优化电动机效率

优化电动机效率
优化电动机效率

源自福禄克数字资料库@ www. https://www.360docs.net/doc/5f4420335.html,/library

优化电动机效率

应用文章

第1阶段:评估

电动机评估包括:

1. 调研和记录工厂总共存在多少台电动机、使用年限、马力和额定值,以及控制程度如何。

2. 识别最高和最重要的负载。

3. 对于这些关键设备,利用电能记录仪评估其能耗(功耗)。

这样您会大致了解工厂中的能耗情况。

第2阶段:立即改进

您可以采取两种立即改进方案。 1. 调整设备以及设备运行方式 2. 维修

设备调整包括将一些电动机更换为效率更高或规格更合适的型号、为其他电动机增加控制功能以调整输出,以及将需求与电费费率进行比较,重新规划电动机的运行时间。

利用MotorMaster+等电动机效率计算器来确定这些调整是否有效,可帮助您计算每台电动机以及每种效率等级节省的电量。

另外,您应该对打算继续使用的所有电动机进行三点检查:

1. 电压不平衡

2. 电流不平衡

3. 功率因数

如果测试显示上述三个变量中的任何一个存在问题,修正这些问题可以立即提高效率。逻辑上,您还应该将这些测试整合至长期定期维护计划中,以确认当前所做的所有短期改进。

公开的估算数据表明,在美国,电动机驱动系统消耗的电力占据总发电量的一半以上,在许多工厂中,有超过70%的电力被电动机消耗1。现在,能源和运行成本居高不下,提高电动机效率比以往任何时候都重要。 许多工厂发现,有必要将其电动机效率策略分为三个阶段: y 整体评估 y 立即改进 y 长期策略 本文简要介绍第1阶段,并详细介绍第2阶段。第3阶段的详细信息将在其它相关文章中详细介绍。

电压不平衡

电压不平衡是三相系统中各相之间的电压差异指标。为了实现最佳电动机性能,相电压应相同或非常接近于相同。除了导致电动机性能下降以外,电压不平衡还会缩短电动机使用寿命。

电压不平衡等于100乘以(相对于平均电压的最大偏差除以三相平均电压)。计算得出的电压不平衡为一个百分比值。美国能源部(DOE)给出了以下示例:2 如果被测线电压为462 V 、463 V 和455 V ,平均值为460 V 。那么电压不平衡则为:

[(460 – 455) x 100] ÷ 460 = 1.1 %

总之,电压不平衡应低于1%,不得高于5%。EN50160标准要求公共耦合点处的电压不平衡应低于2%。美国电气制造商协会(NEMA)相关标准要求电动机负载的电压不平衡应低于5%。但是建议电动机端子处的电压不平衡不超过1%,如果数值较高,应对电动机进行将额处理。3

应利用电能质量分析仪在电动机端子处定期进行电压不平衡测量,以确保电压不平衡低于5%。另外,定期的温度检查可能发现开关设备、隔离开关或电动机接线盒内存在高阻连接,这会导致电压不平衡。导致电压不平衡的其他原因还包括故障的功率因数修正设备、不平衡或

不连续的电源电压、不平衡的变压器组、分布不均匀的单相负载、单相至地故障或主要配电系统开路。

修正措施应由有经验的电工或电力专家进行。首先检查调速驱动的电源电压(如果系统中存在)。并且检查工厂的输入以及工厂至系统的输出。如果发现这些“源”上的各相平衡,则最好的方法是从电动机开始,并系统地回溯至最初来源,即供电公司电源。

潜在节约和ROI

计算总节约量的最好方法是利用软件工具,例如MotorMaster+。以下是基本计算原理,假设已知(括号中的值为举例值): y 电动机负载(100 %) y 马力(100 hp)

y 运行时间(8,000小时/年)

y 在负载标称不平衡度下的效率(94.4 %)4

y 实际不平衡度及负载下的效率(93 %) y 1马力相当于0.746千瓦

使用提供的举例值,采取修正措施之后,每年节省的电能(AEs)则为:

AEs = 100 hp x 0.746 kW/hp x 8,000 hr/yr x

(100 ÷ 93 – 100 ÷ 94.4) = 9,517 kWh 如果电费为$0.05/kWh ,每年节省的费用(AS$)则为:

AS$ = 9,517 kWh x $0.50/kWh = $476/yr 在工业配置中,许多电动机可能由同样不平衡的电源供电。所以,潜在的节约要远远高于单台电动机,实际节约的电费取决于负载、工作时间、马力等因素。

最后,不要忘了,如果电源不平衡,电动机工作温度较高,大约是电压不平衡度平方的两倍:2 x %电压不平衡2。例如,如果电压不平衡度为2%,那么电动机的温升将达到8 °C 。电动机的工作温度每升高10 °C ,电动机绕组绝缘的寿命将减半。

2 Fluke Corporation 优化电动机效率

电流不平衡

电流不平衡指的是电动机从三相系统中每相

吸收的电流的差异。修正电流不平衡有助于防止过热以及电动机绕组绝缘劣化。每相上的耗流应相同或接近相同。电流不平衡的原因之一是电压不平衡,从而造成电流不平衡,其比例远远超出电压不平衡本身。如果未发现电压不平衡时却发生电流不平衡,就需要检查电流不平衡的其他原因,例如绝缘故障或某相对地短路。

电流不平衡的计算方式与电压不平衡相同,等于100乘以(相对于平均电流的最大偏差除以三相平均电流)。所以,如果实测电流分别为30 A、35 A和30 A,平均值为31.7 A,那么电流不平衡则为:

[(35 – 31.7) x 100] ÷ 31.7 = 10.4 %

三相电动机的电流不平衡不应超过10%。

测量电流不平衡应由经验丰富的电工或电力

专家完成。与电压不平衡一样,应利用电能质量分析仪定期检查电动机端子处。可利用相同的电能质量分析仪同时执行两项不平衡测量

并保存——电压和电流不平衡。

电流不平衡的修正可能包括以下任意或全部

方法:

y如果不平衡是由于电源引起的,功率因数修正装置可解决问题。

y如果问题是由于电动机本身引起的,例如绝缘故障或某相短路至地,则需谨慎权衡补救措施。做出维修(重绕)电动机还是更换电动机的决策是很艰难的。根据DOE4:

—重绕电动机几乎总是会损失电动机的效率和可靠性。综合考虑这些因素:重

绕费用、预期重绕损耗、新电动机购买

价格(包括标准和高效型号)、电动机规

格及初始效率、负载因数、年度工作时

间、电费价格、电费退费以及简单的回

报标准。

y如果情况如下,则购买一台新电动机:

a)故障电动机功率小于40马力,使用时间

超过15年,尤其是之前曾经重绕过。

b)电动机是小于15马力的非专用电动机。

或者

c)重绕费用超过新电动机价格的50%。

对于后一种情况,提高效率和可靠性将获得较快的ROI。

潜在节约和ROI

ROI包括两种形式的节能和长期生产节约(防止电动机故障和停工)。供电公司的退费可能也很重要。

节能很难预测,尤其是选择重绕电动机时。最终的重绕损耗在完成重绕之前是未知的。

如果您决定购买一台新电动机,可利用Motor- Master+软件计算更换电动机后每年可节省的能源(AS$)。您需要以下信息6:

y电动机额定马力(hp)

y负载因数(L = 满载的百分比 ÷ 100)

y年度工作时间(hr)

y平均电费(C = $/kWh)

y现有电动机效率(Estd,以百分比表示)

y新电动机的效率等级(Eee,以百分比表示) y hp至kW的换算因子(0.746)

根据以上信息可计算如下:

AS$ = hp x L x 0.746 x hr x C x [(100 ÷ Estd) –

(100 ÷ Eee)]

一般而言,较高效率电动机比标准效率电动机的效率高1%,节约的电能在不到18个月内即可收回电动机成本。与现有重绕过的电动机相比,新电动机的效率高1%。

3 Fluke Corporation 优化电动机效率

功率因数

特定类型的设备会造成功率因数较差,导致供电公司征收惩罚性费用。在所有主要电路和负载处评估功率因数,包括电动机。功率因数越接近100 %或“1”越好(供电公司通常对小于95%的功率因数进行罚款)。提高功率因数能够:

y降低电费

y降低电力系统容量

y减少电压降

功率因数(PF)是由于感性负载(带线圈的负载)引起的,例如电动机和变压器。功率因数表示为百分比值或数字,100%或1为理想值。功率因数是有功(做功)功率(千瓦,kW)与视在(总)功率(千伏安,kVA)之比。视在功率为有功功率与无功功率(千乏,kVAR)的组合。

无功功率增加会造成视在功率增加,所以导致功率因数下降。所以,减少无功功率将提高功率因数,通常是件好事。

测量功率因数的最佳途径是使用电能质量分析仪。开始动手之前,先搞清楚:

y低功率因数或VAR的电费如何

y供电公司说您的功率因数平均值(月度)是多少

y您所需的费用是多少

y供电公司如何测量功率因数或VAR:高峰期间还是平均?

目的是判断引起功率因数落后的负载,以及制定提高功率因数的策略6。

首先从用户引入线开始,供电公司也在此监测数据,并检查各个负载。利用电能质量分析仪,能够测得指定记录周期内的平均功率因数。

采用以下策略修正功率因数:

y减少或降低使用空转或轻载电动机

y避免电动机工作电压高于其额定电压

y利用高效型号的电动机代替发生故障的标准电动机

y在受影响的电路上安装电容,减少无功功率潜在节约和ROI

利用来自于供电公司以及您的调研信息,计算

节约的电能。假设供电公司对每低于0.97一个

百分点的功率因数增加1%的费率。如果您每

月的平均功率因数为86%,则比门限97%低

11% (97% - 86%)。如果您的电费为每月

$7,000,那么通过修正功率因数每年可节省

(11 % x $7000/mo.) x 12 mo. = $9,240

后续安排

在完成直接的电动机效率调研后,也评估一下

长期维护工作,并开始进行相应调整,包括定

期进行电压和电流不平衡检查。另外也要定期

检查连接和接地、非设计电压以及绝缘电阻,

以进一步改善长期性能。

1 Fact sheet:“Optimizing Your Motor-Driven System,” a Motor Challenge document.

Motor Challenge is a program of the U.S. Department of Energy (DOE).For more

details, visit https://www.360docs.net/doc/5f4420335.html,/industry/bestpractices.

2 Motor Systems Tip Sheet #7 (Sept. 2005):“Eliminating V oltage Unbalance,” an Energy

Tips – Motor Systems document written for DOE’s Industrial Technologies Program.

3 Determining outside the laboratory the efficiency of a motor is difficult and involves

extensive labor and equipment. Furthermore, ± 1 % in efficiency will significantly

impact calculated dollar savings.(See Motor Systems Tip Sheet #2 (Sept.

2005):“Estimating Motor Efficiency in the Field,” an Energy Tips – Motor Systems

document written for DOE’s Industrial Technologies Program.)When the percent

loading is known, Motor Master+ 4.0 software automatically chooses the as-loaded

efficiency based on available data.

4 Fact sheet:“Optimizing Your Motor-Driven System.”

5 From DOE’s fact sheet:“Buying an Energy-Efficient Electric Motor,” a Motor

Challenge document; Question 5:“When is an energy-efficient motor cost effective?”

6 See DOE’s fact sheet:“Reducing Power Factor Cost,” a Motor Challenge document.

福禄克,助您与世界同步!

Fluke Corporation

PO Box 9090, Everett, WA 98206 U.S.A.

Fluke Europe B.V.

PO Box 1186, 5602 BD

Eindhoven, The Netherlands

For more information call:

In the U.S.A. (800) 443-5853 or

Fax (425) 446-5116

In Europe/M-East/Africa +31 (0) 40 2675 200 or

Fax +31 (0) 40 2675 222

In Canada (800)-36-FLUKE or

Fax (905) 890-6866

From other countries +1 (425) 446-5500 or

Fax +1 (425) 446-5116

Web access: https://www.360docs.net/doc/5f4420335.html,

?.2009 Fluke Corporation.

技术指标如有更改,恕不另行通知

美国印刷。6/2009 3497412A A-EN-N

没有福禄克公司的书面许可,严禁篡改本文内容。

4 Fluke Corporation 优化电动机效率

机械效率计算题含答案

机械效率计算题 1.用图6所示的滑轮组提升重物,已知物体重为200N, 人用125N的拉力向下拉动绳子,5s内可使物体匀速上 升2m求: (1)拉力所做的功和拉力的功率; (2)滑轮组的机械效率. 答案:(1)W=500J P=100W (2)80% 2.如图所示为一款塔式起重机,工作电压为380伏。当起重机吊起500千克重物以1米/秒速度匀速上升20米时,工作电流是18安;当起重臂水平旋转,带动重物在8秒内移动16米时,工作电流是5安。 (1)如果起重臂加长,那么平衡块质量应该________(填“增加”或“减小”)。 (2)请计算在整个过程中,起重机钢绳 对重物所做的功和起重机将电能转化成 机械能的效率(保留小数到%)。 答案:增加;1×105J;% 3.如图所示,工人用滑轮组提升重240N的物体,所用的拉力为150N,

物体在5s内匀速上升lm.求: (1)有用功; (2)滑轮组的机械效率; (3)拉力的功率. 答案:240J;80%;60W 4.随着社会的发展,人们生活水平的提高,人们的住房条件也得到了很大的改善.小明家最近购置了一套新房,为了帮助爸爸将重600N 的装修材料运送到6m高的楼上,小明利用物理课上学过的滑轮组,设计了如图20甲所示的材料搬运方案(其中每个滑轮重30N,绳子足够长,所能承受的最大拉力为250N,不计绳重及摩擦). (1)计算说明绳子的拉力是否超过绳子的最大承受力 (2)小明爸爸观察了该装置后,他想如果将该装置的滑轮位置颠倒(图20乙)是否会更省力一些,请你按照小明爸爸的想法,用笔画线在乙图绕上绳子并说明小明爸爸的想法是否正确. (3)求两种方案的机械效率之比 (4)综合分析评估两个方案,你认为哪个方案更好一些说明理由.

三相BLDC电机控制和驱动系统的策略

简化三相BLDC电机控制和驱动系统的策略 _________________________________________________________________ Microchip Technology Inc. 模拟和接口产品部 产品线营销经理 Brian Chu 高度集成的半导体产品不仅是消费类产品的潮流,同时也逐步渗透至电机控制应用。与此同时,无刷直流(BLDC)电机在汽车和医疗应用等众多市场中也呈现出相同 态势,其所占市场份额正逐渐超过其他各类电机。随着对BLDC电机需求的不断增 长以及相关电机技术的日渐成熟,BLDC电机控制系统的开发策略已逐渐从分立式 电路发展成三个不同的类别。这三类主要方案划分为片上系统(SoC)、应用特定 的标准产品(ASSP)和双芯片解决方案。 这三类主要方案均能减少应用所需的元件数并降低设计复杂度,因此正逐渐受到电机系统设计工程师的青睐。不过,每种策略都有其各自的优缺点。本文将论述这三种方案及其如何在设计的集成度和灵活性之间做出权衡。 图1:典型的分立式BLDC电机系统框图

基本电机系统包含三个主要模块:电源、电机驱动器和控制单元。图1给出了传统 的分立式电机系统设计。电机系统通常包含一个简单的带集成闪存的RISC处理器,此处理器通过控制栅极驱动器来驱动外部MOSFET。该处理器也可以通过集成的MOSFET和稳压器(为处理器和驱动器供电)来直接驱动电机。 SoC电机驱动器集成了上述所有模块,并且具有可编程性,能够适用于各类应用。 此外,它还是因空间受限而需要优化的应用的理想选择。但是,其处理性能较低且内部存储空间有限,因此无法应用于需要高级控制的电机系统。SoC电机驱动器IC 的另一个缺点是开发工具有限,例如缺乏固件开发环境。大多数业界领先的单片机供应商均提供种类繁多的易用工具,这一点与之形成鲜明对比。 ASSP电机驱动器面向某一特定领域设计,一切都针对某个狭义应用而优化。其占 用空间极小且无需软件调节。此外,它还是空间受限应用的理想选择。图2给出了 10引脚DFN风扇电机驱动器的框图。由于ASSP电机驱动器通常专注于大批量生产 应用,因此往往拥有出色的性价比。不过,这并不意味着依靠ASSP驱动器运行的 电机需要牺牲性能。例如,大多数现代ASSP电机驱动器能够驱动采用无传感器和 正弦算法的BLDC电机,而过去则需要使用高性能单片机才能实现这一点。但是,ASSP产品缺乏可编程性且不能调节驱动强度,这会限制其适应日益变化的市场需 求的能力。 图2:独立式风扇电机驱动器框图

转差频率控制的异步电动机

转差频率控制的异步电 动机 Revised as of 23 November 2020

转差频率控制的异步电动机 矢量控制系统仿真实训报告 二级学院 专业电气工程及其自动化 班级 指导教师 2014年6月 摘要 矢量变换控制技术的诞生和发展奠定了现代交流调速系统高性能化的基础。交流电动机是个多变量、非线性、强耦合的被控对象,采用参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速系统的动态性能得到了显着的改善和提高,从而使交流调速取代直流调速成为可能。目前对调速性能要求较高的生产工艺已较多地采用了矢量控制型的变频调速装置。实践证明,采用矢量控制的交流调速系统的优越性高于直流调速系统。 本文基于MATLAB?对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方

法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。 关键词:异步电动机矢量控制转差角频率 MATLAB 目录

一、转差频率控制的异步电动机矢量控制调速系统 1.矢量控制概述 矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制(VC)方式:矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1和Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

机电一体化中的电机控制与维护策略思考

机电一体化中的电机控制与维护策略思考 摘要:传统机械工业生产中机电一体化是非常重要的环节,一般是以人工操作 机电设备为主。然而随着生产规模扩大,有了新的机电要求,传统机械为主的生 产方式已无法满足实际生产需求,随着现代科技水平的提高,电子控制学在机电 行业应用日益广泛,新工艺及传统工艺深度融合发展,对未来生产有很大的帮助。基于此,针对机电一体化化中电机控制与维护策略相关知识,本文从以下几方面 进行了简单地分析,希望对相关领域研究有帮助。 关键词:机电一体化;电机控制;维护策略 引言 现代社会发展中,机电一体化发展空间大且有良好发展趋势。我国机电一体 化发展速度慢,相较之发达国家,机电一体化技术水平有一定差距。随着机电一 体化技术的发展,当前我国很多机械行业领域应用机电一体化技术进行生产。机 电一体化发展中经过多次创新改革,发展日益稳定因而备受行业关注,由此为我 国社会经济与机械行业发展提供了重要的推动力。 1、改善机电一体化具体内容与内涵 随着经济的快速发展,及科技为主的内在发展动力逐渐成为生产力的重要构 成内容。简单而言,机电一体化内涵包含三部分:(1)以新生产技术为主的机 械生产方式。该技术应用旨在有效融合电子操控技术,充分发挥电子操作技术优 势提高生产流程性能。(2)计算机及信息网络技术。巧妙应用该技术有效融合 机电一体化电机硬件与软件系统,以此同步实现智能化与自动化生产目标。(3)系统感受器官及传感检测技术。机电一体化化中应用该技术可自动化控制与调节 机电运转与发展情况,保障机电一体化系统运转水平。虽然现阶段机电一体化应 用各行业领域并取得了显著成就,应用范围也不断扩大。但实际应用过程中还存 在一些不足,亟待制定措施进行改革。为了确保生产系统中机电一体化电机稳定 稳定,扩大与提高工艺生产中的作用是十分必要的,以此深入控制并保护电机设备。 2、机电一体化电机控制与维护现状 现阶段,我国机电一体化技术应用日益成熟,但在电机控制及维护工作中, 传统电机控制及维护方案与机电一体化高效运转要求不相符。而且传统落后的电 机控制设备无法有效的保护电机设备。同时生产运营中电机所处环境比较特殊, 只有加强电机环境建设方能确保电机实现高效长久的运行。 随着生产力水平的提高,电机设备提出了更加养的要求,一旦电机控制出现 故障就会影响整个生产活动。例如,电机操作人员应用指令执行操作,假若自动 化电机不能精确识别指令,就会影响电机实际运行。另外各生产环节中,如果电 机状态出现异常也会影响整个生产过程。此类问题的出现有很多原因,不仅仅局 限于短路以及电机太热等问题,此种情况下电机控制与保护系统面临更高的要求。 机电一体化电机操作中,传统电机保护装置一般应用电磁继电器与熔断器等 硬件防护措施。随着机电一体化技术水平的提高,信息处理环节中此类简单防护 措施会影响数据紧缺性,无法满足实际生产发展与进步,还会引发很多安全事故,这与电机系统灵敏性联系紧密。整体而言,电磁继电器及熔断器为主的硬件防护 措施,综合性能还有很大的提高空间。 3、机电一体化电机控制与维护策略 3.1定期检查机电一体化运行设备

交流异步电动机调速系统控制策略

交流异步电动机调速系统控制策略 发表时间:2018-10-01T12:18:49.203Z 来源:《基层建设》2018年第27期作者:刘英敏 [导读] 摘要:为了提高异步电动机调速系统的精确性,本文主要分析了三种较为成熟的控制策略,同时分析了现代控制理论在交流异步电动机调速系统的应用控制策略的未来发展方向,期望能够推动系统控制策略的不断完善发展。 齐鲁石化运维中心炼油电气山东淄博 255434 摘要:为了提高异步电动机调速系统的精确性,本文主要分析了三种较为成熟的控制策略,同时分析了现代控制理论在交流异步电动机调速系统的应用控制策略的未来发展方向,期望能够推动系统控制策略的不断完善发展。 关键词:交流异步电动机;调速系统;策略;方向 交流异步电动机是一种将电能转化为机械能的电力拖动装置,其主要成分包括定子、转子和气隙。定子绕阻在接通三相交流电之后能够产生磁场,而且还切割了转子,进而获得转矩。交流异步电动机具有结构简单、运行稳定、价格实惠、安装和维护方便等优点,使其得到了广泛的应用。 交流异步电动机常见的调速方法有降压调速、转子串电阻调速和变极对数调速等,其中的变压变频调速的调速范围宽、灵活性较强,应用较为广泛。变压变频调速时的转差功率能够保持稳定,在配以一定的技术后能够保持高性能,能够与直流调速系统想媲美。本文以现代控制理论为基础分析了对异步电动机的变压变频调控策略的分析。 一、基于静态模型的控制策略 对异步电动机的调速的本质在于对电磁转矩的控制。传统的异步电动机交流调速系统以T型稳态等电路建立了数学模型,但对电磁转矩的控制率低。但其也有结构简单、工作场合要求低等特点,在风机和水泵中得到了广泛的应用。 1.对转速开环、恒压频比的控制 对转速开环和恒压频比控制的核心在于对电压和频率的控制,确保电压频率比保持稳定不变的情况下,以改变异步电动机的同步转速进行调速。在这一过程中,当电磁转矩不变时,转差频率不变,负载时的转速不变,通过改变电子电压频率来稳步改变转速。由于转速开环、恒压频比不能控制电磁转矩,其动态性能较差,调速范围也十分有限。 2.转速闭环、转差频率控制 能够控制电磁转矩就能够提高系统的动态性能。在转速开环、恒压频比上进行转速闭环控制,当电压频率陡然增加时,电机转速较为迟疑,造成转差额较大,电机转速提高,进而实现了对转速的控制。 二、基于动态模型的传统控制策略 上述的一种控制策略从稳态的电路出发,在稳态的情况下气隙恒定,动态性较差。要向实现动态性的调速,就要控制异步电动机的磁通和电磁转矩,常见的控制策略是矢量控制、直接转矩控制等。 1.矢量控制 矢量控制起源于感应电机磁场定向控制,并在感应电机定子电压上逐渐形成了矢量控制理论。矢量控制能够将定子电流分解成励磁分量和转矩分量,并在各自控制器的独立控制下实现了控制。矢量控制的关键在于保持转子磁链的恒定,因此就需要随时掌握转子磁链的信号。在初始阶段,人们尝试使用磁链传感器检测转子磁链,但其工艺和技术不太理想,而且转速低时的脉动分量大大超出了平常。当前的矢量控制系统多使用软测量的方法,例如电压、电流信号等。 2.直接转矩控制 矢量控制在理论上实现了磁链和转矩的解耦控制,但其坐标变换和转子磁链的准确性限制了矢量控制范围的准确性。而直接转矩控制系统通过双位控制器控制电磁转矩,选择合适的电压矢量控制电机,转矩响应速度快,稳定性也更高。 三、现代控制策略 传统控制策略会收到电机参数和扰动的影响,因此,现代控制理论与矢量控制、直接控制理论相结合,并且通过设计参数辨识器、观测器等修正模型,提高系统的鲁棒性。 1.滑模变结构控制 滑模变结构控制是通过变革结构控制实现控制,其实质是通过不连续的控制率使其按照要求的轨迹运动,常与矢量控制和直接转矩控制相结合使用。传统的滑模控制器只有滑动到面上时才具备不确定的干扰抑制力,常见的简单的办法是提高增益性使系统能够快速收敛到滑动面,但随之抖动也家具,使系统变得不稳定。全滑模控制具有全程性,在通过滑动模块控制的基础上,需要设计一个非线性的动态滑模来消除滑模控制,使系统具备全过程的鲁棒性,克服了原有的缺点。滑模变结构控制还有另外一个缺点,即当达到滑动后,滑动面向平衡点运动的轨迹难以得到控制,容易产生抖动。 2.自适应控制 由于异步电动机的参数与电机工作状态联系紧密,而矢量控制和直接转矩控制的动态性能也容易受到参数的变化,其自适应控制受到了广泛关注。自适应控制系统中常见的调速系统包括自适应控制和自适应观测器。模型自适应控制器以参考模型的输出为理想输出,以控制被控制对象的动态性和参考模型的动态性一致,其中涉及到的问题有负载转矩的矫正、速度控制器等。为了解决这些问题,需要掌握状态变量,如定子电流、转速等,但还需要定转子磁链自适应观测器,其以磁链为工具,以实际输出量和预估输出量为基准进行矫正,能够实现对转子电阻和转速的有效辨识。另外,还有一种自适应观测器——卡尔曼滤波器,它具有观测和滤波功能,能够消除系统噪音,提高了观测器的精度,使其鲁棒性更强。但交流调速系统以非现行系统为主,人们多以交流调速系统方程建立卡尔曼滤波方程,并加入了参数辨识、转速观测等,使观测器更加简化。 3.模糊控制 在矢量控制系统中,以转速和电流控制器为设计对象均能够将其设计成模糊控制器,进而掌握电极参数的变化和负载扰动的抑制能力。模糊控制常用在直接转矩控制中,更好地实现了定子电阻的控制,有效地实现了对异步电动机定子电阻的检测。 4.神经网络控制 神经网络控制的非线性模型包括神经网络辨识器和神经网络控制器的设计。神经网络能够矫正定、转子电阻,能够有效消除其对转子

电机计算公式

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ/ (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

电动汽车电机驱动控制策略研究

本科毕业设计(论文) () 论文题目:电动汽车电机驱动控制策略研究 本科生姓名:关海波学号:201211318 指导教师姓名:赵峰职称: 申请学位类别:工学学士专业:电力工程及管理 设计(论文)提交日期:(小四号楷体加黑)答辩日期:(小四号楷体加黑) 本科毕业设计(论文)

电动汽车电机驱动控制策略研究 姓名:关海波 学号:201211318 学院:新能源及动力工程学院专业班级:电力工程及管理1201班

指导教师:赵峰 完成日期: 兰州交通大学LanzhouJiaotongUniversity

摘要 本论文首先介绍了异步电动机的数学模型,通过坐标变换,得到了异步电动机的空间矢量等效电路。并由理想逆变器的8种开关状态入手,得到了理想逆变器的数学模型,建立了空间电压矢量的定义。并在此基础上对定子磁链和电磁转矩及空间电压矢量之间的关系进行了分析,阐述了六边形磁链轨迹和近似圆形磁链轨迹异步电动机直接转矩控制系统的结构和工作原理。 根据异步电动机直接转矩控制的工作原理,本论文在的平台下,分别搭建了六边形磁链轨迹和圆形磁链轨迹直接转矩控制系统模型。并对仿真结果进行了相应的分析,验证了异步电动机直接转矩控制策略的可行性。而且,对两种磁链轨迹直接转矩控制系统的优缺点及应用范围进行了比较。 本论文以电动汽车的电机驱动部分为研究对象,对于异步电动机的直接转矩控制技术进行了较为深入的理论研究,在电动汽车及其他相关领域的应用具有一定的参考价值。 关键词:电动汽车;电机驱动;直接转矩控制

, . . , . . , . a , a , . . :,, 目录 摘要错误!未指定书签。 错误!未指定书签。 1 绪论错误!未指定书签。 1.1国内外电动汽车的发展及现状错误!未指定书签。 2 电动汽车电机驱动系统分析错误!未指定书签。 2.1电动汽车驱动电机的特殊要求错误!未指定书签。 2.2电动汽车电机驱动系统的分类及选择错误!未指定书签。

同步电机与异步电机的概念、区别及应用前景

异步电机与同步电机的控制原理,应用领域 和研究热点 班级: 学号: 姓名:

同步电机,和感应电机一样是一种常用的交流电机。特点是:稳态运行时,转子的转速和电网频率之间有不变的关系n=ns=60f/p,ns称为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。同步电机分为同步发电机和同步电动机。现代发电厂中的交流机以同步电机为主。 工作原理 励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场 运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。

永磁同步电机的调速主要通过改变供电电源的频率来实现。目前常用的变频调速方式有转速闭环恒压频比控制(v/f)、转差频率控制、基于磁场定向的矢量控制(Vector Control)以及直接转矩控制(Direct Torque Control)。 1.转速闭环恒压频比控制 转速闭环恒压频比控制是一种最常用的变频调速控制方法。该方法是通过控制V/f恒定,使磁通保持不变,并以控制转差频率来控制电机的转矩和转速。这种控制方法低速带载能力不强,须对定子压降实行补偿,因该控制方法只控制了电机的气隙磁通,不能调节转矩,故性能不高。但该方法由于实现简单、稳定可靠,调速方便,所以在一些对动态性能要求不太高的场合,如对通风机、水泵等的控制,仍是首选的方法。 2.转差频率控制 转差频率控制的突出优点就在于频率控制环节的输入是转差信号,而频率信号是由转差信号与实际转速信号相加后得到的,这样,在转速变化过程中,实际频率随着实际转速同步地上升或者下降。尽管转差频率控制能够在一定程度上控制电机转矩 3.矢量控制 矢量控制框图如图2 所示。 1971 年,西门子工程师Balschke 首次提出矢量控制理论,使交流电机控制理论获得了一次质的飞跃。其基本思想为:以转子磁链旋转空间矢量为参考坐标,将定子电流分解为相互正交的两个分量,一个与磁链同方向,代表定子电流励磁分量,另一个与磁链方向正交,代表定子电流转矩分量,分别对它们进行控制,获得像直流电动机一样良好的动态特性。因其控制结构简单,控制软件实现较容易,已被广泛应用到调速系统中。但矢量控制方法在实现时要进行复杂的坐标变换,并需准确观测转子磁链,而且对电机的参数依赖性很大,难以保证完全解耦,使控制效果大打折扣。

提高三相异步电动机运行效能的分析与研究

提高三相异步电动机运行效能的分析与研究 摘要 在能源日趋紧张的情况下,如何提高效率,节约能源逐渐成为了社会普遍关注的问题。电动机用电量在我国工业用电量中占有相当大的比重,它的效率高低对能源消耗具有重要的影响。本次设计根据通用电机实际情况,就提高电动机效率进行分析,主要包括:电磁优化设计、电机损耗、低谐波定子绕组、转子结构、高性能材料、铁心材料,通过高效风扇、气隙系数、电机温升及噪声、磁性槽楔对电机性能影响的研究与分析,达到电动机提高效能的目的。 关键词:电机损耗,铁心材料,磁性槽楔,效能 Analysis and Study on increasing the operation efficiency of three-phase asynchronous motor Abstract:I n the situation of energy crisis, how to improve the efficiency, saving energy has become a social issue of common concern. Motor power consumption in a considerable proportion of electricity consumption occupies the industry of our country, its efficiency has important influence on the energy consumption. This design according to the actual situation of general motor, analysis, to improve the efficiency of the motor including: optimized design, loss of motor, low harmonic windings of the stator, rotor structure, high performance materials, core materials, through effective, fan, air gap coefficient, Wen Sheng noise, motor and magnetic slot wedge impact on motor performance research and analysis of the motor, to achieve the purpose of raising the efficiency of. Keywords:Loss of motor, magnetic materials, magnetic slot wedge, effectiveness

方案设计、电机选择、传动比与效率分配、参数计算

方案设计、电机选择、传动比与效率分配、参数计算 械传动装置设计的任务是分析和确定传动方案、选定电动机的型号、合理分配传动比及计算机械传动的运动和动力参数,为设计计算各级传动零件准备条件。 一台胶带运动输机,已知驱动卷筒所需的转矩T=4.8×105N·mm,带速υ=1.8m/s 算总传动比并分配各级传动比;计算各轴功率、转速和转矩。 一、拟定机械传动方案 拟定传动方案,应首先考虑电动机的同步转速。相同容量的同类异步电动机,其同步转速有3000r/min、1500r/min、1000r/min、750r/min四种。电动机转速越高,则极数越少,尺寸和重量越小,价格也越低,但机械传动装置的总传动比增大,传动级数要增多,传动尺寸和成本都要增加。通常多用同步转速为1500r/min和1000r/min两类电动机。 选定同步转速后,依据电动机的同步转速n D及工作机的输入转速nω,可确定传动装置的初估总传动比 图12-5 带式运输机的传动方案 根据所需的,并考虑各类传动机构的合理范围,拟定出几种传动方案进行分析 比较。图12-5所示的三种传动方案中,图12-5a为闭式双级齿轮传动,使用维护方便,适于在重载和恶劣条件下长期工作,但制造、装配要求较高,成本较高;图12-5b采用V带传动获得较为紧凑的结构尺寸,又能发挥其缓冲、吸振,过载起安全保护作用的优点,一般宜把带传动布置在高速级,该方案通常得到广泛应用。但外廓尺寸一般较大,且不适于繁重和恶劣条件下工作;图12-5c为电动机直接接在蜗杆减速器上,结构最紧凑,但在长期连续运转条件下,由于蜗杆效率低,功率损失大。传动方案远不止上述三种,设计时应根据不同的性能要求和工作特点,选取合理的传动方案。

电动机知识-计算题

计算题 ?1、Y132M4型三相异步电动机的额定数据为:P N =7.5kW, U N =380V, I N =15. 4A, cosφ=0.85,求输人功率P1、功率损耗△P、效率η? ?2、有一台三相异步电动机,额定功率为2. 2kW, 额定电压380V,功率因数为0. 88 ,效率为0.86,求电动机的额定电流是多少? ?3、一个车间有l0kW电动机一台,4kW电动机5台,电源电压380V,线路中功率因数cosφ= 0. 8,电动机均为不频繁启动,试选择总电源保险丝为多大?自动空气开关选何规格? ?4、有一台异步电动机的转差率为2%,额定频率为50Hz,它是6极交流电机。求该电动机的额定转速是多少? ?5、有台四极的交流异步电动机,额定频率为50Hz,转差率为4%, 求它的额定转速是多少? ?6、有一台六极的交流电动机,额定频率为50Hz,转差率为4%,求它的额定转速是多少? ?7、某三相异步电动机每相绕组有三组线圈,接在50Hz的交流电源上,转差率为6%, 求这台电动机的额定转速是多少? ?8、已知一台直流电动机,其额定功率Pn=100kW,额定电压Un = 220,额定转速 n n =1500r/min。额定效率ηn = 90% ,求其额定运行时的输入功率P1和额定电流In ? ?9、有一台三角形连接的三相电动机,接于线电压为380V的电源上,电动机的额定功率为2.74kW、效率η为0.8,功率因数为0.83。试求电动机的相电流 I ph和线电流I pp? ?10、一台Y160M1- 2三相异步电动机的一额定功率P N=11 kW,额定转速n N=2 930 r/min, 过载系数λ=2. 2,求额定转矩M N和最大转矩Mm? ?11、已知两台三相异步电动机的额定功率都是55kW,而额定转速分别为980 r/ min和2960 r/min,试求它们的额定转矩,并比较之。 ?12、电源频率f1=50Hz,额定转差率S N = 0. 02,求四级三相异步电动机的同步转速和额定转速? ?13、电源频率f1=50Hz,额定转差率S N = 0. 02,求二级三相异步电动机的同步转速和额定转速? ?14、Y132M4- 2型三相异步电动机的额定数据为 P N = 7. 5kW, U N= 380V, I N = 15.4A,cosφ=0.85, n N=1440 r/min,求输人功率p1,功率损耗△P、效率η? ?15、有一台20kW的鼠笼式三相异步电动机,其启动电流I st与额定电流I N之比为6, 试问它能否接在容量为180kVA的电力网上直接启动?

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

电动机效率与损耗分析

电动机效率与损耗分析 Final revision on November 26, 2020

异步电动机输入电功率,输出机械功率,在运行过程中产生恒定损耗和负载损耗。恒定损耗包含风摩耗和铁心损耗,是不随负载大小变化的损耗。负载损耗包含定子绕组损耗、转子绕组损耗和负载附加损耗(或称负载杂散损耗),对绕线转子电机还包含电刷及转子外接电路的电损耗。 恒定损耗是电动机运行时的固有损耗,它与电动机材料、制造工艺、结构设计、转速等参数有关,而与负载大小无关。 1、铁心损耗(含空载杂散损耗),亦简称铁耗,是恒定损耗的一种,由主磁场在电动机铁心中交变所引起的涡流损耗和磁滞损耗组成。铁心损耗大小取决于铁心材料、频率及磁通密度,近似的表示为: 磁通密度B与输入电压U成正比,对某一台电动机而言,其铁耗近似于与电压的平方成正比。铁耗一般占电动机总损耗的20%~25%。 2、风摩耗也称机械损耗(何不称为“机械损耗”),是另一种恒定损耗,通常包括轴承摩擦损耗及通风系统损耗,对绕线式转子还存在电刷摩擦损耗。 机械损耗一般占总损耗的10%~50%,电动机容量越大,由于通风损耗变大,在总损耗中所占比重 也增大。 3、负载损耗主要是指电动机运行时,定子、转子绕组通过电流而引起的损耗,亦称铜耗。它包括定子铜耗和转子铜耗,其大小取决于负载电流及绕组电阻值。铜耗约占总损耗的20%~70%。 4、杂散损耗(附加损耗)P主要由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗。 这些损耗约占总损耗的10%~15%。 §1-2电动机的效率 电动机的效率与损耗相对值(P)的关系如下式所示 =1一ΣP 式中ΣP——电机总损耗 ΣP=(++++P)/Pl P1——电机输入功率 当一台电机效率为0.87时,由上式可见其损耗相对值为0.13,如损耗下降20%,则由上式可求得效率为0.896,即效率提高了2.6个百分点。并由此可见,如一通用系列的效率平均值为0. 87,作为高效率电机系列,其损耗如平均下降20%以上,则系列的平均值也应提高2.6个百分点以上。 §1-3端电压变动时电机的损耗 电机铭牌上电压值是电机设计时的依据,实际运行时电网上电压是波动的,我国规定低压系统中电压允许变化±10%,在一个工厂中电压变动往往超过这一范围,电压变动对电机各部分损耗有什么影响,电压调节在什么范围内变动能够节电,这是值得分析的问题。 国内外许多资料表明,电压低于额定值不超过10%,对一个系统,一个工厂往往是节电的。例如在保证供电电压合格范围内,降低配电压2—3%,无论对住宅、商业、工业负荷都起到节电 的效果。工厂降压运行(-5%左右)同样能够节电,而升压(+5%左右)则增加电能消耗。当然降压范围不能太大,否则引起电动机过负荷能力降低及某些重载负荷过电流等问题。但-5%范围内,一般不会出现这些问题。 电压变化在负载不同时对电机效率影响是不同的。在重载时提高电压在一定范围(从342伏提到380伏)可以提高效率,再提(412伏)则效率反而下降。但轻载时,电压从342伏上升则效率 越来越低,如何调整线路电压及个别调整电机端电压力可以达到节能的效果。

中考科学—电动机的效率的计算(答案不完整)

中考科学—电动机的效率计算题(带答案) 一、分析 1.能量转化问题: 通电不转动的时候:电能转化成热能(纯电阻电路)W=Q 可以根据已知通过的电流和两端电压求出线圈的电阻:R=U 0/I 0 通电转动的时候:电能转化为机械能和热能(非纯电阻电路) 电动机消耗的总功率:P=UI 消耗的热功率:P 热=I 2R 机械功率:P= UI —I 2R 电动机不转动时通过的电流【启动电流】大于转动时的电流【工作电流】 2.例题分析 例: 一直流电动机线圈内阻一定,用手握住转轴使其不能转动,在线圈两端加电压为0.3V ,电流为0.3A ;松开转轴,在线圈两端加电压为2V 时,电流为0.8A ,电动机正常工作。求:该电动机正常工作时,输入的电功率是多少?电动机的机械功率是多少?电动机的效率是多少? 分析:电动机不转动时,其消耗的电功全部转化为内能,故可视为纯电阻电路, 由欧姆定律得电动机线圈内阻:R=I U =3 .03.0Ω=1Ω,电动机转动时,消耗的电能转化为内能和机械能,其输入的电功率为P 入= U l ·I 1=2V ×0.8A =1.6W , 电动机的机械功率P 机=P 入一I 12·R=1.6W 一(0.8A)2×1Ω=0.96W η=P 机/P 入=0.96W /1.6W=60% 二、巩固练习 1、小明认为:电风扇工作时,电能转化为叶片转动的机械能和线圈发热、摩擦等产生的内能。其中转化为机械能所做的功是 ,转化为内能所做的功是 (填“有用功”或“额外功”)。为了粗略探测电风扇正常工作的电能转化效率,小明用一个铭牌上标有额定电压为U ,但其他字迹不清的小型直流电风扇来进行实验,实验设计如下: (1)按右图所示连接好电路,闭合开关,叶片转动,移动变阻器滑片至某一位置时,叶片刚好不转动,测出此时电压表和电流表的示数分别为U 0、I 0,则线圈导体的电阻为 ; (2)向 (填“左”或“右”)移动变阻器滑片,使电压表 示数为额定电压U ,读出此时电流表的示数为I ; (3)若忽略摩擦,只考虑线圈发热损耗,则电风扇正常工作时电能 转化效率的表达式η= (用测出的已知量表示)。

电机控制论文

目前几种比较常见的直接转矩控制策略中,对于中小容量而言,控制方案重点在于进行转矩、无差拍控制和提高。对大容量来说,其区别在于低速时采用了间接转矩控制,从而达到低速时降低转矩脉动的。 直接转矩控制技术概述 相对于直流电机在结构简单、维护容易、对环境要求低以及节能和提高生产力等方面具有足够的优势,使得交流调速已经广泛运用于工农业生产、交通运输、国防以及日常生活之中。随着电力电子技术、微电子技术、控制理论的高速发展,交流调速技术也得到了长足的发展。目前在高性能的交流调速领域主要有和直接转矩控制两种。1968年Darmstader工科大学的Hasse初步提出了磁场定向控制(Field Orientation)理论,之后在1971年由的对此理论进行了总结和实现,并以专利的形式发表,逐步完善并形成了现在的各种矢量控制方法。 特点 对于直接转矩控制来说,一般文献认为它由德国鲁尔大学的教授和的于1985年首先分别提出的。对于磁链圆形的直接转矩控制来说,其基本思想是在准确观测定子磁链的空间位置和大小并保持其幅值基本恒定以及准确计算负载转矩的条件下,通过控制电机的瞬时输入电压来控制电机定子磁链的瞬时旋转速度,来改变它对转子的瞬时转差率,达到直接控制电机输出的目的。在控制思想上与矢量控制不同的是直接转矩控制通过直接控制转矩和磁链来间接控制电流,不需要复杂的坐标变换,因此具有结构简单、转矩响应快以及对参数鲁棒性好等优点。 控制 事实上,1977年A·B·Plunkett曾经在IEEE的工业应用期刊上提出了类似于目前直接转矩控制的结构和思想的直接磁链和转矩调节方法,在这种方法中,转矩给定与反馈之差通过PI调节得到滑差频率,此滑差频率加上电机转子机械速度得到逆变器应该输出的电压定子频率;定子磁链给定与反馈之差通过积分运算得到一个电压与频率之比的量,并使之与定子频率相乘得到逆变器应该输出的电压,最后通过SPWM方法对电机进行控制。 发电机非常容易地将电动机轴上的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性,另一方面又可减少能量的损耗,提高效率。但发电机、电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备,因而体积大,维修困难等。第三,自出现汞弧变流器后,利用汞弧变流器代替上述发电机、电动机系统,使调速性能指标又进一步提高。特别是它的系统快速响应性是发电机、电动机系统不能比拟的。但是汞弧变流器仍存在一

(技术文档2)异步电机目前几种主要控制方法的对比分析

异步电机几种主要控制方法的对比分析 近些年来,随着电力电子、计算机控制以及矢量控制等技术的不断发展,交流调速获得了巨大的技术支持,交流调速系统已经取代了直流调速系统。交流异步电机调速控制系统大致可分为两大类,一类是标量控制系统,主要是变频调速系统,包括恒压频比控制(V/F 控制)和转差频率控制。另一类是矢量控制系统,包括转子磁场定向矢量控制(VC )、转差频率矢量控制、直接转矩控制(DTC )和无速度传感器矢量控制。 1 标量控制 1.1 恒压频比控制( V/F) 交流异步电机调速时,总是希望保持每极磁通量m Φ为额定值不变,这样铁芯才能工作在最经济状态。电源频率和电机极对数决定异步电动机的同步转速,即在改变电源频率时,可以改变电机的同步转速,这时只有控制电源电压与变化的频率的比值为恒定( V/F 恒定) ,才能确保电动机的磁通m Φ基本恒定。电动机定子的感应电动势: m N 111K 44.4Φ=N f E g (1) 式中Eg —气隙磁通在定子每相绕组中感应电动势有效值; 1f —电源频率; 1N —定子每相绕组串联匝数; 1N K —基波绕组系数; m Φ—每极气隙磁通量。 由式(1)可知,在控制电动机频率时,保持1/f E g 1恒定,就可以维持磁通恒定。有三种不同方式的电压—频率协调控制。 (1) 恒压频比=11/f U 控制,1U 为定子端电压,这种方式最容易实现,能够满足一般调速要求,其缺点是低速带载能力差,需要对定子压降进行补偿。 (2) 恒1/f E g 控制,g E 是气隙磁通在定子每相绕组中感应电动势,它以对恒压频比实行电压补偿为目标,稳态调速性能优于恒压频比11/f U 控制。这种控制方式的缺点是机械特性非线性,产生转矩的能力不强。 (3) 恒1/f E r 控制,r E 是气隙磁通在转子每相绕组中感应电动势,这种控制方式可以得到和直流励电动机一样的机械特性,从而使高性能调速得以实现。但是它的控制系统比较复杂。

相关文档
最新文档