盾构穿越砂层预防涌水涌砂的技术控制措施

盾构穿越砂层预防涌水涌砂的技术控制措施
盾构穿越砂层预防涌水涌砂的技术控制措施

消除砂土液化影响,盾构穿越砂层预防涌水涌砂的技术控制措施

重难点分析:

若盾构区间隧道底部部分位于淤泥层、淤泥质土层、淤泥质粉细砂层(液化砂层),由于砂层透水性强稳定性差,当砂层富水时,则盾构机推进时盾尾几乎直接受到水压力的作用,很容易发生盾尾漏水、漏砂情况,存在涌水、涌砂的危险。土压平衡盾构在砂土层中掘进施工时,因土的摩阻力大、渗透系数高、地下水丰富等原因,一般单靠掘削土提供的被动土压力常不足于抵抗开挖面的土、水压力,加之由于土体流动性差,使在密封舱内充满砂质土体后,原有的盾构推力和刀盘扭矩常不足以维持正常掘进切削的需要,密封舱内的渣土也不易于流入螺旋输送机并排出,而引起超挖。另外在砂层中一旦要进行开仓换刀,其作业过程是十分危险的。

针对性措施:

1、穿越砂层的技术措施

(1)做好对盾构机的维修保养。特别是对盾尾刷要进行检查和更换,同时充分压注盾尾油脂,以防止泥水砂土从盾尾冒出。

(2)改良土渣。土压平衡式盾构机的工作原理为:由刀盘切削下来的土体进入土仓后由螺旋输送机输出,在螺旋输送机内形成压力梯降,保持土仓压力稳定,使开挖面土层处于稳定。盾构向前推进的同时,螺旋输送机排土,使排土量等于开挖量,即可使开挖面的地层始终保持稳定。而砂层自稳能力差,盾构掘进如果处理不当,都会造成不同程度的地面沉陷,甚至是塌方。采用复合土压盾构机为防止工作面的坍塌和地面沉陷,必须选择合适的添加剂对砂层进行改良。

根据改良后的土渣具有一定和易性的要求和工程经验,尽量使用添加剂和膨润土来改良土渣,使改良后的土渣既有止水效果又有塑流性,避免喷涌的发生导致地面的沉陷。

(3)加强同步注浆。既要控制好注浆的压力,又要控制实际的注浆量,切

实做到注浆及时和充足。注浆的顺序先上后下,必要时调整砂浆的配合比,增加水泥用量,缩短砂浆的初凝时间,使建筑空隙所注的砂浆真正起着填充堵塞作用。必要进行二次注浆,可采用双液浆,每隔7-8环打一道环箍主要起止水作用,使隧道纵向形成间断的止水隔离带。

(4)尽量快速通过。加快掘进速度有利于控制地表变形和隧道的稳定沉降,这是因为在盾构壳体上方的土体在注浆和有一定压力泥水的作用下稳定的时间一定情况下,盾构机越快掘进,能够及早为管片注浆创造条件,注浆起到的作用也快,当注浆初凝时间小于等于土体的稳定时间时,土体的沉降变形就小了。

(5)控制好盾构的姿态。对于不同的地层组合对盾构姿态的要求不同,一种情形是上部为砂层,下部为较硬的土体或岩石,属于上软下硬的地层,严防盾构机上偏;一种情形是,盾构机方仍是砂层或较软土层,要防止盾构机下栽。

(6)平衡开挖面水土压力。由于砂层有一定的水压,可加入适当压力的压缩空气,确保土仓的压力与正面水土压力平衡,达到减少地面沉降的目的。

(7)加强沉降观测,及时反馈信息,指导施工。

(8)防止隧道上浮。盾构穿过砂层时,出现管片上浮的现象时有发生,这涉及到物理的浮力问题,以衬砌外径6.2米内经5.5米的盾构隧道为例,当隧道每延米符合:3.14/4χ6.22χ1000>管片上的设备施工荷载+3.14χ(6.22-5.52)χ2500,即盾构机压在管片上的荷载小于14102Kg时就可能出现管片上浮现象。因此在富水的砂层中进行盾构掘进必须采取必要的预防措施,除了以上所述的同步注浆使浆液能及时充填建筑空隙和二次注浆加强止水效果的措施外,加强隧道隆沉监测是防止上浮的积极措施,使施工人员及时了解隧道上浮量,以便及时采取相应措施。

2、为防止盾构穿越砂层后盾尾发生漏水、漏砂的技术措施

(1)定期、定量、均匀地圧注盾尾油脂。

(2)合理控制同步注浆压力,避免盾尾密封装臵被击穿,导致浆液进入盾尾和土体中的水漏入隧道。

(3)加强管片拼装施工培训,提高拼装人员的技术水平,要求管片不拼成椭圆形,且一环管片安装后必须使用整圆器进行整圆,以减少椭圆和纵缝、环缝错台的现象;在每次管片安装前,应清除盾体内的渣土,避免安装管片时难以对位,造成错台现象;封顶K块拼装前,必须调整好开口尺寸,使封顶块能顺利插入

到位;管片尽量居中拼装,以防盾构与管片之间的建筑空隙增大,降低盾尾密封效果,引发盾尾漏泥、漏水。

(4)严格控制盾构推进的纠偏量,尽量使管片四周的盾尾间隙均匀一致,减轻管片对盾尾刷的挤压程度。

(5)控制盾构姿态,严格控制管片组装时的千斤顶伸缩量,避免盾构产生后退。

盾构分体始发掘进专项施工方案

第一章编制依据 1、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建施工项目招标文件、招标图纸、地质勘查报告、补遗书及投标文件。 2、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建工程承包合同。 3、广州市轨道交通六号线盾构7标段补充地质勘测资料、管线调查及现场调查资料。 4、广州市轨道交通六号线盾构7标段施工设计图纸。 5、国家现行有关施工及验收规范、规则、质量技术标准,以及广州地区在安全文明施工、环境保护、交通组织等方面的规定。 6、我公司在广州地铁建设中的成功的施工经验和研究成果及现有的施工管理水平、技术水平、科研水平、机械设备能力。 第二章工程概况 一、始发端头工程地质、水文概况 ㈠工程地质 根据《广州市轨道交通线网岩土工程勘察总体技术要求》的地铁沿线岩土分层系统和沿线岩土层的成因类型和性质、风化状态等,本基坑内各岩土分层及其特征如下: <1>人工填土层(Q4ml) 主要为杂填土和素填土,颜色较杂,主要为褐黄色、灰色、灰褐色、褐红色等,素填土组成物主要为人工堆填的粉质粘土、中粗砂、碎石等,杂填土则含有砖块、砼块等建筑垃圾或生活垃圾,大部分稍压实~欠压实,稍湿~湿。本层标贯击数6~18击,平均击数11击。 <4-2>河湖相沉积土层(Q3+4al) 呈深灰色、灰黑色,主要为淤泥及淤泥质土组成,组成物主要为粘粒,含有机质、朽木,饱和,流塑状,局部夹薄层细砂。标贯实测击数1~2击,平均击数为1.5击。 <5H-2>硬塑~坚硬状花岗岩残积土层 黄褐色、红褐色、灰白色、灰褐色、黑褐色等色,组织结构已全部破坏,矿物成分除石英外大部分已风化成土状,较多细片状黑云母,以粉粘粒为主,含较多中粗砂、砾石。残积土遇水易软化崩解。主要为砾质粘性土、砂质粘性土、粘性土,呈硬塑~坚硬状。

盾构分体始发掘进专项施工方案1

盾构分体始发专项施工方案 第一章编制依据 1、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建施工项目招标文件、招标图纸、地质勘查报告、补遗书及投标文件。 2、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建工程承包合同。 3、广州市轨道交通六号线盾构7标段补充地质勘测资料、管线调查及现场调查资料。 4、广州市轨道交通六号线盾构7标段施工设计图纸。 5、国家现行有关施工及验收规范、规则、质量技术标准,以及广州地区在安全文明施工、环境保护、交通组织等方面的规定。 6、我公司在广州地铁建设中的成功的施工经验和研究成果及现有的施工管理水平、技术水平、科研水平、机械设备能力。 第二章工程概况 一、始发端头工程地质、水文概况 ㈠工程地质 根据《广州市轨道交通线网岩土工程勘察总体技术要求》的地铁沿线岩土分层系统和沿线岩土层的成因类型和性质、风化状态等,本基坑内各岩土分层及其特征如下: <1>人工填土层(Q4ml) 主要为杂填土和素填土,颜色较杂,主要为褐黄色、灰色、灰褐色、褐红色等,素填土组成物主要为人工堆填的粉质粘土、中粗砂、碎石等,杂填土则含有砖块、砼块等建筑垃圾或生活垃圾,大部分稍压实~欠压实,稍湿~湿。本层标贯击数6~18击,平均击数11击。 <4-2>河湖相沉积土层(Q3+4al) 呈深灰色、灰黑色,主要为淤泥及淤泥质土组成,组成物主要为粘粒,含有机质、朽木,饱和,

流塑状,局部夹薄层细砂。标贯实测击数1~2击,平均击数为1.5击。 <5H-2>硬塑~坚硬状花岗岩残积土层 黄褐色、红褐色、灰白色、灰褐色、黑褐色等色,组织结构已全部破坏,矿物成分除石英外大部分已风化成土状,较多细片状黑云母,以粉粘粒为主,含较多中粗砂、砾石。残积土遇水易软化崩解。主要为砾质粘性土、砂质粘性土、粘性土,呈硬塑~坚硬状。 <6H>花岗岩全风化带(γ53-2) 呈黄褐色、褐灰色、红褐色、黑褐色等,原岩组织结构已基本风化破坏,但尚可辨认,岩芯呈坚硬土柱状,遇水易软化崩解。局部夹强风化花岗岩碎块。 <7H>花岗岩强风化带(γ53-2) 呈黄褐色、褐灰色、红褐色、黑褐色等,原岩组织结构已大部分风化破坏,矿物成分已显著变化,风化裂隙很发育,岩石极破碎,岩块可用手折断。钾长石用手捏成砂状,斜长石、云母多已风化成高岭土或粘土。局部夹全风化花岗岩。岩芯呈半岩半土状,岩芯遇水易软化崩解。 <8H>花岗岩中等风化带(γ53-2) 呈浅褐色、灰褐色等,中、细粒结构,块状构造,岩石组织结构部分破坏,矿物成分基本未变化,风化裂隙被铁染,并充填少量风化物。斜长石矿物风化较深,钾长石、云母矿物风化轻微。岩质硬,锤击声稍脆,不易击碎。局部夹强风化岩。岩芯较破碎,呈短柱状、碎块状。 <9H>花岗岩微风化带(γ53-2) 岩石组织结构基本未变化,断口处新鲜,岩质坚硬,锤击声脆。岩芯呈长柱状、短柱状。 ㈡工程水文 地下水按赋存方式分为第四系松散土层孔隙水,块状基岩裂隙水。第四系冲积—洪积砂层为主要潜水含水层,冲积—洪积砂层含粘粒较多,富水程度较差,渗透系数仅为0.5~2.0m/d。块状基岩裂隙水主要赋存在燕山期花岗岩强风化带及中等风化带,水力特点为承压水,地下水的赋存不均一。在裂隙发育地段,水量较丰富,属承压水,渗透系数为1.09m/d。 区间场地环境类别为Ⅱ类。地下水对混凝土结构无腐蚀性,对钢筋混凝土结构中的钢筋无腐蚀性,对钢结构具弱腐蚀性。

盾构掘进管片拼装等施工方案作业方案

盾构掘进管片拼装等施工方案作业方案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

盾构掘进、管片拼装、壁后注浆、成型隧道施工方案施工方案 盾构掘进 掘进流程见图2-1-1。 用于本合同段掘进施工的土压平衡盾构的开挖土仓由刀盘、切口环、隔板、土压传感器及膨润土添加、泡沫注入系统组成。根据本合同段隧道地层条件,需选择土压平衡模式进行本合同段区间隧道的掘进。土压平衡掘进模式中土仓压力 的保持首先需选定土仓压力,掘进过程中通过调整推进力实现推进速度控制、通过调整螺旋输送机转速实现出碴量控制。具体方法如下: (1)土仓压力值P的选定 P值应能与地层土压力和静水压力相平衡,设刀盘中心地层静水压力、土压力之和为P0,则P=KP0,K一般取~。掘进施工过程中土仓压力根据试掘进时取得的经验参数并结合盾构所在位置的埋深、土层状况及地表监测结果进行调整与控制。

(2)推进速度控制 图2-1-1 盾构掘进控制程序图 土压力设定 土压力控制 掘进速度控制 监视

为保持土仓压力的稳定,掘进速度必须与螺旋输送机的转速相符合,同时必须兼顾注浆,确保浆液能均匀填实管片与地层的空隙,根据施工的实际情况确定并调整掘进速度控制推进油缸的推力。 (3)出碴量的控制 每环掘进出碴量根据试掘进段取得的参数进行控制。出碴量控制可通过推进速度与螺旋输送机转速来实现。 (1)姿态监控系统 盾构姿态监控通过SLS-T自动导向系统和人工测量复核进行盾构姿态监测。随着盾构推进导向系统后视基准点需要前移,必须通过人工测量来进行精确定位。为保证推进方向的准确可靠,拟每30~50m进行一次人工测量,以校核自动导向系统的测量数据并复核盾构机的位置、姿态,确保盾构掘进方向的正确。 (2)调整与控制 盾构共16组推进油缸,分五区,每区油缸可独立控制推进油压。盾构姿态调整与控制便可通过分区调整推进油缸压力事项盾构掘进方向调整与控制。 (3)纠偏措施 1)滚动纠偏 刀盘切削土体的扭矩主要是由盾构壳体与洞壁之间形成的摩擦力矩来平衡,当摩擦力矩无法平衡刀盘切削土体产生的扭矩时将引起盾构本体的滚动。盾构滚动偏差可通过转换刀盘旋转方向来实现。 2)竖直方向纠偏 控制盾构机方向的主要因素是千斤顶的单侧推力,它与盾构机姿态变化量间的关系非常离散,需要靠人的经验来掌握。当盾构机出现下俯时,可加大下侧千斤顶的推力,当盾构机出现上仰时,可加大上侧千斤顶的推力来进行纠偏。同时还必须考虑到刀盘前面地质因素的影响综合来调节,从而到达一个比较理想的控制效果。 3)水平方向纠偏

盾构隧道施工组织设计

第一章地质描述 第一节概述 一、概述 二、线路段工程地质条件 (一)、地形、地貌 。 (二)、岩土体工程地质特征 (三)、水文地质特征 区间地质描述 区间地质描述详见表7-1-1、表7-1-2;土体主要物理力学性质指标表7-1-3、7-1-4。。 一、科技路站 第三节补充地质勘察

第二章工程特点 第一节工程主要技术难点及对策 第二节工程的主要特点 一、交叉多,干扰大 集中体现在结构交叉多、工序交叉多、接口界面交叉多、专业交叉多、前期与后期交叉多,施工相互干扰较大。执行关键工期计划所发生的各规定部分的工期偏差,会影响其它作业。结构的多交叉,存在空间效应与体系转换问题。 二、地处市区,环境特殊 主要体现在地面建筑物密集,施工对周围环境的影响必须严格控制,文明施工要求严格,环境保护标准高。 三、任务重,系统性强 全部工程要求在33个月内完成。其中,盾构机需要引进,鉴定、安装、调试,前期试掘进进度会放缓,中间加快,出洞又会放缓,还要调头、转场,工序复杂,任务重。采用盾构机施工,这是隧道工厂化施工的模式,其系统性特别强,环节与环节之间的衔接、匹配是否合理,直接影响施工效率,直接影响施工的安全、质量、速度。四、地质复杂,施工难度大 地铁隧道主要穿越Ⅱ4、Ⅲ1层。Ⅱ4层以上主要为砂性土,其渗透性强,富水性好,围岩稳定性极差。Ⅱ4、Ⅲ1层水平分层,盾构机易磕头;且局部地区覆盖层过浅。施工中容易造成地面隆起或沉降。 第三章施工准备 施工准备工作是否充分、到位,将直接影响施工总体安排,影响主体工程能否按时开工,影响到工程开工后能否顺利进行,施工前必须做好各项准备。我局中标后,迅速组成项目部开展各项工作。在最

盾构掘进施工方案

目录 第一章综合说明 (3) 第一节施工组织设计编制说明 (3) 第二节工程概况 (5) 第二章工程重点、难点分析 (10) 第一节项目总体施工组织难度大 (10) 第二节砂卵石地层盾构施工 (10) 第三节盾构始发、到达施工 (11) 第四节盾构穿越建(构)筑物及管线施工 (11) 第五节盾构穿越河流施工 (13) 第六节盾构与现状10号线叠交 (14) 第三章总体部署、主要施工方案及工期计划安排 (16) 第一节总体部署 (16) 第二节总体目标 (21) 第三节施工组织机构 (21) 第四节主要施工方案 (27) 第五节总体施工进度计划 (27) 第四章设备配置情况 (28) 第一节盾构机配置情况 (28) 第二节其它设备配置情况 (46) 第五章劳动力计划、材料计划、资金计划 (48) 第一节劳动力计划 (48) 第二节材料计划 (50) 第三节资金计划 (50) 第六章盾构掘进施工 (52) 第一节盾构机的选型 (52) 第二节盾构施工准备 (53) 第三节盾构掘进施工工艺流程 (55) 第四节管片进场验收、存放及拼装 (100) 第五节盾构区间隧道洞内运输及外运弃土的施工方法 (105) 第七章施工监控测量 (107) 第一节施工测量 (107) 第二节施工监测 (110) 第八章风险识别与分析 (117) 第一节 D4~D5区间 (118) 第二节 D5~D6区间 (118) 第九章风险管理措施及实施细则 (119) 第一节风险管理措施 (119) 第二节风险管理实施细则 (123) 第十章事故应急处理预案 (128) 第一节盾构进出洞容易发生的一些透水、坍塌等事故 (128) 第二节盾构推进中建(构)筑物、管线变形过大,沉陷破坏事故 (128) 第三节掘进过程中突发进水事故 (129) 第十一章地下管线及周围建(构)筑物保护措施 (131) 第一节周围建(构)筑物、管线概况 (131) 第二节周围建(构)筑物、管线等的保护目标 (131) 第三节周围建(构)筑物、管线等的保护责任制 (131) 第四节周围建(构)筑物、管线等的调查方法与内容 (131) 第五节周围建(构)筑物、管线等民用、公共设施保护方案 (132) 第六节周围建(构)筑物、地下管线保护施工技术措施 (133)

盾构过空推段施工方案(1)

第一章编制说明及编制原则一、编制依据 ⑴《盾构法隧道施工与验收规范》(GB50446-2008); ⑵《地下铁道工程施工及验收规范》(GB 50299-2003); ⑶《复合地层中的盾构施工技术》竺维彬鞠世建著; ⑷《深圳地铁盾构隧道技术研究与实践》刘建国著; ⑸《西平站~蛤地站区间隧道纵断面及特殊地段处理措施》 ⑹《西平站~蛤地站区间地质勘察报告》 二、编制原则 ⑴坚持科学、先进、经济、合理与实用相结合的原则。 ⑵强化组织指挥,加强管理,保工期、保质量、保安全。 ⑶优化资源配置,实行动态管理。 ⑷采用监控措施和信息反馈及超前预报系统指导施工。 ⑸安全质量、文明施工、环境保护满足政府与业主的要求。 第二章工程概况 一、标段位置及范围

东莞市快速轨道交通R2线2307标段位于东莞市南城区,线路自东莞大道与西平二路口的西平站,沿东莞大道从东北往西南方向前进,过西平三路口、穿环城路高架桥、宏北路口后到达东莞大道与宏三路口的蛤地站。标段位置见图2-1所示。 标段工程全长2262.808m,由一站一区间(西平站、西平站~蛤地站区间)组成。西平站采用明挖顺作法施工,西平站~蛤地站区间隧道为两条单线隧道,地面条件为双向八车道主干道,中央绿化带较宽阔,两侧各设有一条辅道。区间采用盾构法施工,对中间硬岩段(左线367m、右线260m)则采用矿山法开挖,盾构空载推进衬砌。设风机房兼矿山法施工竖井1座、联络通道兼废水泵房1处、单独联络通道2处。标段工程范围见图2-2所示。 西平站 蛤地站 图2-1 标段工程位置图

西平站 区 间 终 点 里 程 Z D K 1 7 + 8 6 9 . 8 9 2 Z D K 2 + 1 6 3 . 3 9 9 区 间 起 点 里 程1 # 联 络 通 道 Z D K 1 9 + 3 9 8 . 6 2 4 . 3 # 联 络 通 道 蛤地站 2 # 联 络 通 道 左线 1528.732m 右线 1500.108m 左线 232.976m 右线 222.976m 左线 513.399m 右线 492.699m 矿 山 法 终 点 里 程 Z D K 1 9 + 6 5 . 中 间 风 机 房 矿山段盾构段 盾构段 矿 山 法 起 点 里 程 Y D K 1 9 + 3 7 . Y D K 1 9 + 6 4 . 矿 山 法 段 终 点 里 程 区 间 终 点 里 程 Y D K 1 7 + 8 6 9 . 8 9 2 中 间 风 井 起 点 里 程 中 间 风 机 房 终 点 矿 山 法 起 点 里 程 Z D K 1 9 + 4 1 7 . 2 4 Z D K 2 + 1 3 2 . 6 9 9 区 间 起 点 里 程 图2-2 标段工程范围图 二、设计概况 根据隧道所处的环境条件、地质条件、断面大小及埋深情况,隧道洞身大部分穿越中微风化花岗片麻岩,最大岩石饱和单轴抗压强度值为117Mpa,且部分地段上软下硬,盾构机掘进困难,故采用矿山法完成隧道开挖、初支,盾构通过拼装管片。左右线隧道均利用中间风井作为施工竖井进洞开挖。 矿山法隧道内净空尺寸为直径6400mm,在盾构机外径6280mm的基础上考虑120mm的盾构机工作空间;在矿山法隧道底部60°范围内设有半径3150mm,厚150mm的混凝土导向平台,用于引导盾构机按正确路线参数推进。 矿山法隧道左右线总长度484.526米,共有A型、B型、C型三种断面形式,矿山法隧道按锚喷构筑法进行施工,根据地质条件情况,盾构空推初支段分为A、B、C型衬砌类型进行施工。A型衬砌适用隧道全部处于中、微风化地层且顶板岩层较厚段,采用台阶法进行开挖;B型衬砌适用于隧道拱部范围处于强风化地层段,采用短台阶法进行开挖;C型衬砌适用于隧道拱部处于土层及全风化地段,采用环形台阶法进行开挖。其断面形式如图2-3、2-4、2-5所示。

施工方案-盾构下穿河道施工方案

一、工程概况 中和村站~元通站区间,设计里程为K2+983.05~K4+392.099,为单圆盾构区间,右线长度为1431.81m,左线长度为1453.491m,在K3+350和K3+908.500处分别有一个河道,盾构机在此两处将下穿河道近距离桩基施工。K3+350处河道长约m,宽约m,盾构与桥桩基距离约2m K3+908.5处河道长约m,宽约m,盾构与桥桩基距离约2m。二、工程地质水文情况 K3+350处隧道埋深13m,洞身经过地层为粉细砂层(②-3d2-3,中密,局部稍密);K3+908.5处隧道埋深15.8m,洞身经过地层为粉细砂层(②-3d2-3,中密,局部稍密),赋存与地下的水具有一定的承压性,但对砼不具腐蚀性,对砼结构中钢筋不具腐蚀性。地下水的补给来源主要为大气降水及生产、生活用水的入渗。 粉细砂层中分布有承压水,盾构推进时做好以下工作: 加强盾构掘进管理 1.加强同步注浆管理,控制注浆量。 2.充分压注盾尾油脂,防止泥水从盾尾进入。 3.加强盾构补压浆系统管理。由于土体已扰动,需要不断地调整各项参数,进行补压浆。 4.确保螺旋机的密封性能。 加强对施工范围的监测,及时反馈,调整施工参数。 三、桩基础情况 两处桥的桩基为钢筋砼结构,桩长约m,直径约m, 四、沉降控制措施 1.到达河道前的准备工作

1)准备支顶加固材料、注浆加固材料、抢险机具设备、车辆、警戒标识物等以备用。 2)在到达特殊段前选择一开挖面自稳性较好的地段对盾构机进行全面检修,减少在特殊地段停机检修的风险。 3)对破损较大的盾尾刷进行更换。 4)全面检测刀具,对磨损超标的刀具进行更换。 5)对堵塞的注浆管进行疏通处理。 6)对分别通往开挖面、土仓、螺旋输送器的主从泡沫管进行疏通,并在刀盘面中心附近增设1根泡沫管。 2.盾构机通过技术措施 1)做好各项准备工作,提前对盾尾密封进行检查。 2)调整同步注浆浆液的配合比,缩短凝结时间,同时增大注浆量和注浆压力。 3)在盾构机通过后及时进行二次双液注浆,通过调整水泥水玻璃的配比参数,控制双液注浆的凝结速度,达到加固土体和加固充填溶洞的目的。 4)加强掘进姿态控制,全面贯彻信息化施工。 5)同时备好抽排水设备等应急设备和物资,制订应急抢险预案。 3.盾构掘进过程的施工技术 掘进过程的施工技术:要求盾构在通过该特殊段时有序、平衡、平稳。

盾构掘进施工安全技术交底

盾构掘进施工安全技术交底 1.一般要求: (1)采用敞开式盾构掘进,土层中有水时,必须采取降水等控制措施。 (2)设备的电气接线与拆卸必须由电工操作,使用前应由电工检查,确认合格。 (3)穿越铁路、轨道交通、房屋等建(构)筑物时,应采取防护措施,并经管理单位同意方可施工。 (4)盾构掘进施工宜使用盾构机,施工前应根据工程与水文地质情况、设备供应情况,选择适宜的盾构机械类型。 (5)盾构施工中,渗漏、遗洒的液压油和各种浆液等应及时处理,保持作业环境清洁,且不得堵塞排污管道和污染地下水。 (6)盾构进出竖井前应对隧道洞口的土体进行加固,并完成封门施工;土体加固范围应根据地质条件和隧道埋深确定,且长度不得小于盾构长度,宽度不得小于盾构两侧外各2m。 (7)盾构及其部件在吊运中应加强保护,不得损坏和变形;盾构设备在现场总装调试合格并形成文件后,应试掘进50m~l00m,待确认正常后,方可正式投入使用;盾构在使用中应定期检查、维修和保养。 (8)盾构在保养和维修中严禁自行更换、改装原有配件,配件有损坏时应采用原生产企业提供的备用件或经设计部门、上级主管部门批准使用的加工件,盾构的保养和维修必须在完全停机,并采取安全技术措施情况下进行。 (9)施工过程中,必须按监控量测方案的规定,布设监测点,设专人

对下列情况进行观察量测并记录,随时分析,确认正常: 1)成洞管片隆陷、裂缝和变形。 2)影响区内地面和地下管线等构筑物隆陷。 3)影响区内地上建筑物的隆陷、位移、裂缝、倾斜等。 2.设备与辅助装置 (1)始发竖井上起重设备宜采用门式起重机。 (2)后背结构的安装、拆除应采用始发竖井的起重设备进行。 (3)盾构设备进入接收竖井并就位后,应立即关机、断电、卸压。 (4)后背结构应根据盾构最大顶力进行施工设计,经计算确定;后背结构应安装牢固、与竖井壁贴实,并与顶力轴线垂直,符合施工设计要求;拆除后背应符合下列要求: 1)拆除时,非作业人员严禁进入竖井。 2)拆除的设备和材料应及时运走或按指定地点码放整齐。 3)当成洞管片与周围土壤间的总摩擦力大于最大顶力后,方可拆除后背。 4)安装盾构设备前竖井支护结构和基座混凝土应达到设计强度;导轨安装应经验收,确认合格;安装盾构设备,应采用起重机进行;高处作业应支搭作业平台;安装盾构设备必须严格按设备使用说明书的规定进行。 (5)竖井内采用组装管片传递反力时,应符合下列要求: 1)组装管片端面应与隧道轴线垂直。 2)组装管片环向应圆顺,拴接应牢固。 3)组装管片应固定牢固,与后背之间应贴实。

盾构正常掘进施工方案

东莞市轨道交通R2线【天宝站~东城站】盾构区间 土建工程 盾构掘进施工工艺

1工程概况 东莞市城市快速轨道交通R2线工程(东莞火车站~东莞虎门站段)线路起始于石龙镇西湖区,终点于虎门镇白沙村。试验段2304标土建工程施工项目包括下天区间盾构吊出井~天宝站区间、天宝站、天宝站~东城路站区间、东城路站。 下天区间盾构吊出井~天宝站区间里程范围为右线R2YDK9+740.48~R2YDK10+790.3,全长1049.82m, 左线R2ZDK9+751.44~R2ZDK10+790.3,全长1038.86m,区间隧道采用盾构法施工,线路纵断面为V形坡,最大坡度为15‰,线路埋深为13.5~19m,隧道顶覆土8.5~14m,区间隧道主要穿越在<6-6>砂质粘性土层中。线路出东宝路站后沿莞龙路向西南方向前进,到达莞龙路与东城中路交汇路口处以R=600的半径转至南北走向的东城中路上,随后进入温南路口位置的温南路站,最小曲线半径为R600m。在 R2YDK10+216里程处设联络通道兼废水泵房,采用矿山法施工。区间隧道局部下穿永昌汽车维修服务中心的一栋A2浅基础房屋,其余建筑物与隧道平面近距最小为4.72米,地表场地条件较好。 天宝站位于东城中路和温南路交汇处,埋设于东城中路下呈南北向布置。车站范围内控制管线为沿东城中路东、西两侧各一根直径2.2m,埋深约3.5m 的给水管。车站有效站台中心里程为R2YDK10+908.50,车站总长195.7m,标准宽度19.7m,主体结构为地下两层单柱两跨钢筋混凝土结构形式,车站两端均为盾构始发井。车站共设置4个出入口,2组8个风亭。车站主体采用明挖法施工,围护结构为800mm厚的地下连续墙+竖向3道内支撑。附属工程大部分采用明挖顺筑法施工,围护结构为φ800@950钻孔灌注桩,桩间施工φ600双重管旋喷桩止水帷幕,竖向设置两道内支撑;通道下穿φ2200东江供水管段采用矿山法施工。 天宝站~东城站区间里程范围为右线R2YDK10+986~R2YDK12+400.70,长1414.7m,左线R2ZDK10+986~R2ZDK12+400.70,长1420.04m(长链5.34m),区间隧道采用盾构法施工,线路纵断面为V形坡,最大坡度为26‰,线路埋深为13m~15.5m,隧道顶覆土8m~10.5m,区间隧道主要穿越在<6-6>砂质粘性土、<10-1>全风化混合片麻岩和<10-2>强风化混合片麻岩中。线路出温南路站后,沿东城中路向南前进,先后通过万园东路路口、东纵路口后,到达位于东城中路和东城路口北侧的东城路站。在R2YDK11+521.44里程处设1#联络通道,在R2YDK11+842处设置2#联络通道兼废水泵房,联络通道采用矿山法施工。区间线路大多沿直线前进,最小曲线半径R=1300m。

盾构到达施工方案

第三章盾构到达施工 1、盾构到达工艺流程 盾构到达工艺流程(见图 图盾构到达工艺流程图 2、到达端头井地层加固 根据设计要求,盾构到达端头加固采用两排三重管旋喷桩Φ800@600+袖阀管注浆加固。先注外围,后注中部,以达到一序外围成墙、二序内部压密的目的。采用跳孔注浆的原则,以达到释放压力,防止地面隆起。加固范围:水平盾构区间左右各3m;竖向盾构隧道上部6m处,下部深入中风化岩层1m。加固后的土体应有良好的均匀性和自立性,无侧限单轴抗压强度≥,地层渗透系数不大于10-5cm/sec。 3、盾构接收托架安装 托架安装前,通过车站临时预留口将地面控制点坐标引入车站底板,根据设计中心线计算出线路中心线坐标,进行中心线放样,托架高程放样时,高程一般比设计高程低2cm左右,测量点位放样精度控制在3mm以内。 接收托架主要采用型钢(工字钢、H型钢、钢板)焊接组成。 将预制好的盾构托架(见盾构机接收架构造图-1a、)吊入工作井内,按照测量放样的基线进行接收托架定位,托架定位采用吊车进行初步定位,再通过千斤顶和手拉倒链进行精确定位,定位精度在±5mm之内。(见盾构机接收托架定位

图考虑接收架在盾构到达时要承受纵向、横向的推力以及抵抗盾构旋转的扭矩,所以在盾构到达之前,对接收架两侧用H型钢进行加固(见盾构机接收架加固图)。 图 -1a 盾构机接收架构造平面图 mm。 图盾构机接收架构造立体图

图 盾构机接收架安装定位 图 到达托架的加固 4、洞门混凝土的凿除 洞门混凝土凿除分两次进行,第一次洞门凿除在盾构掘进到到达端前进行,切除外排钢筋,并凿除外排钢筋和内排钢筋间混凝土;第二次洞门凿除在盾构机掘进到到达端后,切除内排钢筋。 1)脚手架的搭设 盾构到达前需凿除洞圈范围内的围护结构。施工前,在洞圈内搭设钢管 脚手架(钢材规格:Q235,外径42.7mm ,壁厚2.3mm ),搭设高度6~7m,洞门凿除时间为7天左右。(详见洞口内脚手架布置图)。 @1000 7700 @1000观测孔 脚手架 1200 300 1500盾构 脚手架 图 洞口内脚手架布置图 凿除洞门混凝土之前,对洞门加固土体进行钻芯取样,检测土体的加固强度是否达到设计要求(加固体抗压强度不小于1Mpa ,渗透系数1×10-5cm/min ),如

盾构掘进施工方案

盾构掘进施工方案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

目录 一、工程概况 ......................................................................................... 错误!未定义书签。 工程地理位置及线路走向............................................................ 错误!未定义书签。 工程范围 ....................................................................................... 错误!未定义书签。 设计概况 ....................................................................................... 错误!未定义书签。 区间线路设计 ....................................................................... 错误!未定义书签。 盾构隧道设计 ....................................................................... 错误!未定义书签。 联络通道设计 ....................................................................... 错误!未定义书签。 防水设计 ............................................................................... 错误!未定义书签。 工程地质与水文地质.................................................................... 错误!未定义书签。 地形地貌 ............................................................................... 错误!未定义书签。 工程地质 ............................................................................... 错误!未定义书签。 沿线周边环境 ...................................................................... 错误!未定义书签。 地下管线 .............................................................................. 错误!未定义书签。 二、工程总体筹划安排......................................................................... 错误!未定义书签。 组织机构 ....................................................................................... 错误!未定义书签。 管理制度标准化............................................................................ 错误!未定义书签。 盾构区间施工组织安排................................................................ 错误!未定义书签。 总进度关键线路............................................................................ 错误!未定义书签。 主要进度指标 ................................................................................ 错误!未定义书签。 资源配置计划 ................................................................................ 错误!未定义书签。 三、盾构区间隧道掘进施工................................................................. 错误!未定义书签。 盾构试掘进 ................................................................................... 错误!未定义书签。 盾构正常掘进 ............................................................................... 错误!未定义书签。 盾构掘进参数的调整 .......................................................... 错误!未定义书签。 盾构掘进流程及操作控制程序 ........................................... 错误!未定义书签。 盾构方向的控制与调整 ...................................................... 错误!未定义书签。 碴土管理 ............................................................................... 错误!未定义书签。 同步注浆及二次补强浆 ....................................................... 错误!未定义书签。

盾构始发、掘进及到达安全专项施工方案

目录

盾构始发、掘进及到达安全专项施工方案 1、编制依据与原则 1.1 编制依据 ⑴南宁地铁1号线工程土建施工15标段承包合同。 ⑵南宁地铁1号线工程土建施工15标段实施性施工组织设计。 ⑶南宁地铁1号线工程土建施工15标段南湖站~金湖广场站、金湖广场站~会展中心站区间岩土工程勘察报告(详勘)。 ⑷南宁地铁1号线工程土建施工15标南湖站~金湖广场站区间、金湖广场站~会展中心站区间施工图纸。 ⑸本工程现场调查资料。 ⑹国家或南宁市现行有关施工及验收规范、规则、质量技术标准等方面的规定。 ①《地下防水工程质量验收规范》(GB50208-2011) ②《地下铁道工程施工及验收规范》(GB50446-2008); ③《城市轨道交通技术规范》(GB 50490-2009); ④《城市轨道交通工程项目建设标准》(建标104-2008); ⑤《建筑工程检测试验技术管理规范》(JGJ 190-2010); ⑥《盾构法隧道施工与验收规范》(GB50446-2008); ⑦《城市轨道交通工程测量规范》(GB 50308-2008); ⑧《盾构隧道管片质量检测技术标准》(CJJ/T 164-2011); ⑨《建筑防腐蚀工程施工质量验收规范》(GB50224-2010); ⑩《地下工程渗漏治理技术规程》(JGJ/T 212-2010); ⑺我公司在北京、南京、苏州、杭州、宁波、广州等地的地铁施工经验和研究成果及现有的施工管理水平、技术水平、科研水平、机械设备配套能力和资金投入能力。 1.2 编制原则 ⑴坚决以施工安全作为第一准则,制定有效防范措施及应急处置措施,确保盾构始发、掘进、到达时的安全。 ⑵根据施工工况、技术条件、荷载特性、工程地质及水文地质条件,科学、合理、安全、有效的进行方案编制。

盾构机到达掘进施工方案

盾构机到达掘进施工方案 1 盾构到达施工流程见下图: 盾构机到达施工是指从盾构机到达接收井之前50m 到盾构机贯通区间隧道进入盾构井或是被推上盾构接收基座的整个施工过程。其工作内容包括:盾构机定位及接收洞门位置复核测量、地层加固、洞门处理、安装洞门圈密封设备、安装接收基座等。 2 盾构到达的准备工作 (1)盾构机定位及接收洞门位置复核测量 在盾构推进至盾构到达范围时,对盾构机的位置进行准确的测量,明确成洞隧道中心轴线与隧道设计中心轴线的关系,同时对接收洞门位置进行复核测量,确定盾构机的贯通姿态及掘进纠偏计划。在考虑盾构机的贯通姿态时注意两点:一是盾构机贯通时的中心轴线与隧道设计轴线的偏差,二是接收洞门位置的偏差。综合这些因素在隧道设计中心轴线的基础上进行适当调整。纠偏要逐步完成,每一环纠偏量不能过大。 (2)进洞段的土体加固 到达前提前进行端头加固,并确保加固效果满足盾构机到站掘进要求。 (3)洞门破除 在盾构机到达后,对洞门进行破除。洞门破除方案及流程见5.1.4。 洞门密封的安装 接收托架安装与固定 掘进参数调整 到达段掘进 贯通同时锁紧洞口密封 盾构机推进至接收托架 洞门凿除 掘进方向控制 盾构到达施工流程图

(4)洞门密封的安装 密封环是确保在盾构机进站时密封性,保证盾构与明挖结构结合部的壁后注浆充填密实而特制的。密封装置安装时其密封胶圈与预埋钢圈密贴,全部螺栓紧固有效。扇形板活动自如。该密封装置安装好后需做钢丝绳收紧扇形板试验,确保达到设计要求。 (5)接收基座的安装 接收基座的中心轴线应与隧道设计轴线一致,同时还需要兼顾盾构机出洞姿态。接收基座的轨面标高除适应于线路情况外,适当降低20mm,以便盾构机顺利上基座。为保证盾构刀盘贯通后拼装管片有足够的反力,将接收基座以盾构进洞方向+5‰的坡度进行安装。 要特别注意对接收基座的加固,尤其是纵向的加固,保证盾构机能顺利到达接收基座上。 3 盾构到达主要技术要点与措施 (1)根据盾构机的贯通姿态及掘进纠偏计划进行推进,纠偏要逐步完成,每一环纠偏量不能过大。 (2)在盾构机距离端头墙50m时,选择合理的掘进参数,逐渐放慢掘进速度,控制在20mm/min以下,推力逐渐降低,缓慢均匀地切削洞口土体,以确保到达端墙的稳定和防止地层坍塌。 (2)到达前30m掘进为到达段施工,在本段施工中主要采取辅助措施加强管片环间连接,以防盾构掘进推力的减少引起环间松动而影响密封防水效果。 (2)为防止因刀盘反力不足引起管片环缝接触松弛、张开并造成漏水,盾构到达段最后10环管片用[14b槽钢将管片沿隧道纵向拉紧,见下图: 盾构到达段管片拉紧图 (3)盾构进入到达段后,加强地表沉降监测,及时反馈信息以指导掘进。

盾构接收掘进施工方案

盾构接收掘进施工方案 1、盾构接收施工工艺流程 盾构接收施工工艺流程如下图所示: 盾构接收施工工艺流程图 场地移交 洞门复测 盾构机姿态调整 接收架定位、加固 洞门防水装置安装 洞门破除 导轨安装 盾构接收 2、盾构接收施工准备工作 2.1洞门加固及施工降水 洞门加固及降水措施同前节。 2.2测量和姿态调整 (1)盾构姿态人工复核测量 在盾构贯通前严格按照业主要求在距贯通面150~200m时进行包括联系测量在内的线路复测。要对洞内所有的测量控制点进行一次整体的、系统的控制测量复核,对所有控制点的坐标进行精密、准确的平差计算。 在100m和50m处对导向系统进行复核测量。在盾构到站前的最后一次导向系统换站时,充分利用在贯通前150~200m时线路复测的结果,精确测量测站、

后视点的坐标和高程。同时,在贯通前50m时,进一步加强管片姿态监测与控制。 (2)接收洞门复核测量 为准确掌握接收洞门施工情况,在盾构贯通前对盾构接收洞门进行复核测量,测量项目包括:洞门中心位置偏差、洞门钢环圆度复测等。 (3)盾构姿态调整 根据盾构姿态测量和洞门复测结果,逐渐将盾构姿态调整至预计的位置。确定盾构贯通姿态时,一般考虑盾构接收时施工进度较慢,盾构存在下沉的情况,贯通前30m可逐渐将盾构姿态抬高15mm。 2.3盾构接收架安装与加固 在盾构接收前需要复核接收井洞门中心位置和接收架平面、高程位置(接收架安装一般以低于洞圈面20mm为准),确保盾构机能顺利、平稳的推上接收架。 在接收架定位完成后,应对接收托架四周采用I20b工字钢进行加固,防止其移动,具体加工方法根据现场实际情况确定。 盾构接收架安装与加固示意图 2.4洞门止水帘幕安装 盾构接收洞门止水装置由帘布橡胶板、翻板及螺栓组成。在盾构机到达前20环开始进行洞门止水装置安装。安装洞门止水装置同始发方式一致。 2.5洞门破除 接收端洞门破除在盾构机顶至车站连续墙时,此时盾构机已进入加固区、距离洞门1环位置开始进行洞门凿除。 洞门凿除相关准备工作:

盾构始发掘进施工控制方案

盾构始发掘进施工控制方案盾构掘进施工控制是工程能否顺利实施的关键,是保障盾构顺利通过掘进的关键,也是规避滞后沉降风险的基本手段。 盾构机掘进的前120m(80环)作为始发段,通过始发段掘进拟达到以下目的: (1)用最短的时间对盾构机进行调试、熟悉机械性能。 (2)熟悉本工程的地质条件,掌握各地质条件下该复合式盾构的具体施工方法。 (3)收集、整理、分析及归纳总结各地层的掘进参数,制定正常掘进各地层操作规程,为实现快速、连续、高效的正常掘进提供依据。 (4)熟练管片拼装的操作工序,提高拼装质量,加快施工进度。 (5)通过本段施工,加强对地面变形情况的监测分析,反映盾构机始发时以及试推进时对周围环境的影响,掌握盾构推进参数及同步注浆量。 1始发掘进技术要点 1、盾构托架安装前应检查洞门土体加固效果、应精确实测洞门轮廓,如果其偏差值超过设计要求,应采取措施处理妥当后方可进行下步工作。 2、要严格控制始发基座、反力架和负环的安装定位精度,确保盾构始发姿态与设计线路基本重合。 3、第六环负环管片定位时,管片的后端面应与线路中线垂直。负环管片轴线与线路的轴线基本重合,但只可偏上,误差控制在20mm以内。负环管片采用错缝拼装方式。 4、盾构机轴线与隧道设计轴线保持平行,盾构中线比设计轴线适当抬高2~3cm。 5、始发前采取人工测量对自动测量导向系统进行多次复核,确保该系统工作正常、数据可靠;始发时,每环也必须进行人工测量复核,直至盾构自动测量导向系统确实进入到正常工作状态为止。 6、盾构在基座上向前推进时,各组推进油缸保持同步。 7、初始掘进时,盾构机处于基座上,盾体与基座的摩擦力不足以为提供足够的扭矩。因此,盾体上焊接防扭转块,为盾构机初始掘进提供反扭矩。

盾构掘进专项施工方案

目录 1 盾构掘进流程 (2) 2 盾构掘进操作控制程序 (3) 3 掘进模式的选择及操作控制 (4) 4 盾构掘进方向控制与调整 (7) 5 管片拼装 (10) 6 掘进中的碴土改良 (14) 7 盾构掘进注浆方案及主要技术参数 (14) 8 施工运输 (14) 9 盾构设备保养、维修制度 (14)

1 盾构掘进流程 盾构机100米试掘进完成后,此时盾构机及后配套已全部进入隧道内,可暂停掘进,进行盾构始发井各项设施换装,拆除反力架及负环管片,铺设道岔,采用双线运输。按正常施工进行列车编组:1辆45T电瓶车+3辆18m3碴土车+2辆管片车+1辆砂浆车,共分为2组。 采用两列编组完成一个循环的施工。区间正常掘进流程见下图所示。 图8.1-1 正常掘进流程图

2 盾构掘进操作控制程序 掘进控制操作控制程序如下图所示。 图8.2-1 盾构掘进控制流程图

3 掘进模式的选择及操作控制 3.1 不同掘进模式的特点及适用条件 本标段选用的盾构机为土压平衡盾构机,具有敞开式、半敞开式和土压平衡式三种掘进模式,每一种掘进模式具有不同的特点和适用条件。 3.2 掘进模式的选择 由于本工程穿越的土层:隧道穿越地层及洞壁周边地层以(9-2)粘土、(9-3)粉质粘土、(9-5)粉土、(9-6)粉砂为主,局部地段还分布中砂,围岩稳定性差,开挖后易发生侧向变形;底板地层以粘性土为主,开挖后发生基底隆起变形。采取土压平衡的掘进模式。 3.3 掘进参数控制与优化 根据我公司在盾构施工中所总结的经验,结合本区间正常掘进时下穿一级风险源,施工的主要参数如下表: 下穿南太桥盘龙江技术参数表3.3-1 表3.3-2 表3.3-3

盾构掘进管片拼装等施工方案

盾构掘进、管片拼装、壁后注浆、成型隧道施工方案 施工方案 1.1盾构掘进 掘进流程见图2-1-1。 用于本合同段掘进施工的土压平衡盾构的开挖土仓由刀盘、切口环、隔板、土压传感器及膨润土添加、泡沫注入系统组成。根据本合同段隧道地层条件,需选择土压平衡模式进行本合同段区间隧道的掘进。土压平衡掘进模式中土仓压力 的保持首先需选定土仓压力,掘进过程中通过调整推进力实现推进速度控制、通过调整螺旋输送机转速实现出碴量控制。具体方法如下: (1)土仓压力值P的选定 P值应能与地层土压力和静水压力相平衡,设刀盘中心地层静水压力、土压力之和为P0,则P=KP0,K一般取~。掘进施工过程中土仓压力根据试掘进时取得的经验参数并结合盾构所在位置的埋深、土层状况及地表监测结果进行调整与控制。

(2)推进速度控制 为保持土仓压力的稳定,掘进速度必须与螺旋输送机的转速相符合,同时必须兼顾注浆,确保浆液能均匀填实管片与地层的空隙,根据施工的实际情况确定并调整掘进速度控图2-1-1 盾构掘进控制程序图 土 压 力 设 定土 压 力 控 制掘 进 速 度 控 制监 视

制推进油缸的推力。 (3)出碴量的控制 每环掘进出碴量根据试掘进段取得的参数进行控制。出碴量控制可通过推进速度与螺旋输送机转速来实现。 (1)姿态监控系统 盾构姿态监控通过SLS-T自动导向系统和人工测量复核进行盾构姿态监测。随着盾构推进导向系统后视基准点需要前移,必须通过人工测量来进行精确定位。为保证推进方向的准确可靠,拟每30~50m进行一次人工测量,以校核自动导向系统的测量数据并复核盾构机的位置、姿态,确保盾构掘进方向的正确。 (2)调整与控制 盾构共16组推进油缸,分五区,每区油缸可独立控制推进油压。盾构姿态调整与控制便可通过分区调整推进油缸压力事项盾构掘进方向调整与控制。 (3)纠偏措施 1)滚动纠偏 刀盘切削土体的扭矩主要是由盾构壳体与洞壁之间形成的摩擦力矩来平衡,当摩擦力矩无法平衡刀盘切削土体产生的扭矩时将引起盾构本体的滚动。盾构滚动偏差可通过转换刀盘旋转方向来实现。 2)竖直方向纠偏 控制盾构机方向的主要因素是千斤顶的单侧推力,它与盾构机姿态变化量间的关系非常离散,需要靠人的经验来掌握。当盾构机出现下俯时,可加大下侧千斤顶的推力,当盾

相关文档
最新文档