解决三角函数各类问题的十种方法

解决三角函数各类问题的十种方法
解决三角函数各类问题的十种方法

解决三角函数各类问题的十种方法

三角函数的各类问题,由于涉及的三角公式较多,问题的解法也比较灵活,但也会呈现出一定的规律性,本文拟对其中的解题方法进行总结归纳.

1 凑角法

一些求值问题通过观察角之间的关系,并充分利用角之间的关系,往往是凑出特殊角,可以实现顺利解答.

例1 求tan 204sin 20?+?的值.

解析 原式sin 202sin 40sin 202sin(6020)cos 20cos 20?+??+?-?==??

sin 202(sin 60cos 20cos60sin 20)3cos 20?+??-??==?

评注 三角求值主要借助消除三个方面的差异解答,即消除函数名称差异,或者式子结构的差异,或者角度之间的差异,凑角法体现的就是消除非特殊角与特殊角之间的差异.本题注意若将第一步中的分子化为sin(6040)2sin 40?-?+?,或者化为sin(3010)2sin(3010)?-?+?+?,都没有上面的方法简捷,请同学们进行操作比较,分析原因,并注意凑角也需谨慎选择!

2 降幂法

一些涉及高次三角式的求值问题,往往借助已知及22sin cos 1αα+=,或降幂公式221cos 21cos 2sin ,cos 22

αααα-+==等借助降幂策略解答. 例2 若2cos cos 1αα+=,求26sin sin αα+的值.

解析 由2cos cos 1αα+=,得15cos α-+=

,15cos α--=(舍去).由2cos cos 1αα+=,又可得22cos 1cos sin ααα=-=,

则263sin sin cos cos αααα+=+,又由2cos cos 1αα+=,得2cos 1cos αα=-,故322cos cos cos (1cos )cos (2cos )2cos cos 3cos 1ααααααααα+=+=-=-=-,代值可得26355sin sin 2

αα+=. 评注 若求出cos α的值后直接简单代入,则运算量将大得多,而主动降幂后就截然不同了.涉及非单角形式的三角函数问题,有时也需要考虑降幂进而化为一个角的三角函数形式解答,遇到“高次”问题就特别注意联想“降幂法”解答.

3 配对法 根据一些三角式的特征,适当进行配对,有时可以实现问题的顺利解答.

例3 已知(0,)2x π

∈,且222cos cos 2cos 31x x x ++=,求x 的值.

解析 设222cos cos 2cos 3m x x x =++,令222sin sin 2sin 3n x x x =++,则3m n +=,cos2cos4cos6m n x x x -=++,其中,2cos62cos 31x x =-,

cos 2cos 4cos(3)cos(3)2cos cos3x x x x x x x x +=-++=,2cos3(cos cos3)1m n x x x -=+-,又cos cos3cos(2)cos(2)2cos cos2x x x x x x x x +=-++=,故4cos cos2cos31m n x x x -=-,故可解得1cos cos 2cos3(22)0(1)4

x x x m m =-==.则cos 0x =,或cos20x =,或cos30x =,又(0,)2

x π∈,则6x π=或4x π=. 评注 三角函数中的正弦函数与余弦函数是一对互余函数,有很多对称的结论,如22sin cos 1θθ+=等,因此在解决一些三角求值,求证等问题时,可以构造对偶式,实施配对策略,尝试进行巧妙解答. 4 换元法

很多给值求值问题都是给的单角的某一三角函数值,但有时会出现给出复合角的三角函数值求值的问题,此时,利用换元法可以将问题转化为熟悉的已知单角的三角函数值求值问题.

例4 求sin 75cos 45315ααα+?++?+?()()-()的值.

解析 令15αβ+?=,则原式sin(60)cos(30)3βββ=+?++?

(sin cos 60cos sin 60)(cos cos30sin sin 30)30βββββ=?+?+?-?-=.

评注 教材求值问题往往是已知单角三角函数值求值,而近几年的高考和期末考试试题,则青睐于已知复合角的三角函数值求值,因此备考时要特别注意此点,解答此类问题的换元法或整体思想也都十分重要.对本题,若直接将三部分借助两角和的正弦公式与余弦公式展开,则要繁杂得多.

5 方程法 有时可以根据已知构造所求量的方程解答.

例5 若33cos sin 1x x =+,试求sin x 的值.

解析 令cos sin x x t =+,则21cos sin (1)2x x t =

-,[2,2]t ∈.由已知,有 2

221(cos sin )(cos sin cos sin )(1)12

t x x x x x x t --++=+=,即3232(1)(2)0t t t t --=+-=,得1t =-,或2t =(舍去).即cos sin 1x x =+,又22sin cos 1x x +=,整理可得2sin sin 0x x +=,解得sin 0x =或sin 1x =-.

评注 将已知转化为关于sin x 的方程是解题的关键.方程的思想方法是解答诸多三角函数问题的基本大法,如求三角函数的解析式等问题.一般地,若题目中有n 个需要确定的未知数,则只要构造n 个方程解答即可.

6 讨论法 涉及含有参数或正负情形的三角问题,往往需要借助讨论法进行解答.

例6 已知ABC 中,54sin ,cos 135

A B =

=,求cos C . 解析 由5sin 13A =,得12cos 13A =±.当12cos 13A =-时,因为,A B 是ABC 的内角,需要满足0A B π<+<,有0A B ππ<<-<,而余弦函数在区间(0,)π是减函数,得cos cos()cos A B B π>-=-,但124cos cos 135A B =-

<-=,故此情形不合题意. 可以验证12cos 13A =符合题意,故33cos cos()sin sin cos cos 65

C A B A B A B =-+=-=-. 评注 分类讨论是将问题化整为零,进而化难为易的重要思想方法,一般含有绝对值的三角函数问题,涉及未确定象限的角的问题等,都要首先考虑“讨论”!

7 平方法

分析已知和所求,有时借助“取平方”的方法可以实现顺利解题.

例7 已知sin sin sin 0αβγ++=,cos cos cos 0αβγ++=,求cos()αβ-的值.

解析 有sin sin sin αβγ+=-,cos cos cos αβγ+=-,两式两边平方后对应相加,可得2222(sin sin 2sin sin )(cos cos 2cos cos )αβαβαβαβ+++++

22(sin )(cos )1γγ=-+-=,即1cos()2

αβ-=-. 评注 学习数学要掌握一些基本的操作技能,而“取”就是其中的重要一种,除了“取平方”外,常见的还有“取对数”,“取倒数”等操作,需要注意体会.本题就是借助平方关系实现整体消元后解答的. 8 猜想法

有时根据已知数据的特征进行必要的猜想,能更好的解决求值问题. 例8 已知13sin cos αα-+=α为第二象限角,则sin α= . 解析 由sin 0,cos 0αα><及22221

3sin cos 1,()()12αα+=+=,可得1sin 2

α=.

评注 实际上,将13sin cos 2

αα+=与22sin cos 1αα+=联立所得二元二次方程组只有两组解,即13sin ,cos 22αα-==或13cos ,sin 22

αα-==,依题意只可取前者.学习数学,要培养对数据的敏感性,能根据数据特征进行积极联想,进而适当猜想,能有效提高解题速度,而且猜想是一种重要的推理形式,并不是“胡猜乱想”,要紧扣已知和所求进行.

9 图象法

有时候,借助图象才能更好的解决对应的三角函数问题.

例9 已知函数()sin 1(1)f x A x A =+>的图象与直线y A =在x 轴右侧的与x 轴距离最近的相邻三个交点的横坐标成等比数列,求实数A 的值.

解析 如右图,设三个交点的坐标为(,)B b A ,(,)C c A ,

(,)D d A ,由三角函数图象的对称性,则有22b c π

π+=?=,

3232

c d ππ+=?=,有b c π=-,3d c π=-,又222()(3)34c bd c c c c ππππ==--=-+,解得34c π=.故函数图象经过3(,)4

A π,代入可得22A =+.

评注 数和形是数学的两大支柱,三角函数的很多问题都有图形背景,在解决问题时,要充分借助图形进行直观分析,往往能更快捷的实现问题的解答,注意培养做草图的能力.

10 比例法 借助比例的性质,有时可以实现快速解答三角函数问题.

例10 求证 2(cos sin )cos sin 1sin cos 1sin 1cos αααααααα

-=-++++. 解析 若cos 0α=(或sin 0α=),因为sin 1(cos 1),αα≠-≠-或,故sin 1α=,或cos 1α=,验证可知等式成立.

若cos 0α≠,则由2cos (1sin )(1sin )ααα=+-,2

sin (1cos )(1cos )ααα=+-及比例性质a c a c b d b d +==+,可得cos 1sin 1sin cos 1sin cos 1sin cos αααααααα

--+==+++. sin 1cos 1sin cos 1cos sin 1sin cos αααααααα

-+-==+++,代入等式左边可知所证成立. O x D C B y A = y 2x π=

评注 本题有多种证法,而借助比例的性质的方法显得尤为简捷.涉及分式的三角函数问题,可以考虑借助比例法解答.如关于半角的正切公式sin 1cos tan 21cos sin α

αααα

-==+,按照比例性质,立得1cos sin tan 21cos sin α

αααα

-+=++.

7.6用锐角三角函数解决问题(3)

7.6锐角三角函数解决问题(3) 学习目标: 1.掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、角有关的实际问题,培养学生。 2.经历探索实际问题的求解过程,进一步体会三角函数在解决问题过程中的应用. 教学流程提纲 1.仰角、俯角的定义:如图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线 与水平线的夹角叫做俯角。右图中的∠1就是俯角,∠2就是仰角。 2.课本例题讲解 3.课本练习 4.拓展例题 如图,飞机在距地面9km高空上飞行,先在A处测得正前方某小岛C的俯角为30°,飞行一段距离后,在B处测得该小岛的俯角为60°.求飞机的飞行距离. 变式:如上图,飞机在一定高度上飞行,先在A处测得正前方某小岛C的俯角为30°,飞行10km 后,在B处测得该小岛的俯角为60°,求飞机的飞行高度。 本节课2个目标你达成个?分别是:

7.6锐角三角函数解决问题(3)过关检测 1.热气球的探测器显示,从热气球A看一栋高楼顶部B处的仰角为30o,看这栋高楼底部C处的俯角为60o,若热气球与高楼的水平距离为90m,则这栋高楼有多高?(结果保留整数,2≈1.414,3≈1.732) 2.海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离. 3.据黄石地理资料记载:东方山海拔DE=453.20米,月亮山海拔CF=442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D的正上方A处测得月亮山山顶C的俯角为α,在月亮山山顶C的正上方B处测得东方山山顶D处的俯角为β,如图,已知tanα=0.15987,tanβ=0.15847,若飞机的飞行速度为180米/秒,则该飞机从A到B处需多少时间?(精确到0.1秒)

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 4 3133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 2 2= D .22m n =

7.6用锐角三角函数解决问题(2)学案

7.6用锐角三角函数解决问题(2)学案 学习目标: 通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系。 教学过程: 一、复习巩固: 1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。 2、在△ABC中,∠C=90°。 (1)已知∠A=30°,BC=8cm,(2)已知∠A=60°,AC=3cm, 求:AB与AC的长; 求:AB与BC的长。 二、例题学习: 问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。小明乘坐最底部的车厢(离地面约0.3m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)? 拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达15.3m? 2、小明将有多长时间连续保持在离地面30.3m以上的空中? 三、练习巩固

, B B A 1、如图,单摆的摆长A B 为90cm ,当它摆动到∠B AB '的位置时,∠BAB '=30°。问这时摆球B ' 较最低点B 升高了多少? 2、已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面32m.求此时跷跷板与地面的夹角. 3、如图,在离水面高度为5米的岸上有人用绳子 拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果精确到0.1米) 四、小结 五、课堂作业

B A O B A 初三数学课堂作业 1、如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离A B为 ( ) A. αcos 5 B. αcos 5 C . αsin 5 D. αsin 5 第1题 第3题 第4题 2.(09甘肃定西)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为 ( ) A .8米??B.83米? C .833米? D.433 米 3.(09潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25 ??B.253 C.10033 ?D .25253+ 4.已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面2m 。时跷跷板与地面的夹角为_____ ____。 7.如图,秋千链子的长度为3m,当秋千向两边摆动时,两边摆动的角度均为30°.求它摆动到最高位置与最低 位置的高度之差。 5.海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45°方向,求此时灯塔B 到C处的距离. 6. 单摆的摆长AB 为90cm,当它摆动到A B’的位置时, ∠BAB’=11°,问这时摆球B’ 较最低点B 升高了多少(精确到1cm)? sin110.191?≈cos110.982?≈tan110.194?≈

三角函数的有关计算

3. 三角函数的有关计算 【知识要点】运用计算器进行有关三角函数值的计算. 【能力要求】能够运用计算器进行有关三角函数值的计算, 并能解决含三角函数值计算的实际问题. 练习一 【基础练习】 一、填空题: 利用计算器解答(三角函数值保留.4个有效数字,角度精确 到秒) 1.sin38°18′= ,cos65°24′= , tan5°12′= ; 2.tan46°52′+ cos31°47′= ; 3.已知sin α= 0.5138,则锐角α= ,已知2cos β= 0.7658,则锐角β = ; 二、选择题: 利用计算器解答. 1.下列各式正确的是( ); A. sin58°> cos32° B.sin36°41′+ sin25° 13′= sin61°54′ C. 2tan14.5°= tan29° D.tan34°28′·tan55° 32′= 1 2.下列不等式中,错误的是( ). A.sin72°> sin70°> cos74° B.cos24°> cos56°> sin31° C.tan29°< cos29°< sin29° D.sin64°< cos14° < tan64° 三、解答题: 1.用计算器求下列各式的值(保留4个有效数字): (1) ?37sin 25; (2)sin48°32′+ cos56°24′; (3)???41cos 2341tan 5; (4)2sin 250°- tan62°+ 1.

2. 求下列各式中的锐角α(精确到分): (1)3sin α-1 = 0; (2)2tan α= 3 5; (3)cos (2α- 24°) = 0.8480; (4)ααtan sin 3= 2.726. 【综合练习】 锐角△ABC 中,CD ⊥AB 于D ,AB = 3,AD = 2,BC = 6,求∠ACB 的度数(精确到1′). 【探究练习】 计算tan1°tan2°tan3° … tan87°tan88°tan89°的 值,在计算过程中,你发现了什么规律? 3. 三角函数的有关计算 练习一 【基础练习】一、1. 0.6198,0.4163,0.09101;2. 1.917;3. 30°55′02″,67°29′12″. 二、1. D ; 2. C. 三、1.(1)41.54;(2)1.303; (3)1.270;(4)0.2929. 2.(1)35°16′;(2)73°24′;(3)28°;(4)24°41′. 【综合练习】∠ACB = 65°54′. 【探究练习】 原式 = 1,规律:tan α·tan (90°-α) = 1(α为锐角).

三角函数值的计算

第一章直角三角形的边角关系 2. 30°,45°,60°角的三角函数值 一、学生知识状况分析 学生的知识技能基础:本节课前学生已经学习了正切、正弦、余弦的定义。 学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。 二、教学任务分析 本节课教学目标如下: 知识与技能: 1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的意义。 2.能够进行30°、45°、60°角的三角函数值的计算 3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小 过程与方法: 经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现的能力。 情感态度与价值观: 培养学生把实际问题转化为数学问题的能力。 教学重点: 能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小 教学难点:三角函数值的应用 三、教学过程分析 本节课设计了六个教学环节:复习巩固、活动探究、讲解新课、知识应用、

A C B b a c 小结与拓展、作业布置。 第一环节 复习巩固 活动内容:如图所示 在 Rt △ABC 中,∠C=90°。 (1)a 、b 、c 三者之间的关系是 , ∠A+∠B= 。 (2)sinA= ,cosA= , tanA= 。 sinB= ,cosB= ,tanB= 。 (3)若A=30°,则 c a = 。 活动目的:复习巩固上一节课的内容 第二环节 活动探究 活动内容: [问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度. 我们组设计的方案如下: 让一位同学拿着三角尺站在一个适当的位置B 处,使这位同学拿起三角尺,她的视线恰好和斜边重合且过树梢C 点,30°的邻边和水平方向平行,用卷尺测出AB 的长度,BE 的长度,因为DE=AB ,所以只需在Rt △CDA 中求出CD 的长度即可. 我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30°的正切值,在上图中,tan30°

三角函数经典解题方法及考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2 π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π 的奇函数 D. 最小正周期为 2 π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2 cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304 ≤ ≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

《用锐角三角函数解决问题》教案

《用锐角三角函数解决问题》教案1 教学目标 1、了解测量中坡度、坡角的概念. 2、掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度有关的实际问题. 3、进一步培养学生把实际问题转化为数学问题的能力. 重点难点 重点:有关坡度的计算. 难点:构造直角三角形的思路. 教学设计 一、引入新课 如下图所示,斜坡AB 和斜坡A 1B 1哪一个倾斜程度比较大?显然,斜坡A 1B l 的倾斜程度比较大,说明∠A 1>∠A .从图形可以看出,1111 B C BC AC AC ,即tan A 1>tan A . 在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度. 二、新课 1.坡度的概念,坡度与坡角的关系. 如图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i ,即i =AC BC ,坡度通常用l :m 的形式,例如上图中的1:2的形式.坡面与水平面的夹角叫做坡角.从三角函数的概念可以知道,坡度与坡角的关系是i =tan B ,显然,坡度越大,坡角越大,坡面就越陡. 2.习题讲解. 1.如图,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°,求路基下底的宽.(精确到0.1米)

分析:四边形ABCD是梯形,通常的辅助线是过上底的两个顶点引下底的垂线,这样,就把梯形分割成直角三角形和矩形,从题目来看,下底AB=AE+EF+BF,EF=CD=12.51米.AE在直角三角形AED中求得,而BF可以在直角三角形BFC中求得,问题得到解决.2.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角.和坝底宽AD.(i =CE:ED,单位米,结果保留根号) 三、练习 课本第114页课内练习. 四、小结 会知道坡度、坡角的概念能利用解直角三角形的知识,解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决. 五、作业 课本117页习题7.6的1、2题. 《用锐角三角函数解决问题》教案2 教学目标 知识与技能 1.通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系. 2.把实际问题转化为数学问题,同时借助计算器进行有关三角函数的计算,并能对结果的意义进行说明. 数学思考与问题解决 经历实际问题数学化的过程,进一步体会三角函数在解决问题中的作用,不断探索解决实际问题的方法和规律. 情感与态度 在独立思考探索解决问题方法的过程中,培养学生不断克服困难,增强应用数学的意识和解决实际问题的能力.

三角函数计算公式大全

三角函数计算公式大全-CAL-FENGHAI.-(YICAI)-Company One1

三角函数公式 三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 定义式 锐角三角函数任意角三角函数 图形 直角三角形 任意角三角函数 正弦(sin) 余弦(cos) 正切(tan或t g) 余切(cot或ct g) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典[1]. 函数关系 倒数关系:①;②;③ 商数关系:①;②. 平方关系:①;②;③.

诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限[2].即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

三角函数常见问题十种求解策略

三角函数常见问题十种求解策略 导语:三角形中的三角函数问题,是三角函数和解三角形两个知识点的有机结合,也是近年来高考中常见的考点之一。以下是为大家精心的高中数学,欢迎大家参考! 一、见“给角求值”问题,运用“新兴”诱导公式 一步到位转换到区间(-90,90)的公式. 1.sin(kπ+α)=(-1)ksinα(k∈Z); 2.cos(kπ+α)=(-1)kcos α(k∈Z); 3.tan(kπ+α)=(-1)ktanα(k∈Z); 4.cot(kπ+α)=(-1)kcot α(k∈Z). 二、见“sinα±cosα”问题,运用三角“八卦图” 1.sinα+cosα>0(或 2.sinα-cosα>0(或 3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内; 4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内. 三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。 四、“见齐思弦”=>“化弦为一” 已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α. 五、见“正弦值或角的平方差”形式,启用“平方差”公式:

1.sin(α+β)sin(α-β)=sin2α-sin2β; 2.cos(α+ β)cos(α-β)=cos2α-sin2β. 六、见“sinα±cosα与sinαcosα”问题,起用平方法则: (sinα±cosα)2=1±2sinαcosα=1±sin2α,故 1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α; 2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α. 七、见“tanα+tanβ与tanαtanβ”问题,启用变形公式: tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=??? 八、见三角函数“对称”问题,启用图象特征代数关系:(A≠ 0) 1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称; 2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称; 3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数 y=Acot(wx+φ)的对称性质。 九、见“求最值、值域”问题,启用有界性,或者辅助角公式: 1.|sinx|≤1,|cosx|≤1; 2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);

三角函数快速算法

三角函数快速算法(反正切,正余弦,开平方) 2010-09-08 09:14:27| 分类:| 标签:|字号订阅 #define REAL float #define TAN_MAP_RES 0.003921569 /* (smallest non-zero value in table) */ #define RAD_PER_DEG 0.017453293 #define TAN_MAP_SIZE 256 #define MY_PPPIII 3.14159 #define MY_PPPIII_HALF 1.570796 float fast_atan_table[257] = { 0.000000e+00, 3.921549e-03, 7.842976e-03, 1.176416e-02, 1.568499e-02, 1.960533e-02, 2.352507e-02, 2.744409e-02, 3.136226e-02, 3.527947e-02, 3.919560e-02, 4.311053e-02, 4.702413e-02, 5.093629e-02, 5.484690e-02, 5.875582e-02, 6.266295e-02, 6.656816e-02, 7.047134e-02, 7.437238e-02, 7.827114e-02, 8.216752e-02, 8.606141e-02, 8.995267e-02, 9.384121e-02, 9.772691e-02, 1.016096e-01, 1.054893e-01, 1.093658e-01, 1.132390e-01, 1.171087e-01, 1.209750e-01, 1.248376e-01, 1.286965e-01, 1.325515e-01, 1.364026e-01, 1.402496e-01, 1.440924e-01, 1.479310e-01, 1.517652e-01, 1.555948e-01, 1.594199e-01, 1.632403e-01, 1.670559e-01, 1.708665e-01, 1.746722e-01, 1.784728e-01, 1.822681e-01, 1.860582e-01, 1.898428e-01, 1.936220e-01, 1.973956e-01, 2.011634e-01, 2.049255e-01, 2.086818e-01, 2.124320e-01, 2.161762e-01, 2.199143e-01, 2.236461e-01, 2.273716e-01, 2.310907e-01, 2.348033e-01, 2.385093e-01, 2.422086e-01, 2.459012e-01, 2.495869e-01, 2.532658e-01, 2.569376e-01, 2.606024e-01, 2.642600e-01, 2.679104e-01, 2.715535e-01, 2.751892e-01, 2.788175e-01, 2.824383e-01, 2.860514e-01, 2.896569e-01, 2.932547e-01, 2.968447e-01, 3.004268e-01, 3.040009e-01, 3.075671e-01, 3.111252e-01, 3.146752e-01, 3.182170e-01, 3.217506e-01, 3.252758e-01, 3.287927e-01, 3.323012e-01, 3.358012e-01, 3.392926e-01, 3.427755e-01, 3.462497e-01, 3.497153e-01, 3.531721e-01, 3.566201e-01, 3.600593e-01, 3.634896e-01, 3.669110e-01, 3.703234e-01, 3.737268e-01, 3.771211e-01, 3.805064e-01, 3.838825e-01, 3.872494e-01, 3.906070e-01, 3.939555e-01, 3.972946e-01, 4.006244e-01, 4.039448e-01, 4.072558e-01, 4.105574e-01, 4.138496e-01, 4.171322e-01, 4.204054e-01, 4.236689e-01, 4.269229e-01, 4.301673e-01, 4.334021e-01, 4.366272e-01, 4.398426e-01, 4.430483e-01, 4.462443e-01, 4.494306e-01, 4.526070e-01, 4.557738e-01, 4.589307e-01, 4.620778e-01, 4.652150e-01, 4.683424e-01, 4.714600e-01, 4.745676e-01,4.776654e-01, 4.807532e-01, 4.838312e-01,

(完整版)高中数学三角函数解题技巧和公式(已整理)

关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。

课中习利用三角函数解决实际问题

课中习利用三角函数解决实际问题 1.如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG 30,在E处测得∠AFG 60,CE8米,仪器高度CD 1.5米,求这棵树AB 的高度(结果保留两位有效数字,3≈1.732). 2. 如图,在△ABC中,∠A=30°,∠B=45°,AC=3 2,求AB 的长, 习得:解直角三角形,常用的辅助线是:________________________________ ___________________________________________________________________ 3.如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:41 .1 2 , 73 .1 3≈ ≈) 第16题图D B A O C A G F E C D 3060 45° 30° C B A 第19题图

(第22题图) A P C B 36.9° 67.5° 4. (2013山东东营,22)如图某天上午9时,向阳号轮船位于A 处,观测到某港口城市P 位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市P 位于该船的南偏西36.9°方向,求此 时轮船所处位置B 与城市P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈3 4 , sin67.5°≈1213,tan67.5°≈12 5 ) 5. 中考几何题目的三角函数 (2011四川南充市,19)如图,点E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,点F 落在AD 上. (1)求证:⊿ABE ∽⊿DFE;(2)若sin ∠DFE= 31 ,求tan ∠EBC 的值. F E D C B A

三角函数解题方法总结

首先一定要记住的公式 一、 诱导公式、图记法 二、 当然、正弦、余弦、正切、余切、是哪个角比哪个角是基础 三、 倒数关系:不常用sinα=1/secα…cos—csc….tan—cot 四、 平方关系:sin 2+cos 2=1(重点)这个可以推导二倍角公式 五、 商关系:就是sin/cos=tan,都会的 六、 余弦定理(重点):a 2=b 2 +c 2 -2bc·cosA cosA=( b 2+c 2 -a 2)/2bc 正弦定理(大题一般不考,可能出现选择题) 七、 二倍角公式(重点):sin2α=2sinα·cosα cos2α=2cos 2α-1=1-2sin 2α=cos 2α-sin 2α tan2α=

八、 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ =-2 sin[(θ+φ)/2] sin[(θ-φ)/2] 积化和差 sinαsinβ =-[cos(α+β)-cos(α-β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 两角和公式 cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ–cosαsinβ tan(α+β)=(tanα+tanβ)/(1-tanαtanβ) tan(α-β)=(tanα-tanβ)/(1+tanαtanβ) 九、万能公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]

相似与三角函数方法解决一类问题

图4 相似与三角函数方法解决一类问题 例1、如图1所示,在△ABC 中,∠ACB=90o,CDAB ,垂足为D , (1)图中有哪些相等的角? (2)求证:①CD 2=AD ?DB ;②AC 2=AD ?AB; ③BC 2=BD ?BA 练习 1、已知:如图2,△ABC 中,∠BAC=90o,AD ⊥BC 于D ,AB=2,BC=3,则DC 的长为( ) A 、8/3 B 、2/3 C 、4/3 D 、5/3 2、如图3,CD 是Rt △ABC 斜边上的高,AD=9,CD=6,则BD=( ) A 、4.5 B 、5 C 、3 D 、4 3、如图4,在Rt △ABC 中, ∠ACB=90°,CD ⊥AB 于D ,若AD=4,BD=1,则CD= 例2、如图5,已知半径为1的1O e 与x 轴交于A B ,两点,OM 为1O e 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点. (1)求二次函数的解析式; (2)求切线OM 的函数解析式; (3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在, 请说明理由. A B C D A C B D 图3 y x O A B M O 1 图5 图2 A B C D

练习2 、如图,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C ,抛物 线2(0)3 y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)设动点P 、Q 分别从B 、C 两点同时出发,以相同的速度沿AB 、CB 向A 、B 运动,连结PQ ,设BP=m ,是否存在m 值,使以B 、P 、Q 为顶点的三角形与△BAC 相似,若存在,求出所有的m 值;若不存在,请说明理由. (4)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由. x

运用三角函数解决与直角三角 形有关实际问题教案(石凯)

运用三角函数解决与直角三角形有关 实际问题教案 教学目标 1、运用锐角三角函数,解决与直角三角形有关的实际问题。 2、通过运用直角三角形相关知识解决问题, 培养学生的综合运用知识解决问题的能力,体验运用数学知识解决一些简单的实际问题,培养学生用数学的意识。 教学重难点 重点:从实际问题中提炼图形,将实际问题数学化,将抽象问题具体化。 难点:将实际问题转化为数学问题,选择合适关系式运用三角函数解决与直角三角形有关的实际问题。 教学过程 一、知识回顾(展示ppt 课件) (一)、在解直角三角形的过程中,一般要用到的一些关系: 1、三边之间的关系: 2、两锐角之间的关系:∠A+∠B=90° 3、边与锐角之间的关系: 正弦函数:c a A A =∠=斜边的对边sin 余弦函数:c b A A =∠=斜边的邻边cos 正切函数:b a A A A =∠∠=的邻边的对边tan (二)特殊三角函数值 α 30° 45° 60° sin α 12 22 32 cos α 32 22 12 tan α 33 1 3 A C B c b a a 2+ b 2= c 2

1.(2011年铜仁21题10分)如图,在A岛周围25海里水域有暗礁,一轮船由西向 东航行到O处时,发现A岛在北偏东60°方向,轮船继续前行20海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:)。 2.(2015年铜仁22题12分)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732) 3.如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船 32 .7 1 3

1.3《三角函数的计算》教学设计

《三角函数的计算》教学设计 一、学生知识状况分析 1. 本章前两节学生学习了三角函数的定义,三角函数sinα、cosα、tanα值的具体意义,并了解了30°,45°,60°的三角函数值. 2. 学生已经学会使用计算器进行有理数的加、减、乘、除及平方运算,对计算器的功能及使用方法有了初步的了解. 二、教学任务分析 随着学习的进一步深入,当面临实际问题的时候,如果给出的角不是特殊角,那么如何解决实际的问题,为此,本节学习用计算器计算sinα、cosα、tanα的值,以及在已知三角函数值时求相应的角度.掌握了用科学计算器求角度,使学生对三角函数的意义,对于理解sinα、cosα、tanα的值∠α之间函数关系有了更深刻的认识. 根据学生的起点和课程标准的要求,本节课的教学目标和任务是: 知识与技能 1. 经历用计算器由已知锐角求三角函数的过程,进一步体会三角函数的意义. 2. 能够用计算器进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题. 过程与方法 在实际生活中感受具体的实例,形成三角形的边角的函数关系,并通过运用计算器求三角函数值过程,进一步体会三角函数的边角关系.

情感态度与价值观 通过积极参与数学活动,体会解决问题后的快乐. 感悟计算器的计算功能和三角函数的应用价值 教学重点:用计算器求已知锐角的三角函数值.能够用计算器辅助解决含三角函数值计算的实际问题. 教学难点:能够用计算器辅助解决含三角函数值计算的实际问题三、教学过程分析 三、教学过程分析 本节课设计了六个教学环节:复习引入,探索新知、例题讲解,随堂练习,课堂小结,布置作业,课外探究. 第一环节 复习引入 活动内容: 用多媒体展示学生前段时间所学的知识,提出问题,从而引入课题. 直角三角形的边角关系: 三边的关系: 222a c b =+,两锐角的关系: ∠A+∠B=90°. 边与角的关系: 锐角三角函数 c a B A ==cos sin ,c b B A ==sin cos ,b a A =tan , 特殊角30°,45°,60°的三角函数值. 引入问题: 1、你知道sin16°等于多少吗? 1sin A ?4 A =∠=2、已知则

解决三角函数各类问题的十种方法

解决三角函数各类问题的十种方法 三角函数的各类问题,由于涉及的三角公式较多,问题的解法也比较灵活,但也会呈现出一定的规律性,本文拟对其中的解题方法进行总结归纳. 1 凑角法 一些求值问题通过观察角之间的关系,并充分利用角之间的关系,往往是凑出特殊角,可以实现顺利解答. 例1 求tan 204sin 20?+?的值. 解析 原式sin 202sin 40sin 202sin(6020)cos 20cos 20?+??+?-?==?? sin 202(sin 60cos 20cos60sin 20)3cos 20?+??-??==? 评注 三角求值主要借助消除三个方面的差异解答,即消除函数名称差异,或者式子结构的差异,或者角度之间的差异,凑角法体现的就是消除非特殊角与特殊角之间的差异.本题注意若将第一步中的分子化为sin(6040)2sin 40?-?+?,或者化为sin(3010)2sin(3010)?-?+?+?,都没有上面的方法简捷,请同学们进行操作比较,分析原因,并注意凑角也需谨慎选择! 2 降幂法 一些涉及高次三角式的求值问题,往往借助已知及22sin cos 1αα+=,或降幂公式221cos 21cos 2sin ,cos 22 αααα-+==等借助降幂策略解答. 例2 若2cos cos 1αα+=,求26sin sin αα+的值. 解析 由2cos cos 1αα+=,得15cos α-+= ,15cos α--=(舍去).由2cos cos 1αα+=,又可得22cos 1cos sin ααα=-=, 则263sin sin cos cos αααα+=+,又由2cos cos 1αα+=,得2cos 1cos αα=-,故322cos cos cos (1cos )cos (2cos )2cos cos 3cos 1ααααααααα+=+=-=-=-,代值可得26355sin sin 2 αα+=. 评注 若求出cos α的值后直接简单代入,则运算量将大得多,而主动降幂后就截然不同了.涉及非单角形式的三角函数问题,有时也需要考虑降幂进而化为一个角的三角函数形式解答,遇到“高次”问题就特别注意联想“降幂法”解答. 3 配对法 根据一些三角式的特征,适当进行配对,有时可以实现问题的顺利解答.

5.4利用锐角三角函数解决实际问题(2011年)

1. (2011 吉林省长春市) 放在地面上的直角三角形铁板ABC 的一部分被沙堆掩埋,其示意图如图所示.量得角A 为54°,斜边AB 的长为 2.1m ,BC 边上露出部分BD 长为 0.9m .求铁板BC 边被掩埋部分CD 的长.(结果精确到 0.1m ) 参考数据:sin54°=0.81,cos54°=0.59,tan54°=1.38 答案:解:在△ABC 中,∠C =90,sin BC A AB = , ∵∠A =54,AB =2.1, ∴sin 2.1sin54BC AB A ==? 2.10.81 1.701.=?= ∵BD =0.9, ∴CD= BC -BD =1.701-0.9=0.801≈0.8. 答:铁板BC 边被掩埋部分CD 的长约为0.8m . 20110826100913171449 5.4 利用锐角三角函数解决实际问题 应用题 解决问题 2011-08-26 2. (2011 湖南省岳阳市) 如图,在顶角为30°的等腰三角形ABC 中,AB AC =,若过点C 作CD AB ⊥于点D ,则15BCD ∠=°.根据图形计算tan15=°____________.

答案:23- 20110826090029546709 5.4 利用锐角三角函数解决实际问题 填空题 双基简单应用 2011-08-26 3. (2011 浙江省台州市) 丁丁要制作一个形如图1的风筝,想在一个矩形材料中裁剪出如图2阴影所示的梯形翅膀,请你根据图2中的数据帮丁丁计算出BE ,CD 的长度(精确到个位,317≈.). 答案:解:由120ABC ∠=°可得60EBC ∠=°. 在Rt BCE △中,51CE =,60EBC ∠=°, 因此tan 60CE BE °= , 5130tan 60tan 60CE BE ==≈°° . 在矩形AECF 中,由45BAD ∠=°,得45ADF DAF ∠=∠=°.

相关文档
最新文档