混凝土或水泥材料建立,在砌基础时预埋四个M10×100不锈钢螺栓和三根Ф50镀锌管,膨胀螺栓用来固定油色谱在线监测现场主机,镀锌管用来铺设油管和电缆,附图。 4.数据处理服务器安装位置(设计院设计) ES-2010数据处理服务器外型满足19″工业机箱标准,组屏,可直接在主控室控制屏上安装,要求在控制屏上预留安装位置。 5.主控室电源(设计院设计) ES-2010数据处理服务器电源要求:220V交流电源,所需的交流电源取自室内设备不间断电源,设备功耗400W。 6.主控室网线(设计院设计) 为能达到MIS系统与远程控制的顺利进行,在主控室安装监控服务器系统的控制屏处

变压器油分析报告

洛阳阳光热电有限公司变压器油检验报告 样品状态运行油采样日 期 2009年08月18 日 样品名称#25变压器油分析日 期 2009年08月19 日 分析项目水分、介质损耗因数、击穿电压、 色谱 报告日 期 2009年08月21 日 采样地点#1主变依据标准 外状 水溶性酸(pH值) 酸值,mgKOH/g 闪点(闭口),℃ 水分,mg/L 10.5 GB/T7600 界面张力(25℃),mN/m 介质损耗因数(90℃)0.093 击穿电压,kV 52 体积电阻率(90℃) Ω·cm 油中溶解气体组分含量 色谱分析 如下 破乳化时间 备注 色谱:甲烷:17.90 乙烯:1.65 乙烷:2.58 乙炔:0.00 氢 气:174.32 一氧化碳:1437.09 二氧化碳:5178.93 总烃:22.13 分析意见:氢含量超过注意值! 建议缩短周期,跟踪分析! 其他结果合格。 审核试验张颖、罗燕贞、王静

洛阳阳光热电有限公司变压器油检验报告 样品状态运行油采样日期2009年08月18 日 样品名称#25变压器油分析日期2009年08月19 日 分析项目介质损耗因数、击穿电压、 色谱 报告日期 2009年08月21 日 采样地点#1高厂变依据标准外状 水溶性酸(pH 值) 酸值, mgKOH/g 闪点(闭 口),℃ 水分,mg/L 界面张力 (25℃), mN/m 介质损耗因 数(90℃) 0.069 击穿电压,kV 54 体积电阻率 (90℃) Ω·cm 油中溶解气 体组分含量 色谱分析 如下 破乳化时间 备注色谱:甲烷:10.88 乙烯:1.71 乙烷:2.32 乙炔:0.00 氢气:62.79 一氧化碳:811.07 二氧化碳:2915.03 总烃:14.91 分析意见:含量未发现异常! 其他结果合格。 审核试验张颖、罗燕贞、王静

变压器油色谱在线监测系统

ES-Y102变压器油色谱在线监测系统 产品说明书福州亿森电力设备有限公司

目录 1、前言..................................................................错误!未定义书签。 2、产品简介 (6) 3、系统组成 (6) 4、工作原理 (7) 5、技术特点 (8) 6、技术参数 (10) 7、装置安装 (11) 8、在线分析及故障诊断专家系统软件 (12)

1、基本介绍 ES-2010油色谱在线监测系统是集控制、测量分析技术于一体的精密设备,对变压器等油浸电力设备进行在线监测,及在线及时准确检测出绝缘油中溶解的各种故障特征气体浓度及变化趋势,这些气体包括氢气、一氧化碳、甲烷、乙烷、乙烯、乙炔等。ES-2010油色谱在线监测系统能够快速准确的进行油色谱分析,实现完全在线监测油浸式电力设备的运行信息,为变压器等油浸电力设备的长期稳定运行提供了可靠保证。 2主要特点编辑 1、独特的内置油循环系统 2、世界最先进的真空脱气方式 3、专用复合色谱柱 4、高灵敏度的气敏传感器 ES-2010 5、高精度恒温控制系统 6、最新诊断技术

7、先进的数据处理算法 3产品简介编辑 系统组成: 系统由前端脱气装置(ESTAM-sp)、数据处理器(ESTAM-sm)和系统分析管理软件(ESTAM-st)三部分组成 系统特点: ◆油气分离采用一体化气室,密封性能好 ◆高性能渗透膜抗压力强、平衡快、使用寿命长 ◆数据采集器可自动检测并储存多天的检测数据,主控计算机随时实施数据上传 ◆系统数据处理软件实现数据自动上传、自动捕峰、自动出峰增益和自动故障诊断 ◆系统数据通讯支持TCP/IP网络协议,可实现远程检测诊断和系统远程维护 ◆系统检测前端小,便于维护和现场安装 ◆全汉化软件系统,界面友好、操作方便 在线油色谱检测系统 技术参数:

变压器油气相色谱分析

变压器油气相色谱分析 一、基本原理 正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。这些气体大部分溶解在油中。当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。 故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。 因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。 当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。 二、用气相色谱仪进行气体分析的对象 氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。 三、试验结果的判断

1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。设备在 故障下产生的气体主要也是来源于油和纸的热裂解。 2、变压器内产生的气体: 变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。 有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。例如:有载调压变压器中分解开关灭弧室的有向变压器本体的渗漏;设备曾经有过故障,而故障排除后绝缘油未经彻底脱气,部分残余气体仍留在油中;设备油箱曾作过带油补焊;原注入的油就含有某些气体等。还应注意油冷却系统附属设备(如潜油泵,油流继电器等)的故障也会反映到变压器本体的油中。 3、正常设备油中气体含量 4、《导则》推荐的油中溶解气体的注意值

变压器油中溶解气体的分析与故障判断

变压器油中溶解气体的分析与故障判断 随着变压器运行时间的延长,变压器可能产生初期故障,油中某些可燃性气体则是内部故障的先兆,这些可燃气体可降低变压器油的闪点,从而引起早期故障。 变压器油和纤维绝缘材料在运行中受到水分、氧气、热量以及铜和铁等材料催化作用的影响而老化和分解,产生的气体大部分溶于油中,但产生气体的速率是相当缓慢的。当变压器内部存在初期故障或形成新的故障条件时,其产气速率和产气量则十分明显,绝大多数的初期缺陷都会出现早期迹象,因此,对变压器产生气体进行适当分析即能检测出故障。 1、变压器油中的气体类别 气相色谱法正是对变压器油中可燃性气体进行分析的最切实可行的方法,该方法包括从油中脱气和测量两个过程。矿物油是由大约2871种液态碳氢化合物组成的,通常只鉴别绝缘油中的氢气(H2卜氧气(02)、氮气 (N2)、甲烷(CH4)、一氧化碳(C0)、乙烷(C2H6)、二氧化碳(C02)、乙烯(C2H4)、乙炔(C2H2)9种气体,将这些气体从油中脱出并经分析,证明它们的存在及含量,即可反映出产生这些气体的故障类型和严重程度。油在正常老化过程产生的气体主要是一氧化碳(C0)和二氧化碳(C02),油绝缘中存在局部放电时(如油中气泡击穿),油裂解 产生的气体主要是氢气(H2)和甲烷(CH4)。在故障温度高于正常运行温度不多时,产生的气体主要是甲烷 (CH4), 随故障温度的升高,乙烯(C2H2)和乙烷(C2H6)逐渐成为主要物征气体;当温度高于1000 C时(如在电弧弧道温度300 C以上),油裂解产生的气体中含有较多的乙炔(C2H2),如果故障涉及到固体绝缘材料时,会产生较多的一 氧化碳(CO)和二氧化碳(C02)。 2、如何判断电气设备的故障性质 运用五种特征气体的三对比值判断电气设备的故障性质: (1) C2H2/C2H4 < 0.1 0.1 v CH4/H2V 1 C2H4/C2H6 v 1时,属变压器已正常老化。 (2) C2H2/C2H4 < 0.1 CH4/H2 v 0.1 0.1v C2H4/C2H6v1 时,属低能量密度的局部放电,是含气空腔中的放电,这种空腔是由于不完全浸渍、气体饱和或高湿度等原因造成的。 (3) 0.1 v C2H2/C2H4v 1 CH4/H2v 0.1 0.1v C2H4/C2H6v1 时,属高能量密度的局部放电(除含气空腔的放电),导致固体绝缘的放电痕迹。 (4) 1 v C2H2/C2H4v 3 0.1 v CH4/H2v 1 C2H4/C2H6>3时,有工频续流的放电、线圈、线饼、线匝之间或线圈对地之间油的电弧击穿。

变压器油的色谱分析

浅谈变压器油的色谱分析 时间:2011-04-27 15:04来源:《电气世界》 朱莉莉,朱明明摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。油气相色谱分析在检验充油设备试验中占有十分重要的地位。文章详细介绍了绝缘油、纸热解产气的理化过程。 摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。油气相色谱分析在检验充油设备试验中占有十分重要的地位。文章详细介绍了绝缘油、纸热解产气的理化过程。并对油样的提取要点进行了论述。最后根据本地区的电网等实际情况,举例说明故障后设备油中气体成份的分析判断。在研究、分析的基础上,论证了色谱分析与电气试验的关系。 关键词:变压器色谱油分析 0引言 随着地方经济迅速发展,及电气设备的不断更新换代的需要,给我们供电部门不论是从设备上还是技术上提出了更高的要求。为保证供给足够的优质电能,减少停电时间在采取原有的状态检修基础上,进一步实行在线监测。变压器类设备是变电站最关键的设备,它不仅是因为价值昂贵,最重要的是它发生事故后,影响面广,给工农业生产造成巨大的损失。目前对此类设备的安全运行给予高度的重视,而对变压器、互感器等用油的电气设备类最好的监测手段之一,就是对设备内的油进行气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。所以油气相色谱分析在检验充油设备试验中占有十分重要的地位。我们公司从上世纪80年代中期就对220kV、110kV及35kV8000kVA及以上的主变压器、电流互感器、电压互感器、充油套管进行色谱分析,并发现了部分设备存在缺陷,及时处理保证了设备安全正常运行。 1绝缘油、纸热解产气的理化过程 变压器的绝缘材料主要是油、纸组合绝缘,变压器内部潜伏性故障产生的气体主要是来源于油和纸的热裂解。热解产气特征与材料的化学结构有着密切的关系,矿物质绝缘油的化学组成是石油烃类;绝缘纸的化学成分是纤维素。在它们的分子结构上有不同类型的化学键,键能越高,分子越稳定,由于具有不同化学键结构的碳氢化合物分子在高温下的不同稳定性,因此需要了解一下绝缘油热裂解产气的一般规律,即产生的烃类气体的不饱和度是随裂解能量密度(温度)的增加而增加的。随着热裂解温度增高的过程裂解的顺序是:烷烃—烯烃—炔烃—焦炭。 不同性质的故障,产生气体组份的特征不一样,例如局部放电时产生氢;较高温度过热时产生甲烷与乙烯,当严重过热时也会产生少量的乙炔;电弧故障时产生乙炔和氢气。另外,不同性质和不同能源大小的故障,产气量和产气速度也不一样。初始阶段的潜伏性故障产气少,产气速度慢;故障源温度高、面积大的故障产气多、产气速度快。要明白这个道理,必须对绝缘油、纸在故障下热裂解产气的化学原理有一个基本了解,这对我们分析和判断变压器类设备的故障有所帮助。 绝缘油、纸热裂解产气过程所涉及的化学原理主要有:绝缘油、纸的化学结构,热解产气过程的化学反应及其热力动力学。当然还涉及到其他理、化机理如气体的析气、溶解和扩散作用等问题。 2简述

变压器油中气体分析

变压器 TRANSFORMER 2000 变压器油中溶解气体的成分和含量 与充油电力设备绝缘故障诊断的关系 张利刚 摘要:介绍了通过分析变压器油中溶解气体的成分和含量以判断充油电力设备故障的机理和方法。 关键词:变压器;变压器油;气相色谱法;比值法 中图分类号:TM411;TM406 文献标识码:B 文章编号:1001-8425(2000)03-0039-04 Relation between the Composition & Contents of Dissolved Gases in Transformer Oil and Insulation Fault Diagnosis of Oil-Filled Power Equipment ZHANG Li-gang Abstract:The mechanism and method of estimating the oil-filled power equipment fault through analyzing the composition & contents of dissolved gases in transformer oil are introduced.

Key words:Transformer; Transformer oil; Gas Chromatography; Ratio method 1 前言 气相色谱法一直是国内外许多电力设备制造厂作为检验质量、开发新产品的有力工具。实践证明,用气相色谱法能有效地发现充油电力设备内部的潜伏性故障及其发展程度,而利用其他电气试验方法很难发现某些局部发热和局部放电等缺陷。故在1999年颁布执行的电力设备预防性试验规程中,把油中气体色谱分析放在“电力变压器及电抗器”试验的首位。某些变压器厂家在其产品中还装设了DGA(dissolved gas analysis,即溶解气体分析)自动检测报警系统。 2 故障分析的机理 充油的电力设备(如变压器、电抗器、电流互感器、充油套管和充油电缆等)的绝缘主要是由矿物绝缘油和浸在油中的有机绝缘材料(如电缆纸、绝缘纸板等)所组成。其中矿物绝缘油即变压器油,是石油的一种分 镏产物,其主要成分是烷烃(C n H 2n+2 )、环烷族饱和烃(C n H 2n )、芳香族不饱 和烃(C n H 2n-2 )等化合物。有机绝缘材料主要是由纤维素(C 6 H 10 O 5 ) n 构成。在 正常运行状态下,由于油和固体绝缘会逐渐老化、变质,会分解出极少 量的气体(主要有氢H 2、甲烷CH 4 、乙烷C 2 H 6 、乙烯C 2 H 4 、乙炔C 2 H 2 、一氧 化碳CO、二氧化碳CO 2 等7种)。当电力设备内部发生过热性故障、放电性故障或受潮情况时,这些气体的产量会迅速增加。表1列出气体的种类与外施能量的关系。 这些气体大部分溶解在绝缘油中,少部分上升在绝缘油的面上,例如变压器有一部分气体从油中逸出进入气体继电器(瓦斯继电器)。经验

变压器油色谱异常分析及处理_图文(精)

变压器油色谱异常分析及处理 (陕西延安) 摘要:介绍了延安发电厂3#主变压器油色谱分析数据超标后的检查、试验、分析判断及处理。 关键词:变压器;色谱;分析;处理 延安发电厂3#主变压器(型号SFSb-20000/110,额定容量20MW),在8月13日的油样色普分析结果中,发现乙炔含量为6.51ppm,超过注意值5.0ppm,引 起注意,及时汇报加强监督,为了进一步判断分析,在8月17日,又取油样送检,分析结果仍然是油样不合格,且乙炔含量增长较快,由6.5 1ppm 增长到7.26 ppm,在8月18日,再次送检油样,分析结果仍然是油样不合格,且乙炔含量增长较快,增长到11.76 ppm,根据三比值计算编码为102,判断设备内部存在裸金属放电故障,及时汇报,立即退出运行安排检查。 1 设备修前测量试验情况 1.1变压器油气相色谱分析报告 采样时间气体组分 (uL/L) H 2 CO CO 2 CH4 C 2H6 C 2H4 C 3H8 C 2H2 C 3H6 C 1+C2 86.95 16281514 6 5

.13 6.32 7.95 .77 .77 1.31 .51 5.36 8 .17 13.35 22 1.87 275 5.66 5 .66 2 .22 4 2.82 7 .26 5 7.96 8 .18 60.6 22 5.75 341 6.01 1 1.57 1 .82 5 4.3 1 1.76 7 9.45 8 .20 64.82 21 7.14 359 1.95 1 4.34 2 .31 6 5.67 1 4.15 9 6.47 结论根据三比值计算 编码为102,判断设 备内部存在裸金属放 电故障,建议立即停 运检修。 以8月20日的数据为依据,利用三比值法对其故障进行判断: (1)C2H2/ C2H4=14.15/65.67=0.27,比值范围的编码为:1; (2)CH4/ H2=14.34/64.28=0.22,比值范围的编码为:0; (3)C2H4/C C2H6=65.67/2.31=28.42,比值范围的编码为:2; 通过三比值计算编码为102,初步判断其故障性质为高能量放电。 1.2在西北电研院专家的指导下,对变压器进行了修前检测、试验。绕组绝缘测试合 格;绕组直流泄漏电流测试合格;各绕组介质损耗测试合格;高压侧110kv套管介质

变压器油中溶解气体分析的原理方法

变压器油中溶解气体分析的原理及方法 充油电力变压器在正常运行过程中受到热、电和机械方面力的作用下逐渐老化,产生某些可燃性气体,当变压器存在潜伏性故障时,其气体产生量和气体产生速率将逐渐明显,人们取变压器油样使用气相色谱方法获得油中溶解的特征气体浓度后,就可以对变压器的故障情况进行分析。由于大型充油电力变压器是一个非常复杂的电气设备,变压器存在潜伏性故障时与多种因素存在耦合,特征气体形成涉及的机理十分复杂,这些机理及由这些机理导出的诊断方法对智能诊断方法有很好的借鉴意义。 1 变压器油及固体绝缘的成份及气体产生机理分析 虽然SF6 气体绝缘、蒸发冷却式气体绝缘变压器和干式变压器、交联聚乙烯绕组变压器等有着良好的发展前景,但是变压器油优良的绝缘和散热能力是它们所不能替代的,目前高电压、大容量的电力变压器仍然普遍采用充油式。充油电力变压器内部的主要绝缘材料是变压器油、绝缘纸和纸板等A 级绝缘材料,当运行年限为20年左右时,最高允许的温度为105C左右。变 压器油中特征气体是由变压器油及固体绝缘产生的,与它们的性能存在着密切的关系。 1 变压器油的成份及气体产生机理 变压器油是由天然石油经过蒸馏、精炼而获得的一种矿物油。它是由各 种碳氢化合物所组成的混合物,其中碳、氢两元素占全部重量的95%?99%。主要的碳氢化合物有环烷烃(50%以上)、烷烃(10%?40%)和芳香烃(5%?15%)组成[9]。不同变压器油各种成份的含量有些不同。 变压器油中不同烃类气体的性能是不同的。环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化很小。芳香烃化学稳定性和介电稳定性也较好,在电场作用下不析出气体,而且能吸收气体;但芳香烃易燃、黏度大、凝固点高,且在电弧的作用下生成的碳粒较多,会降低油的电气性能。环烷烃中的石蜡烃具有较好的化学稳定性和易使油凝固,但在电场的作用下易发生电离而析出气体,并形成树枝状的X 蜡,影响油的导热性。 变压器油在运行中受到温度、电场、氧气及水分和铜、铁等材料的催化作用会形成某些氧化物及其油泥、氢、低分子烃类气体和固体X 蜡等,这就是绝缘油的老化和劣化作用。正常的老化和劣化情况下,变压器油中仅能产生少量的气体,通常它们的含量在临界值之下。 但存在潜伏性故障时情况就不同了,当变压器油受到高电场的作用时,即使温度较低也会分解产生气体。 变压器油是由许多不同分子量的碳烃化合物分子组成的混合物,分子中存在着CH3*、CH2*和CH*等化学基团,含有C-C键和C-H键。在电或热的作用下使某些C-C键和C-H键断裂,形成了不稳定的氢原子和碳氢化合物的自由基,这些氢原子、自由基迅速重新化合生成氢气和低

相关文档
最新文档