光纤激光器综述

光纤激光器综述
光纤激光器综述

摘要:光纤激光器技术是光学领域最为重要的技术之一,作为第三代激光技术的代表,其稳定性好、效率高、阈值低、线宽窄、可调谐、紧凑小巧和性价比高等优点,使得它在光纤传感、光纤通信、工业加工等领域都有着重要的应用。而掺镱双包层光纤激光器是国际上近年来发展的一种新型固体激光器。本文就介绍了这种高功率掺镱双包层光纤激光器,主要介绍了高功率掺镱双包层光纤激光器的概念、发展历史及发展现状、基本原理、优点、实现的关键技术、应用及其广阔的前景。同时总结出了未来光纤激光器的发展方向,并且可以预计光纤激光器最终将可能会替代掉全球大部分高功率CO2激光器和绝大部分Y AG激光器。

关键词:光纤激光器;掺镱双包层光纤激光器;光纤融合技术;激光加工。引言

光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,虽然光纤激光器得到了社会各方面的广泛重视,但是光纤激光器并不是新型光器件。1961年,美国光学公司的Snitzer和Koester等在一根芯径300um的掺Nd3+玻璃波导中进行试验观察到了激光现象,并与1963年和1964年发表了多组分玻璃光纤中的光放大结果,提出了光纤激光器和光纤放大器的思想。1975~1985年中有关这个领域的文章较少,不过在这期间许多发展光纤激光器的必须工艺技术已趋于成熟[1]。上个世纪80年代后期,美国Polaroid公司提出了包层抽运技术,之后双包层光纤激光器,特别是掺镱双包层光纤激光器发展非常迅速。1994年,PASK 等首先在掺Yb3+石英光纤中实现了包层抽运,得到了0.5W的最大激光输出。1998年,Lucent技术公司的KOSINKI和INNISS报道了一种内包层截面形状为星形的掺Yb3+双包层光纤激光器,得到了20W的激光输出。1999年,DOMINIC等用4个45W的半导体激光二极管阵列组成总功率为180W的抽运源,在1120nm 得到110W的激光输出。2002年,IPG公司公布了2000W的掺Yb3+双包层光纤激光器。目前,该公司已经推出了输出功率为17kW的掺Yb3+双包层光纤激光器,虽然因为采用的是多组激光合束的方式,致使激光器的光束质量下降很大,但仍然在对功率要求高、光束质量要求不是很高的场合有非常好的应用前景。但如何提高功率,同时又保证光束质量,是当前研究要解决的难题之一。

在国内,关于掺Yb3+双包层光纤激光器的研究起步较晚。从上个世纪年80

代末,相继有一些科研单位进入光纤激光器研究领域并获得了一定的进展。2005年,烽火通信科技股份有限公司与上海光机所合作,成功研制出输出功率高达440W的掺镜双包层光纤激光器[2],其功率而后被进一步提到714W。长春光机所也开展了高功率双包层光纤激光器的研究工作,全光纤结构实现10.8w1070nm 激光输出。总体而言,由于受基础条件方面的制约,国内光纤激光器研究同国际水平还有相当大的差距。

1. 掺镱双包层光纤激光器原理

双包层光纤的结构如图1所示,由里到外分别为纤芯、内包层、外包层和保护层。它比普通单模光纤增加了一个内包层,其横截面尺寸和数值孔径都远大于纤芯。内包层与掺稀土离子纤芯之间构成单模光波导,将激光限制在纤芯当中;同时它又与外包层构成了传输抽运光的多模光波导,使得抽运光在内包层中反射并多次穿越纤芯被掺杂离子所吸收,从而将抽运光高效地转换为单模激光,极大提高了光-光转换效率。

最初研制出的是圆形内包层双包层光纤,如图2a所示,它的优点是制造工艺简单。但是也有严重的缺陷:圆形对称使内包层中有大量抽运光以螺旋光的形式存在,这部分光在传输过程中不经过纤芯, 因此不能被Yb3+离子吸收降低了抽运光的利用效率。为了克服这个缺陷,国内外研究者相继提出了多种新型内包层形状的双包层光纤,譬如偏芯型、方形、矩形、六边形、梅花形、D形等,如图2所示。不同内包层形状的光纤具有不同的抽运激光转换效率,此外,内包层的横截面积和数值孔径也会影响抽运激光耦合效率[3]。

掺镱光纤激光器的基本结构如图3所示, 包括抽运源、耦合系统、增益介质、谐振腔和准直系统5个部分。掺各种稀土元素的双包层光纤都可构成双包层光纤激光器,由于掺镱的光纤激光器具有量子效率高、增益带宽大、无激发态吸收、吸收带宽以及可以采用波长在915nm或980nm附近的多模大功率半导体激光器泵浦的特点,尤其适合于高功率器件,因此在双包层光纤激光器家族中尤显重要,其单台输出功率已达300W,多台组合后的输出功率可达千瓦。

掺杂在硅基玻璃光纤镱Yb3+离子的能级及Spark分裂能级,与其他稀土离子相比,Yb3+能级结构十分简单,如图4a所示,与激光跃迁相关的能级只有两个多重态能级2F5/2和2F7/2,当Yb3+掺入石英光纤之后,这两个能级将引起的斯塔克效应而分裂。在室温下2F5/2分裂成两个可分辨的能级,2F7/2分裂成三个可分辨的能级[4],如图所示,因此镱离子掺杂的光纤具有宽的吸收带宽和发射带宽,从970 到1064nm 是吸收和发射谱重叠部分,镱离子如此宽的吸收带可以选择许多激光器作为泵浦源,具有较高的吸收和转换效率。镱离子的其它能级都在紫外区,由于没有高能级的存在,因此以镱Yb离子掺杂光纤可以消除多光子弛豫及激发态吸收的影响,适合于发展高功率激光器件。对镱离子次能级分析认为,镱掺杂光纤激光器一般被泵浦到其亚稳态2F5/2多重态较高的次能级上,2F5/2能级寿命在760um。当发射波长小于990nm时,其行为是一种真实的三能级跃迁系统(跃迁A),而在较长的波长,从1000nm 到1200nm 时(跃迁B),其行为更象是一种准四能级系统。镱Yb3+离子掺杂光纤也具有相当高的吸收和发射横截面

积,如图4b所示为典型镱离子吸收和发射截面。掺Yb3+光纤激光器是1.0-1.2um 的通用光源,Yb3+具有相当宽的吸收带(800-1000nm)以及相当宽的激发带(970-1200nm),最佳吸收位于915nm和975nm的半导体激光器输出波长,而且没有受激态吸收。

2. 掺镱双包层光纤激光器的优点

光纤激光器是一种高效的波长转换器,由泵浦光波长转换为所掺稀土离子的激射波长。因此利用与稀土离子吸收光谱相对应的不同波长、高功率且廉价的半导体激光器作为泵浦源,以获得不同波长的输出激光[5]。从其原理可知,它与其它传统激光器相比,在效率、体积、冷却和光束质量等方面,均占有明显的优势,其主要特点如下:(1)效率高,容易实现高功率输出。掺镱双包层光纤在915nm、940nm特别是975nm带具有非常高的吸收,而这3个波段的半导体激光器工艺成熟,因此非常容易选择到合适的抽运源;由于内包层的横截面尺寸和数值孔径都较大,可易实现高耦合效率,从而实现高功率激光输出,斜率效率一般在60%以上,电光转换效率大于20%;(2)输出激光光束质量好。因输出激光光束由光纤纤芯的波导结构决定,不因受热变形而变化,故其输出光束质量易达到单横模激光输出;(3)散热特性非常好。双包层光纤激光系统是采用细长的掺杂光纤本身作为增益介质,表面积与体积之比很大,散热性能非常好。对于连续输出110W 的光纤激光器,若将光纤盘绕成环状,只需简单风冷即可;(4)结构简单,体积小,使用方便。双包层光纤激光器以光纤本身作为增益介质,谐振腔是由增益光纤的2个端面粘贴双色镜或增益光纤两端刻写的光纤布喇格光栅构成,腔体结构简单,并且光纤柔软几乎可弯曲盘绕成任意形状。抽运源采用的是光纤输出、体积小、模块化的高功率半导体激光器。因此双包层光纤激光器具有使用灵活方便

的特点。下表是各种激光器的性能对比[6],可看出高功率光纤激光器的各项性能指标远优于固体激光器,因此光纤激光器被一致认为是有可能全面替代固体激光器的新一代产品。

3. 掺镱双包层光纤激光器的关键技术

高功率光纤激光器的发展越来越成熟,实现高功率光纤激光器的关键技术主要有以下几点:

(1)包层泵浦技术:常规的光纤激光器采用普通的单模光纤做增益介质,耦合效率极低,很难得到高功率的光纤激光。包层泵浦技术的出现,极大提高了泵浦光的耦合效率,包层泵浦技术是通过双包层光纤来实现的。计算结果表明,同心圆形结构的吸收效率最低,而非圆形的内包层结构对泵浦光的吸收效率很高,理想情况可达到100%。

(2)光纤融合技术:高功率光纤激光器的另一项关键技术就是将泵浦源输出的光功率有效地耦合到增益光纤中去。要获得高功率的光纤激光,就需要高输出功率的泵浦源(一般为半导体激光器列阵),将半导体激光器列阵输出的几千瓦的激光耦合进入一根双包层增益光纤是一件很困难的事情,耦合效率将很低。因此采用树杈形光纤,将多个激光二极管输出的光同时耦合进增益光纤是最好的解决方案,即每个激光二极管输出的光由多模光纤导出,采用光纤集合熔接技术,将多根多模光纤融合成一根光纤,制成光纤模块。这样可使单根光纤的输出能量

在百瓦级,同时解决了半导体激光列阵集成模块的散热问题。这样可以将多个激光二极管输出的光几乎无损地耦合进增益光纤的内包层,有效提高泵浦效率。

(3)谐振腔的制备技术:制备合适的光学谐振腔是高功率光纤激光器实用化的又一项关键技术。目前,高功率光纤激光器的谐振腔主要有两种,一种是采用二色镜构成谐振腔,但这种方法给泵浦光的耦合以及光纤激光器的封装都带来很大困难,不利于光纤激光器的实用化和商品化。另一种是采用光纤光栅做谐振腔。而且光纤光栅是一种低损耗器件,具有非常好的波长选择特性,它的采用简化了激光器的结构,同时提高了激光器的信噪比和可靠性、窄化了线宽、提高了光束质量,而且,通过应力调节可以进行波长调谐。此外,采用光纤光栅做谐振腔可以将泵浦源的尾纤与增益光纤有机地熔接为一体,避免用二色镜和透镜组提供激光反馈带来的损耗,从而降低光纤激光器的阈值,提高输出激光的斜率效率[7]。

4. 掺镱双包层光纤激光器的应用

掺镱光纤激光器以绝对的优势使它在通信行业、工业加工、印刷、军事和医疗等领域有着广泛的应用。主要有以下方面:

(1)掺镱双包层光纤激光器在光纤通信中的应用:由于掺铒光纤放大器依赖于单模激光二极管的抽运,输出功率比较小,越来越难以满足对多波长信号放大的要求。双包层掺镱光纤激光器的出现解决这些问题,使光纤放大器可以工作在光通信窗口的任意波长处,并对光信号进行在线放大,是长(超长)距离通信实现信号放大的理想选择。

(2)掺镱双包层光纤激光器在激光加工中的应用:与传统高功率激光器相比,掺镱双包层光纤激光器的高转换效率、光束参数好、维护周期长、运行费用低等优点在工业加工中非常有优势。掺镱双包层光纤激光器非常适合作为激光加工设备的激光光源,目前主要应用于激光打标、激光微加工(毫米量级、数十微米量级的精度切割、打孔和焊接)、大功率工业加工(切割、焊接、打孔等)等。

结论

掺镱双包层光纤激光器在光通信、工业加工、医疗等行业的应用才刚刚起步,随着时间的推移,它无与伦比的优良性能将越来越得到认可。它的广泛应用对提升我国工业加工水平具有重要的意义。可以预见,随着新型器件的产生和谐振腔结构的改进,光纤激光器将成为半导体激光器强有力的竞争对手,成为未来全光

网的主要光源[8]。从长远来看,这种新型的高效率、长寿命、小体积、大功率光纤激光器必将得到更广泛的应用,具有非常广阔的潜在市场,将逐步取代传统激光器。值得一提的是,关于双包层光纤激光器的研究在我国起步较晚,目前还没有成熟产品,跟国外的差距较大。有许多技术难点需要激光技术、光电技术和光通信等领域的同行们共同携手克服,努力缩小与国外在双包层光纤激光器研究方面的差距。

参考文献

[1] 郭玉彬,霍佳雨.光纤激光器及应用.北京:科学出版社,2008.

[2] 楼棋洪,国产双包层掺镜光纤实现440W的连续高功率激光输出.中国激

光,2000,7(11):987-991.

[3] 曾惠芳,肖芳惠.高功率光纤激光器及其应用.激光技术.第30卷,第4期.

2006,8.

[4] 周炳琨,高以智等.激光原理.北京:国防工业出版社,2009.

[5] 陈家璧,彭润玲.激光原理及应用.北京:电子工业出版社,2011.

[6] 王志华.光纤激光器应用综述.科艺仪器有限公司.

[7] 张军.高功率光纤激光器实验研究.吉林大学硕士学位论文,2004.

[8] 王彦,崔一平.光纤激光器技术.电子器件.第27卷,第2期.2004,6.

2010最新脉冲光纤激光器说明书(一体机)

脉冲光纤激光器使用说明书

安全信息 在使用该产品之前,请先阅读和了解这份用户手册并熟悉我们为您提供的信息。 这份用户手册提供了重要的产品操作,安全以及其他信息给您以及所有将来的用户作参考。为了确保操作安全和产品的最佳性能,请遵循以下注意和警告事项以及该手册的其他信息去操作。 ●锐科公司脉冲光纤激光器是IV级的激光产品。在打开24VDC电源前,要确保连 接是正确的24VDC的电源并确认正负极,错误连接电源,将会损坏激光器。 ●该激光器在1064nm波长范围内发出超过5W、10W、15W、20W、25W、30W(根 据不同激光器型号)的激光辐射。避免眼睛和皮肤接触到光输出端直接发出或散射出来的辐射。 ●不要打开机器,因为没有可供用户使用的产品零件或配件。所有保养或维修只能在 锐科公司内进行。 ●不要直接观看输出头,在操作该机器时要确保长期配戴激光安全眼镜。 安全标识及位置 上面二个安全标识符号表示有激光辐射,我们把这符号标在产品光纤盒体盖顶上。

目录 1.产品描述 (1) 1.1 产品描述 (1) 1.2实际配置清单 (1) 1.3使用环境要求及注意事项 (1) 1.4技术参数 (2) 2.安装 (3) 2.1 安装尺寸图 (3) 2.2 安装方法 (4) 3.控制接口 (5) 4.操作程序 (6) 4.1 前期检查工作 (6) 4.2 操作步骤 (6) 4.3打标过程中应注意的事项 (6) 5.质保及返修、退货流程 (7) 5.1一般保修 (7) 5.2保修的限定性 (7) 5.3服务和维修 (7)

1.产品描述 1.1 产品描述 锐科脉冲激光器是是为高速和高效的激光打标系统而专门发展的。为工业激光打标机和其它应用提供了一款理想的高功率激光能量源。 脉冲激光器相对于传统的激光器,能够对每瓦的泵浦光转换效率提高10倍以上,低能量消耗的自动设计,适合实验室或室外操作。精巧,可独立放置,可随时使用,能够直接嵌入用户的设备上。 激光器可发出1064nm波长的脉冲激光,通过工业激光器标准接口来控制,激光器需要使用24V直流供电。 1.2实际配置清单 请根据图表1参考所包括的清单。 表1 1.3使用环境要求及注意事项 脉冲激光器需使用24VDC±1V直流电。 1)注意:使用激光器时要将接地线可靠接地。 2)没有内置可供使用的零件,所有维修应由合格的锐科人员来进行,为了防止电击, 请不要损坏标签和揭开盖子,否则产品的任何损坏将不被保修。 3)激光器的输出头是与光缆相连接的,使用时请小心处理输出头,防止灰尘或其它污 染,清洁输出端透镜时请使用专用的镜头纸。激光器没有安装在系统设备上且不 出光的时候,请将光隔离器保护罩盖好以免灰尘污染。

光纤激光器简介

目录 第一章、激光基础 第二章、激光器 第三章、光纤的特性 第四章、光纤激光器 第五章、实验室激光器型号及操作安全

第一章激光基础 1.1什么是激光? 激光在我国最初被称为“莱赛”,即英语“Laser”的译音,而“Laser”是“Light amplification by stimulated emission of radiation”的缩写。意为“辐射的受激发射光放大”,大约在1964年,根据钱学森院士的建议,改名为“激光”。激光是通过人工方式,用光或者放电等强能量激发特定的物质而产生的光。 激光的四大特性:高亮度、高单色性、高方向性、高相干性。具有高亮度的激光束经过透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其能够加工几乎所有材料。由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。 1.2激光产生的基本理论 1.2.1原子能级和辐射跃迁 按照玻尔的氢原子理论,绕原子核高速旋转的电子具有一系列不连续的轨道,这些轨道称为能级,如图1-1。 图1-1 原子能级图

当电子在不同的能级时,原子系统的能量是不相同的,能量最低的能级称为基态。当电子由于外界的作用从较低的能级跃迁到较高的能级时,原子的能量增 图1-2 电子跃迁图 加,从外界吸收能量。反之,电子从较高能级跃迁到较低能级时,向外界发出能量。在这个过程中,若原子吸收或发出的能量是光能(辐射能),则称此过程为辐射跃迁。发出或吸收的光的频率满足普朗克公式(hv=E2-E1)。 1.2.2受激吸收、自发辐射、和受激辐射 受激吸收:处于低能级上的原子,吸收外来能量后跃迁到高能级,则称之为受激吸收。 自发辐射:由于物质有趋于最低能量的本能,处于高能级上的原子总是要自发跃迁到低能级上去,如果跃迁中发出光子,则这个过程称为自发辐射。

光纤激光器原理

光纤激光器原理 光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值, 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉

冲,每单个脉冲有一个持续时间,比如说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。这种激光器可以发出一连串脉冲,比如,1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。这时,我们就说脉冲重复(频)率前者为10,后者为1,那么,1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而1 秒钟发出1 个脉冲,那么,它的脉冲重复周期为1 秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如, E = 50 mJ(毫焦),T = 0.1 秒,那么,平均功率P平均= 50 mJ/0.1 s = 500 mW。 如果用 E 除以t,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中E = 50 mJ, t = 10 ns, P峰值= 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒 平均功率P=E/T=0.001J/0.00005s=20W P峰值功率=E/t 激光的分类: 激光按波段分,可分为可见光、红外、紫外、X光、多波长可调谐,目前工业用红外及紫外激光。例如CO2激光器10.64um红外

大功率光纤激光器研究的最新进展

大功率光纤激光器研究的最新进展 敖经盛2012301020071 (武汉大学物理科学与技术学院,湖北省武汉市430072) 摘要:大功率光纤激光器具有光束质量好、寿命长、转换效率高的优点,其主 要性能已明显优于其他激光器。随着技术的进步,大功率光纤激光器还在不断取得发展突破。本文就大功率光纤激光器研究的一些关键技术的最新进展做了简要介绍。 关键词:光纤激光器;大功率;最新进展 引言: 光纤激光器具有众多令人瞩目的优点,如其波导结构与传输光纤相同,易于与传输光纤集成和耦合;基质材料具有很好的散热特性和热稳定性;与传统固体激光器相比,光纤激光器损耗小、阈值低、效率高,容易实现小巧、紧凑的结构设计,因此光纤激光器在光纤通信、传感、工业加工、国防和军事等领域被广泛应用。 近年来,光纤激光器输出功率快速增长,大功率光纤激光器几项关键技术的研究都取得了较大突破,增益光纤有了多种新型结构设计的掺杂光纤(如双包层光纤、光子晶体光纤等);泵浦耦合技术实现了端面、侧面泵浦等多种耦合方式。光纤激光器光束合成技术的研究也取得了较多成果。下文我们详细介绍这些技术的原理及最新进展。 1.光纤激光器的原理 光纤激光器主要由泵浦源,耦合光学系统,增益光纤,谐振腔,准直光学系统等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。

图1 光纤激光器原理图(引自文献【1】) 2.高功率光纤激光器的关键技术 2.1 增益光纤制作技术 2.1.1稀土掺杂双包层石英光纤 稀土掺杂双包层石英光纤技术最早由美国宝丽来公司和英国南安普敦大学于20 世纪80 年代末期提出。【2】它有效解决了光纤激光器中泵浦光功率与增益光纤之间的耦合效率问题,显著提高光纤激光器输出功率。稀土掺杂双包层石英光纤的研制技术因此成为了高功率光纤激光器的关键技术之一。 双包层光纤由纤芯、内包层、外包层和保护层构成,如图2所示。它比普通单模光纤增加了1 个内包层作为多模泵浦光的传输波导,泵浦光在内包层中传输时不断穿越纤芯而被其中的稀土离子吸收,并产生单模激光由纤芯波导输出。 图2 双包层光纤的结构示意图 为了使内包层中传输的泵浦光更多次地穿越掺有稀土离子的纤芯,增加泵浦长度,提高泵浦效率,研究人员提出了不同形状的内包层结构。圆形结构由于不需要额外加工,制造工艺简单,容易实现与带尾纤的泵浦光源耦合,是最先研制和使用的内包层结构。但完美的圆形对称造成内包层中存在大量的螺旋光,这部分泵浦光不经过纤芯,不被稀土离子吸收,大大降低了泵浦光的利用率。【3】后来,又逐渐研制出不同形状的内包层,如偏芯圆形、矩形、正方形、D 形、梅花形、六边形、八角形等。 但是目前非圆形的双包层光纤还存在生产工艺复杂,稳定性和一致性差,其双折射特性没有圆形保偏双包层光纤好的问题。这些问题应该可以通过技术的改进,生产工艺的改善而很快得到解决。

新外观W连续光纤激光器说明书文件

C1500W-2200W 连续光纤激光器 说明书 武汉锐科光纤激光技术股份有限公司Wuhan Raycus Fiber Laser Technologies Co., Ltd.

目录 1安全信息 (3) 1.1安全标识 (3) 1.2激光安全等级 (3) 1.3光学安全 (4) 1.4电学安全 (4) 1.5其他安全注意事项 (4) 2 产品说明 (5) 2.1产品特性 (5) 2.2实际配置清单 (5) 2.3开箱及检查 (5) 2.4运行环境 (6) 2.5注意事项 (6) 2.6产品性能 (7) 3安装 (8) 3.1安装尺寸图 (8) 3.2安装注意事项 (9) 3.3冷却系统要求 (11) 4产品的使用 (13) 4.1前面板 (13) 4.2后面板 (14) 4.3电源连接 (16) 4.4控制接口定义 (17) 4.5激光器工作模式及控制模式 (20) 4.6控制模式的设置 (21) 4.7超级终端模式 (21)

4.8 RS-232模式 (27) 4.9 AD模式 (30) 4.10红光控制 (33) 5常见故障及处理措施 (33) 5.1故障记录及故障的发生 (33) 5.2故障处理 (34) 6质保及返修、退货流程 (35) 6.1一般保修 (35) 6.2保修的限定性 (35) 6.3技术支持及产品维修 (36)

感谢您选择锐科光纤激光器,本用户手册为您提供了重要的安全、操作、维护及其它方面的信息。故在使用该产品之前,请先仔细阅读本用户手册。为了确保操作安全和产品运行在最佳状态,请遵守以下注意和警告事项以及该手册中的其他信息。 1.1安全标识 警告 注意 1.2激光安全等级 根据欧洲标准EN 60825-1,条款9,该系列激光器属于4类激光仪器。该产品发出波长在1080nm或1080nm附近的激光辐射,且由输出头辐射出的平均光功率为1500W~2200W(取决于机器型号)。直接或间接的暴露于这样的光强度之下会对眼睛或皮肤造成伤害。尽管该辐射不可见,光束仍会对视网膜或眼角膜造成不可恢复的伤害。在激光器运行时必须全程佩戴合适且经过认证的激光防护眼镜。 警告 全防护眼镜是具有激光波长防护选择性。故请用户选择符合产品激 光输出波段的激光安全防护眼镜。即使佩戴了激光安全防护眼镜, 在激光器通电时

关于光纤激光器的研究综述

关于光纤激光器的研究综述 前言 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,作为第三代激光技术的代表,具有其他激光器无可比拟的技术优越性。由于其具有绝对理想的光束质量、超高的转换效率、成本低、高稳定性以及体积小等优点,对传统的激光行业产生巨大而积极的影响。这导致了光纤激光器在近年来成为激光中的热门领域。 本文查找了以“锁模技术”“光纤激光器”“非线性偏振旋转”“超短脉冲”为主要关键字的有关的28篇文献,这些论文主要集中在激光,量子,光子等领域。锁模光纤激光器因其紧凑小巧,成本低和光束质量好等优点,近年来获得快速发展, 从发表论文的统计分析上来看,近三年年发表的文章数量占文章总数的大部分,并呈逐年增加趋势,由此可见近几年学者对光纤激光器的研究呈明显上升趋势。而在这其中大部分文章都涉及锁模光纤激光器与掺杂光纤激光器,尤其是 ++光纤激光器。它们在实用方面的优点对传统的被动锁模光纤激光器,掺33 , Yb Er 激光行业产生巨大而积极的影响,这导致了光纤激光器在近年来成为激光中的热门领域。 正文 1 锁模光纤激光器 锁模光纤激光器因其紧凑小巧、成本低和光束质量好等优点,近年来获得快速的发展。根据其锁模的原理,锁模光纤激光器可分为三类:主动锁模光纤激光器、被动锁模光纤激光器,主被动混合锁模光纤激光器。 主动锁模光纤激光器又可分为调制型锁模和注入型锁模两类。调制型主动锁模光纤激光器通常利用LiNbO3晶体作为调制器实现锁模,既可以进行振幅调制也可以进行相位调制,而注入型锁模光纤激光器主要有两种形式:一是利用行波半导体光放大器的非线性增益调制特性实现主动锁模;二是利用光纤的价差相位调制效应进行主动锁模。但主动锁模光纤激光器想走向实用化,稳定性问题是必须要解决的。 被动锁模光纤激光器通常利用半导体的可饱和吸收效应或光纤中的非线性效应作为锁模机制,它一般不需要外接施加的调制信号。半导体可饱和吸收锁模激光器的优点是容易实现激光器的自启动,而且脉冲的重复频率较稳定,脉宽小,但因为其不是全光纤的结构,故在实际应用中响应速度交大。基于光纤非线性的锁模激光器可实现全光纤的结构,克服了半导体可饱和吸收体被动锁模的缺点,响应时间小。 主被动混合锁模光纤激光器是以上两种的有机结合,因为主动锁模光纤激光器的弛豫震荡和超模噪声劣化了输出脉冲的质量,而被动锁模光纤激光器输出脉冲重复率受光纤长度的限制不可能提高,而且不容易调整和控制,所以利用主被动混合的技术,可以优化这些不足,获得最好的效果。这类激光器具有体积小、

激光器说明书

大功率激光器说明书 KEEN-EYES大功率激光器是我公司根据刑侦工作的需要开发研制的专用痕迹提取设备。采用国际最新大功率激光技术。先进的石英光纤传输,具有输出功率大,色谱纯正,操作简单,携带方便等特点。一;技术指标: 1电源电压交流220V。输入功率300瓦。 2可分离式电源盒,直流12V,35安时锂电池组。可连续使用1.5小时。3输出光功率8W;激光颜色,绿色.。 4光缆长度3米。 5可调焦镜头。 二;使用说明: 1钥匙开关拧到1位置,为交流供电。或将主机安装到电池盒上,钥匙开关拧到2位置,为直流供电。 2插上220V电源插头,将光缆拧紧到光缆座上,(光缆座带保护功能,不接光缆没有光输出)。将手柄上调光插头,插入面板上的调光插座。3打开钥匙开关,电源接通后,红色指示灯点亮。主机处于预热过程中。蓝色指示灯亮起表示预热结束。然后按动前面板上的启动按钮,绿色指示灯亮起,激光输出。 4激光器启动时为最大功率输出。旋转面板上,或镜头上的黑色调光旋钮,可以调节输出功率大小,顺时针增大,逆时针减小。数码屏显示为即时功率值。

5旋转镜头外套可以调节光斑大小。及光斑外缘清晰。 6按动电源盒前面按钮可显示电池容量。指示条只剩红色灯亮,表示电量不足应及时充电。 7电池充电应使用本机专配充电器,不可使用其他充电器。充电器接通220V交流电源红色电源指示灯常亮。充电时,充电指示灯红色。充电指示灯变为绿色表示电池已满,充电结束。 8本机配有伸缩式镜头支架,可以固定镜头及调节镜头高度和角度。三;注意事项: 1使用完毕应及时套上光缆及光缆座防护套,避免进入灰尘。 2光缆折弯半径大于15厘米。 3清洁光缆端面应使用无尘棉签,沾无水乙醇,沿一个方向擦拭。 切不可用手指或油渍接触光缆端面。否则会造成光缆报废。 4本激光器输出功率强大,切不可直视镜头或对准人眼,否则可造成永久失明。 四;基本配置: 1主机一台。 2带镜头光缆一根。 3电池盒一个。 4充电器一个。 5伸缩光缆支架一个。 6主机电源线一根。 7充电器电源线一根。

激光20W MOPA系列光纤激光器应用介绍2018.2.22

20W MOPA光纤激光器应用介绍 应用工程师:无锡创永激光刘工 微信:1039258953 2016年7月18日

20W MOPA参数表 长脉宽单脉冲能量高,热效应明显,窄脉宽单脉冲能量低,热效应弱;高频率,平均功率高,热效应明显,低频率(10KHz),平均功率低,热效应弱;低扫描速度,低填充密度,激光能量集中,热效应明显,高扫描速度,中等填充密度(0.02mm),激光能量分散,热效应弱。 (4ns400KHz),降功率频率到最大频率,功率趋于稳定。

固定脉宽,100%功率,频率由小增大,峰值功率增大,直至降功率频率 (4ns400KHz),降功率频率到最大频率,峰值功率呈反比例函数递减。 其他脉宽类似。 MOPA光纤激光器,脉宽可调,脉冲频率范围大,应用范围十分广泛,本文中介绍了20W MOPA光纤激光器部分常见应用,用于20W MOPA应用介绍和推广。其中不同材料参数设置有所差异,文中参数 可作为参考,如有不同之处,敬请谅解。

1.1 小米手机壳阳极氧化铝标刻黑色LOGO 1.2 小米充电宝阳极氧化铝标刻白色LOGO 1.3 阳极氧化铝上标刻0.8mmX0.8mm黑色二维码,显微镜下可扫描 2. 304不锈钢标刻 2.1 304不锈钢打彩色LOGO 2.2 304不锈钢名牌标刻黑色 2.3 304不锈钢深雕 3.部分高分子材料标刻 3.1 公牛插座、苹果手机数据线等某些白色高分子材料标刻深色3.2 PA66+、PE等某些黑色高分子材料标刻浅色 4. 电子器件标刻 4.1 电解电容标记黑色参数 4.2 PCB板标刻白色二维码和参数 4.3 电镀电子器件标刻 4.4 IC芯片等电子器件参数标刻 5. 漆剥除 5.1 汽车、电脑、手机等透光件漆剥除 5.2 亚克力瓶、橡胶按键表面漆剥除 5.3 电脑铝制外壳导通处漆剥除 6. 铜制器件标刻 6.1黄铜件标记白色尺寸参数 7. 微弧氧化铝合金标刻黑色名牌 8. 碳钢轴承标记黑色参数 9. 铝箔、锡箔、铜箔切割 10. 氧化锆陶瓷标刻黑色 11. 氧化钛银黑色参数标刻 12. 钛彩色标刻

高功率IPG光纤激光器应用简介

高功率IPG光纤激光器应用简介 一、IPG光纤激光器简介 1.光纤激光器简介 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 2.光纤激光器的优势 首先是使用成本低,光纤激光器替代了不稳定或高维修成本的传统激光器。其次,光纤激光的柔性导光系统,非常容易与机器人或多维工作台集成。第三,光纤激光器体积小,重量轻,工作位置可移动。第四,光纤激光器可以达到前所未有的大功率(至五万瓦级)。第五,在工业应用上比传统激光器表现更优越。它有适用于金属加工的最佳波长和最佳的光束质量,而且光纤激光器在每米焊接和切割上的费用最低。第六,一器多机,即一个激光器通过光纤分光成多路多台工作。第七,免维护,使用寿命长。最后,由于其极高的稳定性,大大降低了运行中对激光质量监控的要求。简单来说就是高功率下的极好光束质量,高光束质量下的极好电光效率,高功率高光束质量下的极小体积、可移动性和柔性。 3.IPG简介 全球最大的光纤激光制造商IPG Photonics由Valentin Gapontsev博士于1991年创建,总部设在美国东部麻省。IPG在德国、美国、俄罗斯和意大利设有生产、研发基地,并在全球设有销售和服务网点,覆盖美国、英国、欧洲、印度、日本、韩国、新加坡和中国,并于2006年在美国纳斯达克上市。

十八年来,IPG致力于纵向合成,所有的核心配件均为IPG研发、生产和拥有,同时也是唯一一个能为客户提供高性价比的光纤和半导体激光器的厂家。 高功率是IPG的优势。全世界已有上千台IPG的高功率(>1KW)光纤激光器在汽车制造、船舶制造、海上平台和石油管道、航空航天和技术加工等工业领域中得以应用。在日本,我们向丰田、三菱、住友在内的客户售出了数百台IPG的大功率光纤激光器。这些激光器的成功应用,说明了IPG光纤激光已成熟,且成为制造业的技术工具之一。依近期国内各厂家、院校、集成商对IPG光纤激光器大量的订单来看,光纤激光在中国市场广泛应用的局面会很快到来,尤其是在金属加工(切割、焊接、熔覆、快速成型等)方面。 二、高功率光纤激光应用领域 1.激光焊接领域的应用 光纤激光器的光束质量好,连续功率大,适用于深熔焊和浅表热导焊。连续激光通过调制可提供激光脉冲,从而获得高峰值功率和低平均功率,适用于需要低热输入要求的焊接。由于高功率激光的调制频率高达1万赫兹,因而能够提高脉冲焊接的产能。光纤输送方式使激光能够灵活地集成在传统焊钳、振镜头、机器人和远程焊接系统内。无论采用何种光束输送方式,光纤激光器都具有无可比拟的性能。典型的点焊应用包括依靠振镜头传送光束,从而完成剃须刀片和硬盘挠曲的焊接,从而充分地利用光纤激光器的脉冲功能。光纤激光器的光斑小,焦距长,因而远距离激光焊接的能力大大提高。1-2米的工作间距与传统机器人相比使工作区域提高了数倍,配备光纤激光器的远程焊接工位包括车门焊接、多点焊接和整个车身框架的搭接焊接。光纤激光器焊接的其它例子包括传动部件全熔焊、船用厚钢板深熔焊、电池组密封焊接、高压密封等等。图1展示了光纤激光焊接的效果。

调Q光纤激光器结构示意图和MOPA光纤激光器结构示意图.

调Q光纤激光器和普通的调Q激光器一样,都是在激光谐振腔内插入Q开关器件,通过周期性改变腔损耗,实现调Q激光脉冲输出。Q开关是被广泛采用的产生短脉冲的激光技术之一。 现状: 调Q光纤激光器在许多领域都有着广泛应用,大功率是调Q光纤激光器的一个发展方向。全光纤化也是调Q光纤激光器发展的一个重要趋势,人们陆续研发出一些全光纤的Q开光来代替传统的声光与电光调制器,大大地降低了激光器的插入损失。 用于光纤激光器的调Q技术大致可以分为光纤型调;和非光纤型调Q两类。非光纤型调Q有光调Q、电光调Q、机械转镜调Q和可饱和吸收体调Q等。 非光纤型调Q: 1.声光调Q激光器:

2.电光调Q激光器:

3.可饱和吸收体调Q激光器: 光纤型调Q装置 光纤型调Q装置有光纤迈克尔逊干涉仪调Q、光纤马赫

一曾特尔干涉仪调Q和光纤中的受激布里渊散射(SBS)调Q光纤激光器等。下面介绍混合调Q和脉冲泵浦受激布里渊散射混合调Q光纤激光器。 混合调Q光纤激光器 如图所示 得到了峰值功率3.7KW,脉宽2m的脉冲激光输出。 实验中选用掺钕双包层光纤作增益介质,光纤长7.2m,纤芯直径5.1um,数值孔径0.12。内包层为矩形结构,截面尺寸150um*75um。 泵源为800nm、3w激光二极管,有60%的泵光祸合到内包层中。 系统由一个全反镜和一个二向色镜构成驻波谐振腔。在双包层光 纤的输出端接几米长的单模光纤,实现调Q ,得到纳秒量级的激光脉冲。在腔内插人一声光调制器(AQM),使激光脉冲重复频率在6.6KHz-16.4KHZ范围内可调。 脉冲泵浦和受激布里渊散射混合调Q : 在线形腔双包层光纤激光器中,用脉冲泵浦和SBS混合调Q 。 如图所示

光纤激光打标机说明书

SD-20A 光纤激光打标机 使用说明书安装、使用产品前请阅读使用说明

感谢您使用珊达科技公司光纤激光打标机! 请在使用光纤激光打标机前仔阅读此说明书! 第一章概述 1.1光纤激光打标机简介 激光打标机是利用激光束在各种物质表面打印上永久的标记。 激光打标机的效应主要是: 1、通过激光光能对目标物质表层的蒸发而露出物质深层; 2、通过激光光能导致表层物质的化学物理变化而"刻"出所需图案文字; 3、通过激光光能烧掉部分物质,从而显出所需刻蚀的图案、文字。 光纤激光打标机主要由:光纤激光器、振镜(打标头)、软件控制板卡、工控电脑、机箱机柜、放工件的水平台等组成。 1.2光纤激光打标机工作原理 是利用光纤激光器产生激光并用光纤导出激光然后配合光学高速扫描振镜进行工件标记的,其核心部件为光纤激光器。 光纤激光器采用掺稀土元素的光纤作为增益介质。由于光纤激光器中光纤纤芯很细,在泵浦光的作用下光纤极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”。因此,当适当加入正反馈回路构成谐振腔便可形成激光振荡。另外由于光纤基质具有很宽的荧光谱,因此,光纤激光器一般都做成可调谐的(既其波长在一定围可以调节),在打标时可以标记出几种颜色(对应材质)。 1.3特点如下: 1.SD-20A光纤激光打标机采用光纤激光器,寿命可达10万小时,性能优越世界排名靠前。 光束质量高,为基模(TEM00)输出,聚焦光斑直径不到20um。发散角是半导体泵浦激光器的1/4。单线条更细,特别适用于精细、精密打标。 2.体积小,耗电量小,整机耗电不到500W;置风冷冷却方式,抛弃了笨重的水冷机组,占地面积更小,安装更简便,真正做到了节能和便携。 3.电光转换效率高,简单易用,无须光学调整或维护,结构紧凑,系统集成度高,故障少。 4.无需进行任何维护,使用寿命长,适用于恶劣环境工作。 5.加工速度快,是传统打标机的2-3倍,光学扫描振镜,激光重复频率高,高速无畸变。

2019年激光器行业专题研究报告

2019年激光器行业专题研究报告

摘要 ?核心逻辑:2018年激光产业中工业加工占到下游总体的比例为45%,根据IPG2018年年报披露,激光切割、焊接是其中最重要的应用领域,2016-2018年切割占总体的比例分别为51%、54%、57%,逐年提升,而焊接三年分别为18%、20%、16%。切割、焊接占据了激光行业的主要市场空间。 ?激光切割:激光切割主要优势在于单位使用成本低,随着设备价格的大幅下降其经济性凸显;激光切割从薄板往中厚板市场渗透趋势明显,还有至少翻倍以上的空间;就存量角度,根据中国激光产业发展报告(2019)及我们的估算,到2019年底我国切割用激光设备存量为6.99-8.16万台,对于传统切割方式的渗透度为26.26-30.65% ,且集中在低功率,1500W—4000W功率激光切割设备渗透率近年有望提高。 ?激光焊接:激光焊接设备单价较高,主要应用于汽车、电池等高端制造;2018年规模以上金属焊接切割厂商年收入合计达到449亿,而激光焊接对焊接市场渗透度不足30%;作为实现汽车轻量化的重要手段,激光焊接应用率有望从20%提升至60%;受益于动力锂电池厂商扩产,预计2020年该细分市场空间达35亿元;国产替代将成为激光焊接业务的另一个增长点。 ?投资建议:建议重点关注以切割、焊接为主要应用领域的激光器龙头锐科激光,关注非上市公司创鑫激光、杰普特等。?风险提示:工业激光下游需求不景气;激光器价格竞争激烈;市场渗透提升不及预期。

目录 综述:重点讨论连续/QCW光纤激光器的切割及焊接市场空间 1.光纤激光器研究框架 2.激光特性及多应用场景综述 切割:设备单价下降趋势中应用场景向中厚板材料开拓,市场空间有望翻倍 1.适用领域:工业加工中增长最快的应用领域,占比在50%以上 2.工作原理:属于热切割方法之一,一般使用激光熔化切割 3.能力与效率:切割能力因材料而异,切割效率与板材厚度呈“反比” 4.激光切割:主要优势在于单位使用成本低,设备单价下降经济性凸显 5.市场空间:设备单价下降促进中厚板市场开拓,空间有望翻倍 6.市场渗透度:对于传统切割方式的渗透度不足25.95% ,集中在低功率 焊接:主要应用于汽车、电池等高端制造,市场渗透+国产替代双轮驱动增长 1.主要方式:主要有热传导焊、深熔焊、复合焊、钎焊等方式 2.适用领域:多使用固体、半导体激光器,适用于精密加工、汽车工业等 3.优势vs劣势:加工范围广、过程简单,但采购成本高 4.市场渗透度:多应用于高端制造,对焊接市场渗透度不足30% 5.应用场景一:作为实现汽车轻量化的重要手段,未来应用率将大幅提升 6.应用场景二:动力电池厂商扩产,预计2020年细分市场空间达35亿元 7.国产替代:国产替代将成为激光焊接业务的另一个增长点

锐科1kw连续光纤激光器使用说明书

版本:V0 连续光纤激光器 使用说明书 1000W 武汉锐科光纤激光器技术有限责任公司 WuHan Raycus Fiber Laser Technologies CO., LTD

安全信息 在使用该产品之前,请先阅读和了解这份用户手册并熟悉我们为您提供的信息。这份用户手册提供了重要的产品操作,安全以及其他信息给您以及所有将来的用户作参考。为了确保操作安全和产品的最佳性能,请遵循以下注意和警告事项以及该手册的其他信息去操作。 ●连续光纤激光器是IV级的激光产品。在接入交流电源前,要确保连接是正确的三 相380VAC的电源,错误连接电源,将会损坏激光器。 ●请确保使用带有可靠接地以及过流保护装置的交流电源。使用时务必保证激光器 的可靠接地,以避免可能产生的人身伤害。 ●该激光器在1080nm波长范围内发出超过1000瓦的激光辐射。避免眼睛和皮肤接 触到光输出端直接发出或散射出来的辐射。 ●不要打开激光器,因为没有可供用户使用的产品零件或配件。所有保养或维修只 能在锐科公司内进行。 ●在操作该机器时要确保全程配戴激光安全防护眼镜。即使佩戴了激光安全防护眼 镜,也严禁直接观看输出头。 安全标识及位置 上面二个安全标识符号表示有激光辐射,我们把这符号标在产品光纤盒体盖顶上。

目录 1. 产品描述 (1) 1.1. 产品描述 (1) 1.2 实际配置清单 (1) 1.3 使用环境要求及注意事项 (1) 1.4 性能参数 (2) 2. 安装 (2) 2.1 安装尺寸图 (2) 2.2 安装方法 (4) 2.3 冷却系统要求 (4) 3. 控制接口与操作 (5) 3.1串口操作-超级终端 (8) 3.2外部RS232控制 (15) 3.3外部模拟量控制 (16) 4. 质保及返修、退货流程 (17) 4.1一般保修 (17) 4.2保修的限定性 (17) 4.3服务和维修 (17)

光纤激光器的研究

光纤激光器的研究 赵尚森 (河北工程大学信息与电气工程学院,河北邯郸 056038) 摘要:稀土掺杂光纤激光器是光电子技术领域的先进课题。本文分析了掺稀土光纤激光器的光学物理过程。 关键词:光纤激光器;高功率 STUDY ON THE FIBER LASER Abstract: The research of rare-earth-doped fiber lasers is one of the frontiers subjects of optoelectronic technology. The theoretical analysis of the optical physical process in doped rare-earth-fiber was given. Key words: fiber laser; high power 0 引言 激光是近代科学技术中的重大发明之一。从1960年第一台红宝石激光器出现至今已经有50余年,激光器件及激光技术已发展到相对高的水平,激光器件的种类很多,包括固体、气体、半导体、液体、化学、自由电子等激光器。 固体激光器的工作物质是掺杂的晶体和玻璃,种类很多有百余种。固体激光器件整体具有结构紧凑、牢固耐用等优点,最大输出单脉冲功率很高,另外也可以利用某些晶体实现倍频。 近年来,光纤激光器受到了广泛的关注,其主要优势有:散热性能好、转换效率高、可调谐范围宽、泵浦阈值低、光束质量高等。 1 光纤激光器简介 同传统激光器一样,光纤激光器也由泵浦原、增益介质和光学谐振腔构成。但光纤激光器的增益介质为光纤,是利用光纤端面、光纤环形镜或光纤光栅等作为反射镜来构成反射腔镜。 1.1光纤激光器分类 光纤激光器按照光纤材料的种类可以分为以下几类:⑴掺稀土元素的光纤激光器,在SiO2光纤中掺杂稀土类元素离子,例如Yb3+、Nd3+、Er3+等,制成特定波长传输的光纤激光器;⑵非线性效应光纤激光器,利用光纤本身的非线性效应制作而成,主要有受激拉曼散射光纤激光器和受激布里渊散射光纤激光器;⑶晶体光纤激光器,其增益介质为激光晶体光纤,如红宝石单晶光纤激光器和Nd3+:YAG单晶光纤激光器等;⑷塑料光纤激光器,在塑料光纤纤芯或包层内掺入激光染料作为增益介质制成光纤激光器;⑸光子晶体光纤激光器,即利用光子晶体光纤的特性制成的稀土掺杂光纤激光器。 在这几类光纤激光器中,掺稀土元素的光纤激光器发展最早、最常见,同时也是利用最广泛的。其典型的工作机理如下:掺杂光纤中的稀土离子吸收泵浦光光子,从而被激励到较高能级;这些离子经过无辐射跃迁到亚稳态的激光上能级,并可通过受激辐射跃迁到下能级产生一个与信号光光子等同的光子。当泵浦光足够强时,可在激光上、下能级间形成粒子数反转,使得掺杂光纤具有光放大的功能,即光增益。光纤激光器的基本构造如图1-1所示:

锐科P100M V2.1脉冲光纤激光器说明书8脉宽

RFL-P100M 脉冲光纤激光器 使用说明书 武汉锐科光纤激光技术股份有限公司Wuhan Raycus Fiber Laser Technologies CO.,LTD.

安全信息 在使用该产品之前,请先阅读和了解这份用户手册并熟悉我们为您提供的信息。 这份用户手册提供了重要的产品操作,安全以及其他信息给您以及所有将来的用户作参考。为了确保操作安全和产品的最佳性能,请遵循以下注意和警告事项以及该手册的其他信息去操作。 ●锐科公司脉冲光纤激光器是IV级的激光产品。在打开24V DC电源前,要确保连接 是正确的24V DC的电源并确认正负极,错误连接电源,将会损坏激光器。 ●该激光器在1060~1085nm波长范围内发出超过100W的激光辐射。避免眼睛和皮肤 接触到光输出端直接发出或散射出来的辐射。 ●不要打开机器,因为没有可供用户使用的产品零件或配件。所有保养或维修只能在 锐科公司内进行。 ●不要直接观看输出头,在操作该机器时要确保长期配戴激光安全眼镜。 安全标识及位置 上面二个安全标识符号表示有激光辐射,我们把这符号标在产品光纤盒体盖顶上。

目录 1.产品描述 (1) 1.1.产品描述 (1) 1.2.实际配置清单 (1) 1.3.使用环境要求及注意事项 (1) 1.4.技术参数 (2) 2.安装 (3) 2.1.安装尺寸图 (3) 2.2.安装方法 (4) 3.控制接口 (5) 3.1.前期检查工作 (8) 3.2.操作步骤 (8) 3.3.打标过程中应注意的事项 (9) 4.质保及返修、退货流程 (9) 4.1.一般保修 (9) 4.2.保修的限定性 (9) 4.3.服务和维修 (10)

光纤激光器综述

摘要:光纤激光器技术是光学领域最为重要的技术之一,作为第三代激光技术的代表,其稳定性好、效率高、阈值低、线宽窄、可调谐、紧凑小巧和性价比高等优点,使得它在光纤传感、光纤通信、工业加工等领域都有着重要的应用。而掺镱双包层光纤激光器是国际上近年来发展的一种新型固体激光器。本文就介绍了这种高功率掺镱双包层光纤激光器,主要介绍了高功率掺镱双包层光纤激光器的概念、发展历史及发展现状、基本原理、优点、实现的关键技术、应用及其广阔的前景。同时总结出了未来光纤激光器的发展方向,并且可以预计光纤激光器最终将可能会替代掉全球大部分高功率CO2激光器和绝大部分Y AG激光器。 关键词:光纤激光器;掺镱双包层光纤激光器;光纤融合技术;激光加工。引言 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,虽然光纤激光器得到了社会各方面的广泛重视,但是光纤激光器并不是新型光器件。1961年,美国光学公司的Snitzer和Koester等在一根芯径300um的掺Nd3+玻璃波导中进行试验观察到了激光现象,并与1963年和1964年发表了多组分玻璃光纤中的光放大结果,提出了光纤激光器和光纤放大器的思想。1975~1985年中有关这个领域的文章较少,不过在这期间许多发展光纤激光器的必须工艺技术已趋于成熟[1]。上个世纪80年代后期,美国Polaroid公司提出了包层抽运技术,之后双包层光纤激光器,特别是掺镱双包层光纤激光器发展非常迅速。1994年,PASK 等首先在掺Yb3+石英光纤中实现了包层抽运,得到了0.5W的最大激光输出。1998年,Lucent技术公司的KOSINKI和INNISS报道了一种内包层截面形状为星形的掺Yb3+双包层光纤激光器,得到了20W的激光输出。1999年,DOMINIC等用4个45W的半导体激光二极管阵列组成总功率为180W的抽运源,在1120nm 得到110W的激光输出。2002年,IPG公司公布了2000W的掺Yb3+双包层光纤激光器。目前,该公司已经推出了输出功率为17kW的掺Yb3+双包层光纤激光器,虽然因为采用的是多组激光合束的方式,致使激光器的光束质量下降很大,但仍然在对功率要求高、光束质量要求不是很高的场合有非常好的应用前景。但如何提高功率,同时又保证光束质量,是当前研究要解决的难题之一。 在国内,关于掺Yb3+双包层光纤激光器的研究起步较晚。从上个世纪年80

光纤激光器工作原理及发展

光纤激光器的工作原理及其发展前景 1 引言 光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。近年来光纤激光器的输出功率得到迅速提高。已达到10—100 kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。 2 光纤激光器的结构及工作原理 2.1光纤激光器的结构 和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。图1为典型的光纤激光器的基本构型。 增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。 2.2 光纤激光器的工作原理 掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可

2000W光纤激光焊接机说明书

2000W光纤激光焊接机的日常使用与维护必须由经过专门培训的人员进行,否则容易产生严重的人为损坏。保养过程中,我们还需要注意以下六点事项: (一)冷却水的纯度是保证焊枪激光输出效率及激光器聚光腔组件寿命的关键,使用中应每周检查一次内循环水的电导率,保证其电导率,每月必须更换一次内循环的去离子水,新注入纯水的电导率必须。随时注意观察冷却系统中离子交换柱的颜色变化,一旦发现交换柱中树

脂的颜色变为深褐色甚至黑色,应立即更换树脂; (二)在气温较高或较潮湿的环境下,焊枪激光器运行中应随时注意观察冷却水循环的管道或激光聚光腔上是否出现因水温过低产生的“凝露”现象。“凝露”出现会造成YAG晶体端面的损伤,导致输出功率下降甚至不能出光,使用中一定要加以注意。如果出现“凝露”应立即停止激光焊接机的使用,待聚光腔表面的水分自然干燥后重新检查2000W光纤激光焊接机激光器光学表面的状况,检查一切正常的情况下才能再次开机,2000W光纤激光焊接机开机前注意适当调高温控器的下限设定温度。正常运行中还应注意观察制冷系统的钛管上是否结霜,如果出现结霜,可能是制冷系统中的氟利昂不够所致,应立即请有关的专业人士进行补充并检查是否存在泄露;

(三)将万用表置于2MW电阻档,把两支表笔测量端的金属外露部分以1cm的间隔距离,平行地插入冷却水面,此时的电阻读数至少应大于250kW。若读数低于此数值,应立即更换焊枪冷却水; (四)为了保证2000W光纤激光焊接机一直处于正常的工作状态,连续工作二周后或停止使用一段时间时,在开机前首先应对YAG棒、介质膜片及镜头保护玻璃等光路中的组件进行检查,确定各光学组件没有灰尘污染、霉变等异常现象,如有上述现象应及时进行处理,保证各光学组件不会在强激光照射下损坏; (五)设备操作人员可以经常用黑色像纸检查激光器输出光斑,一旦发现光斑不均匀或能量下降等现象,应及时对焊枪激光器的谐振腔进行调整,确保激光输出的光束质量; (六)检查焊枪保护连锁电路不锈钢焊条:该冷却系统专门针对激光设备的特点,设计了超温声音报警,超温连锁,流量开关连锁,液位保护连锁等保护措施。使用中应经常检查以上保护电路,保证其功能正常有效。检查工作可以利用换水时进行。

光纤激光器原理与特性详解

光纤激光器原理与特性详解 一、简介 光纤激光器,英文名称为Fiber Laser,是一种以掺稀土元素的玻璃光纤为增益介质来产生激光输出的装置。光纤激光器可在光纤放大器的基础上进行开发,由于光纤激光器中光纤纤芯很细,因此在泵浦光作用下,光纤内部功率密度高,使得激光能级出现“粒子数反转”现象,在此基础上,再通过正反馈回路构成谐振腔,便可在输出处形成激光振荡。

二、结构 光纤激光器的结构类似于传统的固体激光器、气体激光器,主要由泵浦源、增益介质、谐振腔三大部分构成,如下图所示。其中,泵浦源一般为高功率的半导体激光器,增益介质为掺稀土元素的玻璃光纤,谐振腔由耦合器或光纤光栅等构成。 三、原理 在上图中,由泵浦源发出的泵浦光通过一面反射镜耦合进入增益介质中,由于增益介质为掺稀土元素光纤,因此泵浦光被吸收,吸收了光子能量的稀土离子发生能级跃迁并实现粒子数反转,反转后的粒子经

过谐振腔,由激发态跃迁回基态,释放能量,并形成稳定的激光输出。 四、特点 特点一:由于光纤纤芯直径小,在纤芯内容易形成高功率密度,因此光纤激光器具有较高的转换效率、较低的阙值、较高的增益、较窄的线宽、且可方便高效的实现与当前光纤通信系统的连接。 特点二:由于光纤具有很好的柔绕性,因此光纤激光器具有小巧灵活、结构紧凑、性价比较高、且更易于系统的集成的特点。 特点三:与传统的固体激光器、气体激光器相比,光纤激光器的能量转换效率较高、结构较紧凑、可靠性高、且适合大批量的生产。 特点四:与半导体激光器相比,光纤激光器的单色性较好、调制时可产生较小的啁啾和畸变、且与光纤的耦合损耗较小。

和半导体激光器相比,光纤激光器的优越性主要体现在:光纤激光器是波导式结构,可容强泵浦,具有高增益、转换效率高、阈值低、输出光束质量好、线宽窄、结构简单、可靠性高等特性,易于实现和光纤的耦合。 我们可以从不同的角度对光纤激光器进行分类,如根据光纤激光器的谐振腔采用的结构可以将其分为Fabry-Perot腔和环行腔两大类。也可根据输出波长数目将其分为单波长和多波长等。 对于不同类型光纤激光器的特性主要应考虑以下几点: (1)阈值应越低越好; (2)输出功率与抽运光功率的线性要好; (3)输出偏振态; (4)模式结构; (5)能量转换效率;

相关文档
最新文档